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We have seen many complexity measures and relations between them. Figure 1 summarizes them.
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Fig. 1. Relations between complexity measures. Arrow from A to B implies A = Ω(B).

You saw previously that all these complexity measures in Figure 1 are polynomially related (with the
exception of sensitivity).

In a breakthrough, Huang [3] recently showed that even sensitivity is polynomially related to all these
measures (called sensitivity conjecture). For a perspective on this result, the conjecture was open for around
30 years, and finally Huang settled it by giving a beautiful proof which can arguably fit in one page.

1 Huang’s proof of sensitivity conjecture

The result was shown by introducing a new quantity, spectral sensitivity, denoted λ(f) (introduced in [3],
formalized in [1]). It was a lower bound on sensitivity (follows easily from the definition), recently it has been
shown to be a lower bound on approximate degree [1] (not needed for the proof of sensitivity conjecture).
This modifies the relationship diagram to Figure 2.

Huang provided a polynomial upper bound on the degree of a function f using λ(f).

Exercise 1. Why is that sufficient?

First, we define spectral sensitivity for a Boolean function f : {0, 1}n → {0, 1}. To define spectral
sensitivity, we need the concept of sensitivity graph of the function f , a subgraph of Boolean hypercube.
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Fig. 2. Relations diagram with spectral sensitivity. Arrow from A to B implies A = Ω(B).

Exercise 2. What is a Boolean hypercube (as a graph)?

The sensitivity graph of f , say Gf , is a subgraph of Boolean hypercube, i.e., there are 2n vertices (for
each input). An edge x, y is present in Gf iff f(x) ̸= f(y) and x, y is an edge in Boolean hypercube (they
have Hamming distance 1).

Exercise 3. Find a function f whose sensitivity graph is the Boolean hypercube itself.

Exercise 4. How many edges are there in the sensitivity graph of ORn.

Exercise 5. Show a subgraph of Boolean hypercube which is not a sensitivity graph for any function f .

We are interested in the eigenvalues of the adjacency matrix, say Af , of the graph Gf . We first notice
that the graph Gf is bipartite.

Exercise 6. Show that Boolean hypercube is bipartite.

That means, if u is an eigenvalue of Gf , then so is −u (assignment). That means we can talk about the
maximum eigenvalue (without clarifying if absolute value needs to be taken before taking maximum).

The spectral sensitivity of f , called λ(f), is the maximum eigenvalue (also called spectral norm) of the
adjacency matrix of Gf .

Since the eigenvalue of a matrix is bounded by the maximum row sum (why), λ(f) ≤ s(f). For λ(f) ≤
d̃eg(f), refer to [1]. This completes the relationships given in Figure 2.

The main result of this section is the following upper bound on deg(f) in terms of λ settling sensitivity
conjecture.

Theorem 1 ([3]).
For any Boolean function f : {0, 1}n → {0, 1},

deg(f) ≤ λ(f)2.
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The first simplification is that we can assume deg(f) = n. If not, pick the monomial in the polynomial
representation of f with highest degree, and set all other variables to some values. For the restricted function,
deg(f) is same but λ(f) can only be smaller (assignment).

That means we can assume deg(f) = n (any counterexample to Theorem 1 can be converted into a
counterexample with full degree). In other words, we just need to prove that λ(f) ≥

√
n when deg(f) = n.

What can we say about sensitivity graph of f when deg(f) = n? Define V0 = {x : f(x) = PARITY(x)}
and V1 = {x : f(x) ̸= PARITY(x)}.

Exercise 7. Show that deg(f) = n is equivalent to saying that |V0| ≠ |V1|.

The problems statement changes to, given that |V0| > 2n−1 (if |V0| < |V1| then consider 1−f), show that
λ(f) ≥

√
n.

Exercise 8. Show that there is no edge between V0 and V1. Inside V0 (and V1), the edges are exactly the
edges of Boolean hypercube.

