
Inductive Tracing and the Complexity of Finding
Hamiltonian Path in DAGs

Ronak Bhadra1 and Raghunath Tewari1

Indian Institute of Technology, Kanpur
{ronakb,rtewari}@cse.iitk.ac.in

Abstract. The HamiltonianPath problem is a classic decision problem
that is NP-complete in general graphs, but solvable in linear time and in
nondeterministic logspace (NL) for directed acyclic graphs (DAGs).
We show that the HamiltonianPath problem for DAGs lies in UL∩ coUL,
providing an improved upper bound on its complexity. To the best of our
knowledge, this is the first instance where an unambiguous space upper
bound has been established for a natural problem without relying on
any variant of the classic Reinhardt-Allender double inductive counting
technique, which is itself based on the Immerman-Szelepcsényi inductive
counting method.
Our proof introduces a novel technique, which we call inductive tracing.
While reminiscent of inductive counting, it diverges in a key respect: it
does not perform any counting across recursive stages. We also apply
this routine to obtain a parameterized unambiguous space bound for the
LongPath problem in DAGs.

Keywords: Unambiguous Logspace Computations · Hamiltonian Path
· Directed Acyclic Graphs

1 Introduction

A Hamiltonian path in a graph G is a path in G that visits each vertex of G
exactly once. Deciding whether a graph has a Hamiltonian path or not is known
as the HamiltonianPath problem. A graph having a Hamiltonian path is called
a traceable graph. The HamiltonianPath problem is a well-studied problem in
the field of computational complexity, especially because of the fact that it is
famously known to be NP-complete [6]. However, for certain restricted classes of
graphs, the HamiltonianPath problem can be shown to be much easier. For exam-
ple, the HamiltonianPath problem can be solved in linear time for rectangular grid
graphs [4]. Similarly, for Directed Acyclic Graphs or DAGs, the HamiltonianPath
problem can also be solved in linear time. Moreover, the HamiltonianPath prob-
lem for DAGs can be shown to be in the complexity class NL as well. This raises
the question whether we can further reduce the computational complexity of the
HamiltonianPath problem for DAGs.

A related problem of relevance is the LongPath problem, which is deciding
whether there is a path of length at least k from one vertex to another in a

2 R. Bhadra and R. Tewari

graph. The HamiltonianPath problem is a special case of the LongPath problem.
Though the LongPath problem is NP-complete for general graphs and even for
planar graphs [2], but it is known to be NL-complete for DAGs.

The complexity class UL is the unambiguous subclass of NL and coUL is the
class of the complements of the languages (problems) in UL. A decision problem
L is in UL if and only if there exists a non-deterministic Turing Machine M
deciding L in logspace such that, for every input instance x, M has at most one
accepting computation path. The first major breakthrough in the study of the
class UL came with the work of Reinhardt-Allender [9], where they showed that
the classes UL and NL are equivalent in non-uniform settings. They also showed
that the Reachability problem in min-unique graphs is in UL∩ coUL. Using their
technique of double inductive counting, Reachability in several other restricted
classes of graphs (for example, planar graphs [1]) as well as some other problems
(for example, longest paths in planar DAGs [7], 3-connected planar graph iso-
morphism [11]) have been shown to be in UL∩ coUL. Apart from this, using the
double inductive counting technique, it has also been shown that directed graph
reachability is solvable in unambiguous O(log2 n) space and polynomial time si-
multaneously [5], which was later further improved to unambiguous O(log1.5 n)
space and polynomial time[8]. In fact, to the best of our knowledge, any up-
per bound given till now on the unambiguous space complexity of any natural
problem has been proved using some variant of the double inductive counting
technique of Reinhardt-Allender[9].

