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1 Lower bounding randomized query complexity

We first recall a lower bound for the deterministic query complexity of a Boolean function f using the degree
of f .

Proof sketch:. Consider the decision tree for f having depth D(f). Corresponding to each computation path
(i.e. a path from the root to some output leaf) in the tree, we can construct an indicator polynomial. That
means the indicator polynomial is one whenever the input is part of the leaf and 0 otherwise.

Exercise 1. Can you construct such an indicator polynomial depending upon the path of the deterministic
decision tree?

The indicator polynomial corresponding to any computation path is the product of either xi or (1− xi),
based on whether we set its value to be 1 or 0 respectively in the path (for all the variables xi in the path).
It can be seen that the degree of each of these indicator polynomials is equal to the depth of the leaf, and
hence is at most D(f).

The (unique) polynomial corresponding to f is the sum of these indicator polynomials, all having degree
at most D(f). Hence, the degree of their sum, deg(f) ≤ D(f).

Exercise 2. Prove that the polynomial constructed as above represents the function.

Can degree be a lower bound on the randomized query complexity of a function? It turns out that this is
not possible. Saks and Wigderson [2] showed that there are functions which separate the deterministic query
complexity and the randomized query complexity. One such example is the iterated composition of NAND
function.

Exercise 3. Show that the degree of NAND function is full.

Using that result that degree multiplies under composition (you proved it earlier), the degree of com-
position of NAND function (however many times you compose) is also full. Saks and Wigderson [2]gave
a randomized algorithm for this iterated composition, where the query complexity is not full. For details,
please look at the reference.

1.1 Lower bound using approximate degree

How should we extend such a proof for the randomized query complexity? Suppose R is a randomized
decision tree (randomized query algorithm) for f .

Exercise 4. Can you say that the polynomial constructed in a similar manner for any decision tree in support
of R will represent f?



We need to define a variant of degree, which will be a lower bound on the randomized query complexity.
Let f be a Boolean function. Now, say we want our randomized algorithm R to compute f . We must

have Pr(R(x) = f(x)) ≥ 2
3 for every input x. Thus, for each input x:

f(x) = 0 =⇒ Probability of Acceptance ≤ 1

3
(Acceptance is failure here)

f(x) = 1 =⇒ Probability of Acceptance ≥ 2

3
(Acceptance is success here)

Let R be a randomized query algorithm for f . It can be seen as a probability distribution over some
deterministic decision trees D1, D2, · · · , Dk. Say the corresponding probabilities are p1, p2, · · · , pk.

From the proof sketch before, every decision tree Di in support of R gives rise to a polynomial Pi(x).
What can we say about the polynomial P =

∑
i piPi? Notice that P gives us the probability of acceptance

for any input. The condition for R computing f can be rewritten as:

|f(x)− P (x)| ≤ 1

3
for all inputs x. (1)

Exercise 5. Convince yourself that the above statement is true.

Note 1. As with all of our previous discussions, there is nothing extraordinarily special about 1
3 here, we can

replace it by any ϵ < 1
2 .

Thus, if we have a randomized algorithm R which computes f , then there is a corresponding polynomial
P which satisfies Equation 2 (and also the constraint 0 ≤ P (x) ≤ 1∀x, as P represents a probability). Notice
that the degree of P is at most the maximum depth of Di’s and hence is bounded by the randomized query
complexity of R.

This also means that for a given Boolean function f , let us look at all the polynomials P which satisfy
(2). Then, the lowest degree among all these polynomials will give us a lower bound on the query complexity
of R. Since this is true for any R which computes f , the lowest degree among all such polynomials is a lower
bound on the randomized decision tree complexity

Note 2. Here we have removed the constraint 0 ≤ P (x) ≤ 1∀x, as 1. We already had the constraint
− 1

3 ≤ P (x) ≤ 4
3 ∀x from (2) itself, and 2. This additional constraint does not really change the lower bound

for complexities much.