This means that the eigenvalues of Gf are union of eigenvalues of the subgraph on V0 and V1. We know
that inside V0 and V1, the edges are exactly like the Boolean hypercube. In other words we are interested in
the eigenvalues of the induced subgraph on V0 and V1. For any V with more than half the vertices, we need
to show that the induced subgraph from Boolean hypercube (say GV ) has eigenvalue more than

√
n. This

will finish the proof.
An interesting lemma relates the eigenvalues of the induced subgraph with the eigenvalues of the original

graph. It is called Cauchy’s interlacing theorem [3], we will only use the following special case of it.

Lemma 1. Let G be a graph on k vertices and its eigenvalues be λ1 ≤ λ2 · · · ≤ λk. If GV is the induced
subgraph on V with l vertices, then

∥GV ∥ ≥ λl,

where ∥GV ∥ denotes the maximum eigenvalue of GV .

Proof. The adjacency matrix of G is an k× k matrix. The eigenvectors corresponding to bigger eigenvalues,
{λk, λk−1, · · · , λl}, span a vector space of dimension k − l + 1, say S1. The vector space corresponding to l
standard basis vectors ev where v ∈ V , say S2, spans a subspace of dimension l.

Exercise 9. Since the sum of dimensions of S1 and S2 is more than k, show that their intersection is non-
empty.

For the common vector v, Av = AV v (where A,AV are the adjacency matrices of G,GV respectively),
and the length of Av is more than λl times the length of v. So, we get

∥GV ∥ := ∥AV ∥ ≥ λl.

The adjacency matrix of Boolean hypercube (say Hn) has dimensions 2n × 2n. Arrange the eigenvalues
of H in increasing order, λ1 ≤ λ2 ≤ · · · ≤ λ2n . From Lemma 1, the maximum eigenvalue of GV is more than
λ2n−1+1.

What is λ2n−1+1? You will show in the assignment that the eigenvalues of Boolean hypercube has very
simple structure. It has eigenvalue −n+ 2k with multiplicity

(
n
k

)
.

Exercise 10. What bound will this give on ∥GV ∥ when |V | > 2n−1?

Unfortunately the interlacing theorem applied on Hn doesn’t seem to be of much help. It turns out, a
small modification of the adjacency matrix of Hn will do the trick. The idea is to introduce a signing of
the Boolean hypercube (assign -1 to some of the 1 entries of the matrix), that compresses the eigenvalues.
In particular, we will try to make half the eigenvalues

√
n and other half to be −

√
n. Applying interlacing

theorem on that signed matrix will give the result.
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Proof of Theorem 1. The main idea of the proof is to construct a signing of the adjacency matrix of the
Boolean hypercube. A signing of a {0, 1} matrix is assigning negative sign to some non-zero entries of the
matrix. Let As be a signing of a {0, 1} matrix, then you will show in the assignment

∥A∥ ≥ ∥As∥.

We will construct a signing s of Boolean hypercube such that half of its eigenvalues (2n−1 of them) will
be

√
n and the other half will be −

√
n. If A is the adjacency matrix of GV ,

∥AV ∥ ≥ ∥(As)V ∥.

Here A is the adjacency matrix of Hn and AV denote the induced matrix on the subset V .
By Lemma 1, ∥(As)V ∥ should be greater than the 2n−1 + 1 highest eigenvalue of As, which is

√
n.

The only task is to construct the signing with required properties. Notice that we want to have half the
eigenvalues

√
n and other half to be −

√
n. This implies that we want,

A2
S = nI.

(The trace being 0 ensures that there are equal number of
√
n and −

√
n eigenvalues).

Looking at every non-diagonal entry of A2
S , it basically arises from two sums from a 4-cycle in the Boolean

hypercube. If (x, y) are at Hamming distance 2 differing at i, j,

A2
S(x, y) = A2

S(x, x
⊕i)A2

S(y, y
⊕j) +A2

S(x, x
⊕j)A2

S(y, y
⊕i).

This can only be 0, if all 4-cycles have odd number of −1’s.

Exercise 11. Convince yourself of the previous statement. Also check that diagonal entries are fine.