In this paper, we show that the HamiltonianPath problem in Directed Acyclic
Graphs or DAGs is in UL∩ coUL. For this purpose, we give an unambiguous and
co-unambiguous non-deterministic algorithm that decides the HamiltonianPath
problem in G. Our algorithm is akin to the inductive counting algorithm of
Immerman-Szelepcsényi [3,10] and the double inductive counting algorithm of
Reinhardt-Allender [9], which is inspired from the former. However, unlike the
above mentioned algorithms, our algorithm doesn’t count anything inductively.
Rather, it inductively traces the Hamiltonian path if any such path exists, or
else rejects the input if at any point it fails to do so. We call this novel technique
inductive tracing. As far as we are aware, this is the first natural problem for
which an upper bound on the unambiguous space complexity is proved without
relying on the double inductive counting technique of Reinhardt-Allender[9]. We
also give a parametrized upper bound on the unambiguous space complexity
of the LongPath problem in DAGs using our UL ∩ coUL routine for deciding
HamiltonianPath in DAGs.

This result is slightly non-intuitive (if not, surprising) because in general, the
HamiltonianPath problem is a much more difficult problem than the Reachability
problem. In certain restricted subclasses of graphs, the HamiltonianPath prob-
lem may be easier but it still intuitively seems to be at least as difficult as the
Reachability problem for those subclasses. Any prior result regarding HamiltonianPath
does not violate this intuition to the best of our knowledge. For example, in pla-
nar DAGs, though HamiltonianPath is in UL ∩ coUL but Reachability is also in
UL ∩ coUL. In fact, the proof for this [7] explicitly uses Reachability to solve

Inductive Tracing and the Complexity of Finding Hamiltonian Path in DAGs 3

LongPath or HamiltonianPath for that matter. However, Reachability in DAGs
is NL-complete. Our result thus implies that the HamiltonianPath problem is in
some sense easier than the Reachability problem for DAGs. This of course may
not be true if NL = UL, but this is a long-standing open question anyway.

Another interesting aspect that we want to highlight is that HamiltonianPath
in DAGs has a natural UL algorithm because of the fact that there is at most
one Hamiltonian path in a DAG. However, this automatically doesn’t imply that
HamiltonianPath is in coUL. In fact, proving a similar result for st-reachability
in graphs where there is at most one path from s to t (for which again there is
a natural UL algorithm) would prove that UL = coUL. This is unlike most other
problems shown to be in UL ∩ coUL, which have no natural UL algorithm apart
from some inductive counting algorithm based on the algorithm of Reinhardt-
Allender [9].

The rest of the paper is organized as follows. In section 2, we will be proving
the following theorem, which serves as our main result.

Theorem 1. The problem of deciding whether a given Directed Acyclic Graph
has a Hamiltonian path or not is in UL ∩ coUL.

In section 3, we discuss some consequences of our main result. We give a
parametrized upper bound on the unambiguous space complexity of the LongPath
problem in DAGs. We also show that reachability in traceable DAGs is in
UL ∩ coUL.

2 Proof of Theorem 1

In this section, we will prove theorem 1. First we will show that a DAG has at
most one Hamiltonian path and how this fact can help us devise a natural UL
algorithm for HamiltonianPath problem. In order to show that HamiltonianPath is
also in coUL, we will provide an inductive non-deterministic algorithm and then
prove that this algorithm works unambiguously (that is, accepts or rejects exactly
along one computation path) for all input instances. We will then argue for the
correctness of the algorithm in deciding whether a DAG has a Hamiltonian path
or not.

We will first show that there is at most one Hamiltonian path in a DAG.

Lemma 1. There is at most one Hamiltonian path in a Directed Acyclic Graph.

Proof. We prove this by contradiction. Let us assume there are two Hamiltonian
paths in a DAG G, say P1 and P2. There must be at least one vertex v which is
at different positions in paths P1 and P2, say i and j respectively. Otherwise, P1

and P2 are identical. Without loss of generality, let us assume i < j. There must
be some vertex u which comes after v in path P1 but comes before v in path P2.
Now, if we take the subpath from v to u in P1 and then the subpath from u to
v in P2, we get a cycle (v . . . u . . . v). This is a contradiction to our assumption
that G is acyclic.

4 R. Bhadra and R. Tewari

Now, our unambiguous logspace routine to decide if a DAG G has a Hamil-
tonian path or not is simple. Non-deterministically guess a walk of length n
(number of nodes in G) in G. Accept if the guess succeeds. Reject if the guess
fails. Since there is only one Hamiltonian path in a DAG and every walk in a
DAG is a path, therefore we can guarantee that our algorithm will accept along
exactly one computation path, if a Hamiltonian path exists in G and will reject
along all computation paths if no Hamiltonian path exists in G.