1.2 Lower bound using approximate degree on quantum query complexity

Though we have not defined quantum query complexity formally, let us state a similar statement (without
proof) for it as well (this will help us achieve lower bounds on the quantum query complexity):

Theorem 1. The probability of acceptance of a quantum query algorithm on input x = x1x2 . . . xn is a
polynomial in x1, x2, . . . , xn having degree at most twice the number of queries.

Note 3. Acceptance here refers to the event of the quantum algorithm giving 1 as the output (this is analogous
to the definition of acceptance of a language in the Theory of Computation). There is no mention of any
Boolean function f here, the theorem is independent of that.

Notice that this statement gives some sort of a lower bound on the number of queries (i.e. the quantum
query complexity). We follow the same approach as in the case of randomized query complexity.

Let f be a Boolean function. Now, say we want our Quantum algorithm Q to compute f . We must have
Pr(Q(x) = f(x)) ⩾ 2

3 for every input x. Thus, we can say that for each input x:

f(x) = 0 =⇒ Probability of Acceptance ⩽
1

3
(Acceptance is failure here)

f(x) = 1 =⇒ Probability of Acceptance ⩾
2

3
(Acceptance is success here)
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As specified in Theorem 1, let the probability of acceptance of Q on input x be a polynomial P (x). The
condition for Q computing f can be rewritten as:

|f(x)− P (x)| ⩽ 1

3
for all inputs x (2)

Note 4. As with all of our previous discussions, there is nothing extraordinarily special about 1
3 here, we can

replace it by any ϵ < 1
2 .

Thus, if we have a quantum algorithm Q which computes f , then there is a corresponding polynomial P
which satisfies (2) (and also the constraint 0 ≤ P (x) ≤ 1∀x, as P represents a probability) such that the
number of queries taken by Q is at least 1

2deg(P ).
This also means that for a given Boolean function f , if we look for all of the polynomials P in gen-

eral which satisfy (2), then the lowest degree among all these polynomials will give us a lower bound for
complexities of all quantum algorithms which compute f !

Let us study more about the polynomials satisfying (2).

1.3 Approximate degree of a Boolean function

Suppose we want our randomized algorithm R to compute f “perfectly”, i.e. we want Pr(R(x) = f(x)) = 1.
For the polynomial P constructed in the last section,

|f(x)− P (x)| ≤ 0∀x,

where P is R’s probability of acceptance.
This implies that P is the (unique) polynomial representation of f , and so the number of queries used by

such a 0-error randomized algorithm R is ≥ deg(P ) = deg(f). Hence, deg(f) is a lower bound for randomized
query complexity with 0 error.

Exercise 6. Can you show that 0 error randomized query complexity is same as deterministic query com-
plexity?

Though, we might not want to be so strict in terms of computing f perfectly.
We say that a polynomial P approximates f , if

|f(x)− P (x)| ≤ 1

3
for all inputs x. (3)

Note 5. This is just one notion of approximation, there are many more such notions in mathematics. For
example, another notion is that P (x) = f(x) for a high fraction of inputs x. But this notion is not useful for
us, as for e.g. if f is OR, then the constant (zero degree) polynomial 1 approximates OR (as it is equal to
OR on almost all inputs).

For a Boolean function f : {0, 1}n → {0, 1}, its approximate degree, d̃eg1/3(f) is the minimum possible
degree of a polynomial p which approximates f .

d̃eg1/3(f) = min
polynomial p:

|p(x)−f(x)|≤1/3 ∀ x

deg(p). (4)

It is not difficult to see that d̃eg1/3(f) ≤ deg(f), as the polynomial representation for f trivially approx-

imates f . In fact, if ϵ ≥ δ, then d̃egϵ(f) ≤ d̃egδ(f).
What can we say about the approximate degree of the composition of two Boolean functions. It is known

(but not straightforward, why?) that the approximate degree of f · g is bounded by the multiplication
of the approximate degree of f and approximate degree of g [3]. Though, whether there is an equality
(asymptotically), is a big open question.

