
Lecture 6: Yao’s min-max for randomized query complexity

Rajat Mittal

IIT Kanpur

I would like to thank Vatsal Jha for making a preliminary version of these lecture notes.

1 Randomized query complexity

Recall that a randomized decision tree, say A, computing a boolean function f is a probability distribution
over the Deterministic Decision trees.

Formally, we say that A computes f with bounded error ϵ if for every x we have:

Pr
D∼A

(D(x) = f(x)) ≥ 1− ϵ,

Here the probability is taken over all deterministic trees D having non-zero probability in the distribution
defined by A. For simplicity, we will use A to represent both the randomized decision tree as well as the
distribution defined by it.

The complexity (or cost) of a randomized decision tree A for an input x, denoted as cost(A, x), has at
least two possible definitions. Note that the cost on x for a deterministic tree D is the number of queries by
D on x.

– Expected cost of computing x, where the expectation is taken according to the probability distribution
represented by A,

cost(A, x) := E
D∼A

[cost(D,x)].

– The worst-case cost, i.e.,
cost(A, x) := max

D∈A:Pr(D) ̸=0
cost(D,x).

Given cost(A, x), similar to the Deterministic tree complexity, the randomized decision tree complexity
of a function f with bounded error ϵ is defined as:

Rϵ(f) := min
A:A computes f

max
x

cost(A, x).

We will see that for the bounded error case the above two definitions of cost(A, x) are equivalent, in
the sense that they can differ by at most a constant factor. For brevity of notation, R1

ϵ(f) will denote the
worst-case cost while R2

ϵ(f) will denote the expected cost.
We now relate the two measures for randomized costs.

Theorem 1. R1
ϵ(f) = θ(R2

ϵ(f)).

Proof. From the definition, R2
ϵ(f) = O(R1

ϵ(f)). We will show R1
ϵ(f) = O(R2

ϵ(f)) to finish the proof.
For simplicity let us assume ϵ = 1/3. For a randomized decision tree A, let d := R2

ϵ(f).
We now devise a randomized algorithm A

′
, using A, such that the worst-case cost of A

′
is of the same

order as the expected cost of A. Run A up to ≥ 100d queries, if we get an answer then output it, otherwise
answer arbitrarily.

Now we show below that A
′
computes f with high probability. Remember that the error probability can

be made small by repetition. By Markov’s inequality, the probability that a deterministic tree has depth
more than 100d is less than 1/100.

Exercise 1. What can we say about the error probability of A
′
?

We leave the rest of the proof as an assignment.

Generally, the complexity of a randomized decision tree A is taken to be its worst-case cost. Following
the same convention henceforth, by Rϵ(f) we would refer to R1

ϵ(f). Also, for simplicity ϵ will be fixed to 1
3 .

In fact any ϵ < 1
2 would have sufficed because of the Chernoff bound.

Note 1. It is sufficient that the error probability here is less than 1/2− ϵ for a constant ϵ. It is not enough
to show that the error probability is < 1/2.

Randomized query complexity for OR: We now consider the randomized query complexity of OR. You will
show in the assignment that there is a 2n/3 query algorithm which computes OR in bounded error setting.
Approximate degree gives a lower bound of

√
n on OR. Can we make a better algorithm (asymptotically)

for OR?
It can be shown that the approximate degree of OR is

√
n, so there is no hope of getting a better lower

bound using the previous technique. We will show an extension of adversary technique for randomized query
complexity; using this technique, we will show that indeed the trivial algorithm for OR is indeed the best
(R1/3(OR) = Ω(n)).

2 Another lower bound technique for randomized query complexity

We will see a general extension (works for any function and not just OR) of the adversary method. Unlike
the deterministic case, adversary will define a hard distribution on inputs such that no deterministic tree of
small depth (say ≤ d) will have good probability of success against this distribution of inputs.

Yao’s min-max proves that this is enough to show that R1/3(f) is high (more than d). To go through the
details, let us learn some definitions.

2.1 Yao’s Minimax Lemma

Yao’s Minimax lemma provides a general strategy for lower bounding randomized algorithms. It relates the
distributional complexity for a boolean function f to Rϵ(f).

Distributional Complexity: The distributional complexity of a boolean function f with respect to a distri-
bution µ on the inputs {0, 1}n is defined as:

Dµ(f) := min
D: D computes f on µ

max
x

cost(D,x),

where a deterministic decision tree D is said to compute f on µ if Pr
x∼µ

(D(x) = f(x)) ≥ 2
3 .

Lemma 1. (Yao’s Minimax Lemma) Let f be a boolean function and let µ be a distribution over the inputs.
Then Yao’s Minimax Lemma states that:

max
µ

Dµ(f) = R1/3(f).

Proof. We first show that max
µ

Dµ(f) ≤ R1/3(f).