The existence of a unique Hamiltonian path in a DAG is sufficient to show
that the HamiltonianPath problem for a DAG is in UL. However, it doesn’t au-
tomatically imply that the HamiltonianPath problem for a DAG is in coUL as
well. For this purpose, we devise algorithm 1 which uses algorithm 2 as a sub-
routine. Algorithm 1 is an inductive algorithm akin to the inductive counting
algorithms of Immerman–Szelepcsényi [3,10] and Reinhardt-Allender [9], but
unlike those algorithms, our algorithm doesn’t actually count any parameter
inductively. Rather, it inductively computes the next vertex in the (possible)
Hamiltonian path from the previous vertex. In this way, the algorithm is able
to trace the Hamiltonian path if it exists and otherwise, it is able to detect that
such a path doesn’t exist.

The algorithm first checks if the graph has a single source (and sink) or not.
If the answer is yes, the algorithm proceeds. Otherwise, it rejects the input (that
is, it declares that there is no Hamiltonian path in the graph G). The algorithm
then starts by initializing a variable v as the (unique) source vertex (say s) of G.
Now, the algorithm, in its i-th iteration, counts the number of vertices (say mi)
which have an incoming edge from v but no incoming edges from vertices other
than those that belong to the (unique) path of length i− 1 from s to v. This is
done using the function count, which non-deterministically guesses a path of
length l from s to v and simultaneously counts the number of incoming edges to
vertex v′ from vertices on this path. The algorithm rejects if in any iteration i,
mi does not turn out to be one. The algorithm accepts only when it successfully
completes n iterations. In other words, the algorithm accepts if and only if the
value of mi is one for all i ≤ n.

We now provide the pseudocode for algorithm 1 and the subroutine Count.

Inductive Tracing and the Complexity of Finding Hamiltonian Path in DAGs 5

Algorithm 1 Determine whether a DAG G has a Hamiltonian path
Require: G = (V,E)
1: Check if the graph has exactly one source and one sink.
2: if no then
3: return reject
4: else
5: set s to be the source vertex of G
6: Initialize v = s, l = 1
7: while l ̸= n do
8: Initialize m = 0, w = NULL
9: for each v′ ∈ V such that (v, v′) ∈ E do

10: d =Count(G, s, v, v′, l)
11: if d ="?" then
12: return "?"
13: if indegree(v′)=d then
14: m = m+ 1
15: w = v′

16: if m ̸= 1 then
17: return reject
18: else
19: v = w
20: l = l + 1

21: return accept

Algorithm 2 Count the number of vertices, in a path of length l from s to v in
G, from which there is an edge to v′

1: function Count(G = (V,E), s, v, v′, l)
2: Initialize x = s, d = 0, i = 0
3: while x ̸= v and i ̸= l do
4: if (x, v′) ∈ E then
5: d = d+ 1

6: non-deterministically guess a vertex x′ such that (x, x′) ∈ E
7: if guess is correct then
8: i = i+ 1
9: x = x′

10: else
11: return "?"
12: if (x, v′) ∈ E then
13: d = d+ 1

14: if x = v and i = l then
15: return d
16: else
17: return "?"

6 R. Bhadra and R. Tewari

In order to prove that HamiltonianPath problem is in UL ∩ coUL, we need to
show the following things:

– algorithm 1 accepts or rejects an input along exactly one computation path
for all input instances (DAGs).

– algorithm 1 accepts an input (a DAG G) if and only if G has a Hamiltonian
path.

In section 2.1, we prove that the algorithm works unambiguously for all
input instances. In section 2.2, we argue for the correctness of the algorithm
in determining whether a DAG is Hamiltonian or not. For the sake of easier
readability of the proof, we will define vi to be the value of the variable v at the
beginning of the i-th iteration of the while loop (in line 7) of algorithm 1. Note
that, by this definition, v1 happens to be the source vertex of the input graph
G, if G has a unique source vertex. We will also assume the input to algorithm 1
is a DAG named G.