3



1.4 Approximate degree & R(f)

Remember that R(f) refers to the smallest number of queries used by any randomized algorithm which
computes f with bounded error.

From previous discussion, if there is a randomized algorithm for f which uses t queries, then ∃ an
approximating polynomial for f with degree at most t. Now consider the optimal randomized algorithm
which computes f , it uses R(f) queries, so there is an approximating polynomial for f with degree ≤ ·R(f).
The degree of this approximating polynomial is at least the approximate degree of f .

We get a lower bound on randomized query complexity using the approximate degree of f :

R(f) ≥ d̃eg1/3(f). (5)

Notice how this is analogous to the statement D(f) ≥ deg(f).

2 Techniques for getting Approximate Degrees

We have converted the problem of computing lower bound on randomized query complexity of f to giving the
lower bound on approximate degree of f . Below, we will discuss some ways to bound the approximate degree
of a symmetric Boolean function. The standard trick in this case is known as Minsky-Papert symmetrization.

2.1 Symmetrization Trick by Minsky & Papert

One way of lower bounding the degree of a polynomial can be to argue about its number of roots. But here,
our polynomials are multivariate polynomials, not univariate ones, so we cannot use the number of roots
directly. We had seen before that a symmetric function/polynomial (in x ∈ {0, 1}n) can be thought of as a
univariate polynomial (in |x| ∈ {0, 1, . . . , n}) having the same degree as the original polynomial.

Though f here is symmetric, our polynomial p approximating f need not be a symmetric polynomial.
Thus, we need to use a symmetrization step to convert p into a symmetric polynomial.

Theorem 2. Let p be a polynomial (and a function p : {0, 1}n → R) and let psymm be the symmetric
polynomial

psymm(x) =
1

n!

∑
σ∈Sn

p(σ(x)) (6)

If p approximates a symmetric Boolean function f , psymm approximates f too.

Proof. As f is symmetric, we can write f as

f(x) =
1

n!

∑
σ∈Sn

f(σ(x)) (7)

Thus, we have

|psymm(x)− f(x)| = 1

n!

∣∣∣∣∣ ∑
σ∈Sn

p(σ(x))− f(σ(x))

∣∣∣∣∣ ≤ 1

n!

∑
σ∈Sn

|p(σ(x))− f(σ(x))| (8)

Here, we have used the triangle inequality. The quantity inside the absolute value can be bounded by 1/3
(why?), so psymm approximates f if p approximates f .

Note that psymm has the same degree as that of p (this can be proven). Since psymm is symmetric, it can
further be converted into a univariate polynomial (in |x|) which has the same degree as psymm, i.e. same
degree as p.

Corollary 1. If f is symmetric and d̃eg1/3(f) = d, then there exists a univariate polynomial P (w) of degree
d such that

|P (w)− f(w)| ≤ 1

3
∀ w ∈ {0, 1, . . . , n}. (9)

Here, f(w) is the value of f at inputs of Hamming weight w.
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2.2 Approximate Degree of PARITY

Our task is to find the approximate degree of PARITY. In other words, we need to find the minimum degree
among all polynomials which approximate PARITY. As usual, this lower bounding seems to be a difficult
job.

Let us consider an optimal degree univariate polynomial P for PARITY. Note that,

PARITY(w) =

{
0, if w is even

1, if w is odd

This means that − 1
3 ≤ P (w) ≤ 1

3 if w is even, and 2
3 ≤ P (w) ≤ 4

3 if w is odd. So P roughly looks like this:

Fig. 1. Rough sketch of P for PARITY

So P (w) goes up and down from Region 1 to Region 2 on each successive step. The intuition is, since P
keeps going up and down lot of times, it should have a high degree. To be precise, consider the line y = 1

2
(any value between 1

3 and 2
3 works). The line intersects the polynomial many times.