In other words, a signing with odd number of −1’s will finish the proof. Such a signing is trivial for n = 2.

Exercise 12. Can you construct such a signing for n = 3?

Formally, the signing can be defined inductively by,

(A1)s =

(
0 1
1 0

)
, (An)s =

(
An−1 I
I −An−1

)
You can easily show the following properties of this signing by induction.

– (An)s is a signing of Hn (it follows the structure of Boolean hypercube).
– Trace of (An)s is 0.
– (An)

2
s = nI.

From the third property, each eigenvalue is either
√
n or −

√
n. From the trace property, the multiplicity

of each eigenvalue is 2n−1. Thus, we have the signing with required property, showing that if V is a subset
of vertices of Hn such that |V | > 2n−1, then ∥GV ∥ ≥

√
n.

By the discussion before the proof, this implies that λ(f) ≥
√
n for any f with degree n.

Huang’s result, using the already known relationship between block sensitivity and degree [4], implies
that bs(f) = O(s(f)4). We only know a function for which bs(f) = Ω(s(f)2) [5]. It is an open problem to
bridge this gap.

There have been interesting developments after this discovery, as mentioned before, it was proven that

λ(f) = O(d̃eg(f)) in [1]. They were able to use this to show that for any Boolean function f , deg(f) =

O(d̃eg(f)2). This is known to be optimal by OR function.
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2 Certificate games

Certificate games provide a nice algorithmic way to look at many of the combinatorial measures. They can
be used to model sensitivity, spectral sensitivity, fractional block sensitivity (not studied in this course). For
details, look at [2].

A certificate game for a Boolean function f : {0, 1}n → {0, 1} is played by two cooperating players, say
Alice and Bob, against a verifier. The players can’t communicate, but can decide on a strategy beforehand.
Once the game starts (players can’t contact each other), the verifier sends them two inputs, x ∈ f−1(0) to
Alice and y ∈ f−1(1) to Bob. Alice replies with an index i ∈ [n] and Bob with an index j ∈ [n]. They win
when i = j and xi ̸= yi. The inverse of the worst case winning probability (over all x, y pairs) is called the
CG value of the function (for the best protocol).

Exercise 13. Suppose Alice and Bob don’t use any randomness. Show that they can’t win on every pair of
input for Parity.

The game can be studied in multiple settings. The players can use randomness at their own end, though
these random bits are not known to other party (private randomness). Another model is when they can
have shared randomness (public randomness model). In another setting, we can assume that they can use
quantum entanglement.

We will restrict ourselves to one of the simplest setting, private randomness and also assume that the
question pair x, y is at Hamming distance 1. We will show that under such restrictions, for any Boolean
function f , CG(f) = λ(f)2. For other such results, please see [2].

Before we look at the relationship of spectral sensitivity with certificate games (the particular setting we
have in mind). Let us first explore these quantities independently.

The private randomness certificate game strategy for a function f is characterized by the probability
distribution {px,i}i for every input x. Notice that every input, depending upon whether it is a 1 or a 0-
input, can only be sent to one of the party, either Alice or Bob. So, a strategy is a collection of probability
distributions on indices for each input.

Exercise 14. What is the probability of winning on input pair x, y?

Notice that since we are in the Hamming distance 1 case, the input pair x, y differ at a single bit ix,y.
So the winning probability is px,ix,y

py,ix,y
, because they answer with these probabilities independently. The

winning probability of the strategy is the worst case success probability, min(x,y) px,ix,ypy,ix,y , where (x, y)
have Hamming distance 1. The CG value of the game is the inverse of the maximum winning probability
over all strategies.

Exercise 15. Show that the CG value of the game is at least the sensitvity of the function.

On the other hand, λ(f) is the maximum eigenvalue of the sensitivity graph (precisely, the adjacency
matrix of this graph). Notice that every row of this matrix has at most n ones, where these ones can only
be in row x if the column y is at Hamming distance 1 from x. Remember that the y which is at Hamming
distance one from x and differs on index i is represented as xi.