2.1 Unambiguity of Algorithm 1

In this subsection, we will show that algorithm 1 works unambiguously, that is,
accepts or rejects along exactly one computation path, for all input instances.

We first prove the following lemma.

Lemma 2. Let vi be the value of the variable v at the beginning of the i-th
iteration of the while loop (in line 7) of algorithm 1. There is a unique path
(v1, v2, . . . , vi) of length (i − 1) from the source v1 to vertex vi in G for all
i. Also, there are no incoming edges to vertex vi from any vertex other than
v1, v2, . . . , vi−1.

Proof. We will prove this by induction.
The base case is trivial. There is a unique path of length 0 from v1 to v1

(itself), which is the source vertex itself (v1). There are no incoming edges to
vertex v1 since v1 is the source vertex of G.

Let us assume that the lemma is true for all i < j. We will show that the
lemma then must also be true for i = j.

Now let us assume there is another path (say P) of length (j−1) from vertex
v1 to vj , other than (v1, v2, . . . , vj). There must be at least one vertex other
than vertices v1, . . . , vj in P . Let u be the last such vertex in P . Let the vertex
succeeding u in P be vk. As per our assumption, vk ∈ {v1, v2, . . . , vj}. Now, this
implies that there is an edge from vertex u to vertex vk. However, according to
our induction hypothesis, if k < j, there is no incoming edge to vk from any
vertex other than v1, v2, . . . , vk−1, which will be a contradiction.

During the (j − 1)-th iteration of the while loop in line 7 of algorithm 1, the
algorithm counts the total number d of incoming edges to a vertex v′ (which
has an edge from vertex vj−1) from all vertices in the path of length (j − 2)
from vertex v1 to vj−1 (which are the vertices v1, v2, . . . , vj−1 by our induction
hypothesis). The algorithm checks if d is equal to the indegree of vertex v′ and

Inductive Tracing and the Complexity of Finding Hamiltonian Path in DAGs 7

increments the variable m by 1 if it is. At the end of the for loop, m indicates the
number of vertices which have an incoming edge from vj−1 but has no incoming
edge from vertices other than v1, v2, . . . , vj−1. The algorithm proceeds further
only if m = 1 and sets the variable v to be the vertex for which the above
mentioned criteria is satisfied. By definition, the value of the variable at the
end of the (j − 1)-th iteration is vj . Thus, vj does not have any incoming edge
from vertices other than v1, v2, . . . , vj−1. Hence, having an edge from vertex u
to vertex vj will also be a contradiction. Therefore, there cannot be any path of
length (j − 1) from vertex v1 to vertex vj other than (v1, v2, . . . , vj−1, vj).

Lemma 2 implies that whenever the function Count is called in line 10 of
algorithm 1, it returns a value of d other than "?" along exactly one computation
path. Any computation path where Count returns "?" is ignored (returns "?"
in line 12). Only the computation path where Count returns a non "?" value
proceeds further and can either accept or reject depending on the input. Thus, for
all input instances, algorithm 1 accepts or rejects along exactly one computation
path. All other computation paths are ignored (returns "?").

Remark 1. "?" is like a don’t-care state. Roughly speaking, if we want an UL
algorithm for our problem, we can consider "?" to be reject. If we want a coUL
algorithm, we can consider "?" to be accept.

2.2 Correctness of Algorithm 1

In this subsection, we will argue for the correctness of algorithm 1. First, we will
show that if the input DAG G has a Hamiltonian path, then algorithm 1 must
accept. For this, we first state and prove the following lemma.

Lemma 3. Let vi be the value of the variable v at the beginning of the i-th
iteration of the while loop (in line 7) of algorithm 1. If the input DAG G has a
Hamiltonian path, then vi must be the i-th vertex of the Hamiltonian path in G.

Proof. We will prove this by induction.
The base case is easy to see. The Hamiltonian path in a DAG must start

from the source vertex of the DAG, since the source vertex cannot occur at any
other position in the Hamiltonian path. As we have already mentioned, v1 is the
source vertex of G since the variable v is initialized to be the (unique) source
vertex of G (in line 5 of algorithm 1).