Let A be an optimal randomized decision tree computing f i.e. cost(A) = R1/3(f) with the associated
distribution to be λ. Further, consider a distribution µ over the inputs {0, 1}n.

Our aim will be to show that there exists a decision tree D with non-zero probability in the support of
λ such that D computes f according to µ. The argument used will be the probabilistic version of equating
the sum of entries of a matrix using columns and rows.

2

Let 1(x,D) denote the indicator function that D(x) = f(x). This implies for all x we have:

E
D∼λ

[1(x,D)] =
∑
D∼λ

1(x,D) Pr(D) =
∑

D:D∼λ, D(x)=f(x)

Pr(D) ≥ 2

3
.

Now, consider the following expression:

E
x∼µ, D∼λ

[1(x,D)] =
∑

x∼µ, D∼λ

1(x,D) Pr(x,D).

As picking x and picking D are independent of each other we obtain:

E
x∼µ, D∼λ

[1(x,D)] =
∑

x∼µ, D∼λ

1(x,D) Pr(x) Pr(D)

=
∑
x∼µ

Pr(x)
∑
D∼λ

1(x,D) Pr(D)

Using
∑

D∼λ

1(x,D) Pr(D) ≥ 2
3 , we obtain

E
x∼µ, D∼λ

[1(x,D)] ≥
2

3

∑
x∼µ

Pr(x) =
2

3
. (1)

Now taking the inner sum over x instead of D in the above double summation gives us:

E
x∼µ, D∼λ

[1(x,D)] =
∑
D∼λ

Pr(D)
∑
x∼µ

Pr(x)1(x,D) =
∑
D∼λ

Pr(D)
∑

x∼µ, D(x)=f(x)

Pr(x).

Since the expectation of
∑

x∼µ, D(x)=f(x) Pr(x) with respect to λ is bigger than 2/3, there exist a D in
the support of λ satisfying:

E
x∼µ

[1(x,D)] =
∑

x∼µ, D(x)=f(x)

Pr(x) ≥ 2

3
.

The above claim is equivalent to claiming that there exists a D in λ which computes f according to the
distribution µ. As the choice of µ was arbitrary this implies:

max
µ

Dµ(f) ≤ R1/3(f).

Now to prove the equality, it suffices to show that there exists a distribution µ over the inputs such that
Dµ(f) = Rµ(f).

The existence of such a µ follows from duality theorems in linear programming. This completes the proof
of Yao’s Minimax lemma.

Having proved the Yao’s Minimax lemma we now proceed to obtain a lower bound on R1/3(OR) using
the adversary argument.

2.2 Lower bound for R1/3(OR)

We are ready to prove that the randomized query complexity of OR is Θ(n).

Theorem 2.

R1/3(OR) ≥ n

2
.

3

Proof. By Yao’s min-max lemma, it is enough to prove that max
µ

Dµ(OR) ≥ n
2 . In other words, we need to

show a µ such that Dµ(OR) ≥ n
2 . Define µ, a probability distribution on the inputs as

Pr(X = x) =

1
3 + 1

n , if |x| =0

2
3n − 1

n2 , if |x| =1

.

Exercise 2. Verify that it is a probability distribution as required in Yao’s min-max lemma.

Now consider any decision tree D having depth < n
2 which computes OR according to the distribution

µ. Look at the branch of D where we get 0 in all the queries. Since the probability of 0 input is 1
3 + 1

n and
D computes OR on µ with error probability less than 1/3, D should output 0 on this all zero branch.

In other words, for the all zero branch of D if the output on that branch is 1 then the error probability
of D is 1

3 + 1
n > 1/3, a contradiction.

On the other hand, if the output is 0 on this all zero branch, then for more than half the inputs x having
|x| = 1 the output will be 0 (remember that D has only queried less than n/2 indices till now). The error
probability of D in this case will be at least :(

n

2
+ 1

)(
2

3n
− 1

n2

)
=

1

3
+

1

6n
− 1

n2
>

1

3
,

for n > 6.
This again contradicts the assumption that D computes OR according to the given distribution µ with

probability more than 2/3.
As our choice of D was arbitrary, by the above argument we have proved that there cannot exist a D

with depth < n/2 that computes OR according to the distribution µ defined above. So Dµ(OR) ≥ n
2 .

Hence,

R1/3(OR) = max
µ

Dµ(OR) ≥ n

2
.

It can be observed that the key step in the adversary argument provided above was to identify the hard
distribution µ, in order to apply Yao’s lemma. In other words, Yao’s lemma evidently provides an adversary
strategy for lower bounding Rϵ(f).

3 Assignment

Exercise 3. Read about duality theory of linear programming.

Exercise 4. Finish the proof of Theorem 1.

Exercise 5. Let f be the Majority function. Prove that R1/3(f) = Ω(n).

References

4

	Lecture 6: Yao's min-max for randomized query complexity