We are ready to prove the main result of this section.

Theorem 2. For any Boolean function f : {0, 1}n → {0, 1}, CG(f) = λ(f)2.

Note 1. There is no order notation involved here, the equality is exact. Also, the theorem follows from other
equalities [2,1], we give a direct proof here.

Proof. The proof has two parts. It is easier to show that CG(f) ≤ λ(f)2. We need to come up with a strategy
which wins with probability λ(f)2. Let v be the principal eigenvector of the sensitivity graph of f . Since all
entries of adjacency matrix are non-negative, by Frobenius-Perron theorem, all entries of v are non-negative.
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Exercise 16. Suppose M is a matrix with all entries being non-negative. Show that there exists a principal
eigenvector which is non-negative entrywise.

Given a non-negative v, it is easy to design the strategy,

px,i =
vxi∑
j vxj

.

Exercise 17. Show that the winning probability of this strategy is 1
λ(f)2 .

Coming to the other part, we need to show that CG(f) ≥ λ(f)2. Let Gf denote the adjacency matrix of
the sensitivity graph of f .

Exercise 18. Show that CG(f) ≥ λ(f)2 iff the matrix I − 1√
CG(f)

Gf is positive semidefinite. Hint: use

spectral decomposition of symmetric matrices.

Note 2. An n×n symmetric matrix A is positive semidefinite if xTAx ≥ 0 for all x ∈ Rn. Another equivalent
way is to show that all eigenvalues are non-negative.

Let P := I − 1√
CG(f)

Gf . We will show that P is the sum of n positive semidefinite matrices, P =

P1 + P2 + · · ·+ Pn. Why is that enough?
The matrix Pi corresponds to the i-th index (as you might have guessed). Look at all pairs x, y such that

they differ at index i, are at Hamming distance 1, and f(x) ̸= f(y) (notice that these pairs are disjoint). Let
{px,i}i be the strategy which wins with probability 1

CG(f) . Set,

Pi(x, x) = px,i, Pi(y, y) = py,i, Pi(x, y) = Pi(y, x) =
1√

CG(f)
.

Exercise 19. Show that this 2× 2 matrix is positive semidefinite.

Since Pi can be viewed as a block diagonal matrix with these 2 × 2 submatrices as diagonals (after
rearranging columns and rows), it is positive semidefinite.

Exercise 20. What properties of positive semidefinite matrices do you need to show the previous statement?

Looking at
∑

i Pi, diagonal entries sum up to 1 because px,i’s form a probability distribution. Also, a
non-diagonal entry x, y is non-zero if and only if x, y are at Hamming distance 1 and f(x) ̸= f(y). Actually,
the entry will be exactly 1√

CG(f)
contributed by the i where x, y differ.

So, we showed that P is the sum of positive semidefinite matrices and hence it is itself positive semidefinite.
This proves the remaining part, CG(f) ≥ λ(f)2.

3 Assignment

Exercise 21. Suppose A is the adjacency matrix of a bipartite graph. Show that if u is an eigenvalue of A,
then so is −u.

Exercise 22. Why is the λ of restricted function smaller than the λ of the original function?

Exercise 23. Let Hn be the Boolean hypercube on n elements. Show that Hn has eigenvalue −n+ 2k with
multiplicity

(
n
k

)
for 0 ≤ k ≤ n.

Hint: Use induction and structure of the adjacency matrix of Boolean hypercube.

Exercise 24. Just by looking at the eigenvalues of Boolean hypercube and Cauchy’s interlacing theorem, you
can come up with a statement like: if the degree n coefficient of f is big enough then λ(f) ≥

√
n. Make this

statement precise and prove it.
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Exercise 25. Show that if As is a signing of A, then

∥A∥ ≥ ∥As∥.

Exercise 26. What is the spectral sensitivity of PARITY?

Exercise 27. Show that CG value of parity is Θ(n2).

Exercise 28. Show that CG(f) ≤ s(f)2.
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