Let’s assume that vi−1 is the (i− 1)-th vertex of the Hamiltonian path in G.
The value of register v at the beginning of (i − 1)-th iteration is vi−1. Let the
i-th vertex of the Hamiltonian path be u. Therefore, there is an edge (vi−1, u)
from vertex vi−1 to u in G. Also, there cannot be any incoming edge to vertex
u other than from vertices v1, v2, . . . , vi−1. This is because, if there is an edge
to u from a vertex y that is subsequent to u in the Hamiltonian path, then it
implies that there is a cycle (u . . . yu) in G, which will be a contradiction since
G is promised to be acyclic. Moreover, there is only one vertex in G which has
an incoming edge from vi−1 but has no incoming edge from any vertex other

8 R. Bhadra and R. Tewari

than vertices v1, v2, . . . , vi−1. This is because the vertices v1, v2, . . . , vi−1 can’t
have an incoming edge from vertex vi−1 since otherwise there will be a cycle.
Any vertex which comes after u in the Hamiltonian path in G must be preceded
by a vertex other than v1, v2, . . . , vi−1 and hence, must have an incoming edge
from at least one vertex other than v1, v2, . . . , vi−1. Thus, u is the only vertex in
G that has an incoming edge from vi−1 and has no incoming edge from vertices
other than v1, v2, . . . , vi−1.

The Count routine non-deterministically guesses a path of length (i − 2)
from v1 to vi−1. During the process, it counts the total number of incoming
edges to a vertex v′ from any of the vertices in the guessed path.

The Count routine is used for each vertex that has an incoming edge from
vi−1. In this way, algorithm 1 (in lines 9-15) computes the number (m) of vertices
that have an incoming edge from vi−1 but have no incoming edge from vertices
other than v1, v2, . . . , vi−1. We have already seen that m must be exactly equal
to one if G is Hamiltonian. Therefore, algorithm 1 in this case will move to
line 18, set v to be u and proceed for the next iteration. Thus, the value of the
variable v at the beginning of the i-th iteration, that is vi, is equal to u. Hence,
vi is the i-th vertex of the Hamiltonian path in G.

Lemma 3 implies that if the input G to algorithm 1 has a Hamiltonian path,
then the algorithm will run for n iterations. At the beginning of the i-th iteration,
the value of the variable v will be set to the i-th vertex of the Hamiltonian path.
If algorithm 1 successfully runs for n iterations, then it must accept the input
at line 21 once it comes out of the loop.

Next, we show that if algorithm 1 accepts the input DAG G, then G must
have a Hamiltonian path.

Lemma 4. If algorithm 1 accepts, then there must be a Hamiltonian path in G.

Proof. We can see that for all i, vi has an incoming edge from vi−1. Therefore,
for all i, (v1, v2, . . . , vi) constitutes a walk and since the graph G is acyclic, this
walk is also a path. Algorithm 1 accepts only when the while loop (in line 7)
has successfully iterated for n times. Hence, there exists a path (v1, v2, . . . , vn)
in G. This must be a Hamiltonian path since it is a path consisting of n vertices.
Thus, there always exists a Hamiltonian path in G if algorithm 1 accepts.

Lemma 3 and lemma 4 taken together prove that algorithm 1 accepts if and
only if the input DAG G has a Hamiltonian path.

Remark 2. Algorithm 1 as presented here seems to work correctly under the
promise that the input graph is a DAG. Identifying whether a graph is acyclic
or not is NL-complete. Hence, we don’t know if the promise (of being acyclic) on
the input can be independently checked in UL∩coUL. However, if a graph which
is not acyclic is provided as input, algorithm 1 will reject it. We can prove by
induction that for any k, the vertex vk is not a part of any cycle. v1 is the source
of the graph and hence not a part of any cycle (base case). Let us first assume
that vk is not a part of any cycle for any k < i (induction hypothesis). Now,

Inductive Tracing and the Complexity of Finding Hamiltonian Path in DAGs 9

algorithm 1 ensures that vi has incoming edges only from vertices v1, v2, . . . , vi−1.
If vi is a part of a cycle, then it must have an edge from a vertex which is also
a part of that cycle. However, none of v1, v2, . . . , vi−1 are part of any cycle
(according to induction hypothesis). Therefore vi also cannot be part of any
cycle. If a graph that is not acyclic is provided as input to algorithm 1, then the
vertices in the graph which are part of some cycles can never occur as vk, for
any k. Thus, the while loop at line 7 in algorithm 1 cannot run for n times and
at some point, the input will be rejected at line 16-17 in algorithm 1. Hence, the
set of traceable DAGs can be decided in UL ∩ coUL even without any promise
on the input.

3 Some Consequences of our Result

In this section, we discuss two consequences of our main result.

3.1 A Parametrized Upper Bound on the Unambiguous Space
Complexity of the LongPath Problem

In this subsection, we provide a parametrized upper bound on the unambiguous
non-deterministic space complexity of the LongPath problem in DAGs using our
UL∩coUL routine for the HamiltonianPath problem in DAGs. We state this bound
in the following theorem.

Theorem 2. Given a directed acyclic graph G having n vertices and two vertices
s and t in G, the problem of deciding whether there exists a path of length at
least n − k from s to t is solvable in unambiguous (and co-unambiguous) non-
deterministic O(k log n) space.

Proof. We assume we are given an UL ∩ coUL routine for HamiltonianPath in
DAGs theorem 1. That is, we have a non-deterministic logspace Turing machine
that decides along exactly one computation path whether the given DAG has a
Hamiltonian path or not. Now, consider one by one all subsets of vertices (other
than s and t) of size at most k. For each such subset, eliminate the vertices in
this subset from the graph and check whether the remaining subgraph has a
Hamiltonian path from s to t using the UL ∩ coUL routine. If the answer is yes,
then we accept since the Hamiltonian path in the subgraph is a path of length
at least n − k from s to t as the size of the subgraph is at least n − k. If the
answer is no, then we move on to the next subset of vertices and continue. If the
answer is no for all subsets of vertices, then we reject.

This algorithm works because if there is a path of length at least n−k from s
to t, then this path is a Hamiltonian path in the subgraph that does not contain
the vertices (at most k in number) not in this path. That is, there exists a path
of length at least n− k from s to t if and only if there is a subset of (at most k)
vertices, which when removed from the graph, the remaining subgraph (of size
at least n− k) has a Hamiltonian path from s to t.

10 R. Bhadra and R. Tewari

Remark 3. Note that unlike the UL bound for the Hamiltonian path problem
in DAGs, the unambiguous space bound provided in theorem 2 is not a natural
or obvious one. There can be several paths of length at least n − k from s to
t and hence, just non-deterministically guessing a path of length at least n − k
from s to t doesn’t necessarily give an unambiguous algorithm. Our UL ∩ coUL
routine for HamiltonianPath in DAGs is crucial for providing the unambiguous
space bound in theorem 2.

3.2 Reachability in Traceable DAGs

In this subsection, we prove the following theorem.

Theorem 3. Reachability in traceable DAGs is decidable in UL ∩ coUL.

Proof. Given a traceable DAG G and two vertices u and v in G, we need to de-
cide whether u is reachable from v or not. Let s and t be the source and sink of G
respectively. Since G is traceable, therefore there is a unique Hamiltonian path
from s to t in G (by lemma 2). Now, our unambiguous (and co-unambiguous) rou-
tine to decide reachability is simple. Non-deterministically guess a walk (which
is also a path because G is a DAG) of length n from s to t. There will be only
one computation path which will correctly guess such a path since there is only
one such path in G. Return "?" along the computation paths which don’t make
a correct guess (see remark 1). While making the guesses of which vertex to
take next in the walk, keep track of which vertex out of u and v we visit first.
In the computation path that correctly guesses the Hamiltonian path from s to
t, if u is visited before v, then v is reachable from u and hence accept; else, v
is not reachable from u and hence reject. This routine accepts or rejects along
exactly one computation path. Therefore, this routine is unambiguous as well as
co-unambiguous. Thus, reachability in traceable DAGs is decidable in UL∩coUL.

4 Acknowledgments

This work has been partly funded by Research-I foundation.

References

1. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability
is in unambiguous log-space. In: 22nd Annual IEEE Conference on Com-
putational Complexity (CCC 2007), 13-16 June 2007, San Diego, California,
USA. pp. 217–221 (2007). https://doi.org/10.1109/CCC.2007.9, http://doi.
ieeecomputersociety.org/10.1109/CCC.2007.9

2. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete
graph problems. Theoretical Computer Science 1(3), 237–267 (1976).
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1,
https://www.sciencedirect.com/science/article/pii/0304397576900591

https://doi.org/10.1109/CCC.2007.9
https://doi.org/10.1109/CCC.2007.9
http://doi.ieeecomputersociety.org/10.1109/CCC.2007.9
http://doi.ieeecomputersociety.org/10.1109/CCC.2007.9
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
https://www.sciencedirect.com/science/article/pii/0304397576900591

Inductive Tracing and the Complexity of Finding Hamiltonian Path in DAGs 11

3. Immerman, N.: Nondeterministic space is closed under complement. SIAM Journal
on Computing 17, 935–938 (1988)

4. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM Journal on Computing 11(4), 676–686 (1982). https://doi.org/10.1137/
0211056

5. Kallampally, V.A.T., Tewari, R.: Trading determinism for time in space bounded
computations. In: 41st International Symposium on Mathematical Foundations
of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland. pp.
10:1–10:13 (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.10, https://
doi.org/10.4230/LIPIcs.MFCS.2016.10

6. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. pp. 85–103. Plenum Press, New York
(1972). https://doi.org/10.1007/978-1-4684-2001-2_9, https://doi.org/10.
1007/978-1-4684-2001-2_9

7. Limaye, N., Mahajan, M., Nimbhorkar, P.: Longest paths in planar dags in un-
ambiguous logspace. In: Proceedings of the Fifteenth Australasian Symposium on
Computing: The Australasian Theory - Volume 94. p. 101–108. Australian Com-
puter Society, Inc. (2009)

8. van Melkebeek, D., Prakriya, G.: Derandomizing isolation in space-bounded set-
tings. SIAM Journal on Computing 48(3), 979–1021 (2019). https://doi.org/
10.1137/17M1130538

9. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Com-
put. 29(4), 1118–1131 (2000). https://doi.org/10.1137/S0097539798339041,
http://dx.doi.org/10.1137/S0097539798339041

10. Szelepcsényi, R.: The method of forced enumeration for nondeterministic au-
tomata. Acta Informatica 26, 279–284 (1988)

11. Thierauf, T., Wagner, F.: The isomorphism problem for planar 3-connected graphs
is in unambiguous logspace. In: Albers, S., Weil, P. (eds.) STACS 2008, 25th An-
nual Symposium on Theoretical Aspects of Computer Science, Bordeaux, France,
February 21-23, 2008, Proceedings. vol. 1, pp. 633–644. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany (2008). https://doi.org/10.4230/LIPICS.
STACS.2008.1327, https://doi.org/10.4230/LIPIcs.STACS.2008.1327

https://doi.org/10.1137/0211056
https://doi.org/10.1137/0211056
https://doi.org/10.1137/0211056
https://doi.org/10.1137/0211056
https://doi.org/10.4230/LIPIcs.MFCS.2016.10
https://doi.org/10.4230/LIPIcs.MFCS.2016.10
https://doi.org/10.4230/LIPIcs.MFCS.2016.10
https://doi.org/10.4230/LIPIcs.MFCS.2016.10
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/17M1130538
https://doi.org/10.1137/17M1130538
https://doi.org/10.1137/17M1130538
https://doi.org/10.1137/17M1130538
https://doi.org/10.1137/S0097539798339041
https://doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041
https://doi.org/10.4230/LIPICS.STACS.2008.1327
https://doi.org/10.4230/LIPICS.STACS.2008.1327
https://doi.org/10.4230/LIPICS.STACS.2008.1327
https://doi.org/10.4230/LIPICS.STACS.2008.1327
https://doi.org/10.4230/LIPIcs.STACS.2008.1327

	Inductive Tracing and the Complexity of Finding Hamiltonian Path in DAGs