More formally, it can be seen that ∀1 ≤ k ≤ n, P (k− 1) and P (k) are in different regions (among region
1 & 2), i.e. one of P (k − 1) and P (k) lies in

[
− 1

3 ,
1
3

]
, and the other one lies in

[
2
3 ,

4
3

]
. Since polynomials are

continuous, we can say that ∃ t ∈ (k − 1, k) such that P (t) = 1
2 , and we can find such a t ∈ (k − 1, k) for

every 1 ≤ k ≤ n.
This means that our polynomial P has to intersect y = 1

2 at least n times, i.e., P (w)− 1
2 has at least n

roots. Hence, P (w) has at least n roots (deg(P ) ≥ n).

The P we chose came from the optimal polynomial approximating PARITY, so d̃eg1/3(PARITY) ≥ n.

We already know that d̃eg1/3(PARITY) ≤ deg(PARITY) = n, we get d̃eg1/3(PARITY) = n.

2.3 Approximate Degree of OR

We saw how doing the symmetrization trick for PARITY, we got a univariate polynomial having degree
equal to the approximate degree of PARITY. This allowed us to lower bound the degree of this univariate
polynomial.
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Since OR is also a symmetric Boolean function, we will use the same strategy for OR.
As we did before, pick a univariate polynomial approximating OR having optimal degree, say P . Now,

OR(w) =

{
0, if w = 0

1, if w = 1, 2, . . . , n

Fig. 2. Rough sketch of P for OR

This means that P (w) remains in Region 1 (
[
− 1

3 ,
1
3

]
) at w = 0, and then shifts to Region 2 (

[
2
3 ,

4
3

]
) at

w = 1, 2, . . . n. Thus, there is a sharp (i.e. non-zero) derivative of P (w) in (0, 1), and after that P remains
bounded, at least on the integer points. We can then try the following inequality to lower bound the degree
of P :

Markov Brothers’ Inequality

Theorem 3. For a polynomial P , if b1 ≤ P (x) ≤ b2 in the interval a1 ≤ x ≤ a2, then

|P ′(x)| ≤ d2(b2 − b1)

a2 − a1
∀ x ∈ [a1, a2] (10)

where d is the degree of P .

Using mean value theorem, there is some x ∈ (0, 1) such that P ′(x) = P (1)−P (0)
1−0 ≥ 1

3 . One can then think

of using Markov Brothers’ Inequality for the interval x ∈ [0, n] in which P (x) ∈ [− 1
3 ,

4
3 ], which would indeed

give us that deg(P ) ≥ c
√
n for some constant c > 0.

Exercise 7. What is the mistake in this argument?

We cannot use Markov Brothers’ Inequality directly here: even though P (x) is bounded (by a constant)
on the integer points in [0, n], there is no guarantee that it will remain bounded by a constant in the whole
interval [0, n].
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Note 6. You might think that P is bounded on any interval by its maximum value and hence we can use
the inequality for the interval [0, n]. If this maximum value is not a constant (e.g. n instead of a constant),
then we get an asymptotically smaller bound than our required lower bound of

√
n for deg(P ).

However, there is another result (which is derived from Markov Brothers’ Inequality itself) that lower
bounds the degree of a polynomial which is bounded on just integer points:

Degree Lower Bound for Polynomial bounded at integer points (Ehlich & Zeller)

Theorem 4. If P is a polynomial such that b1 ≤ P (i) ≤ b2 ∀ i ∈ {0, 1, . . . , n}, and ∃ 0 ≤ x ≤ n such that
|P ′(x)| ≥ c, then

deg(P ) ≥
√

cn

c+ b2 − b1
(11)

Take c = 1
3 , b1 = − 1

3 , b2 = 4
3 and apply this result directly to get deg(P ) = Ω(

√
n). We proved that

d̃eg1/3(OR) = Ω(
√
n).

It is known that this bound is tight for approximate degree. For symmetric functions, approximate degree
is known asymptotically [1].

Unfortunately, this bound doesn’t turn out to be tight for R. In the next lecture, we will see another
technique to get a lower bound on R. It will even work for non-symmetric f .

2.4 Dual witness technique

We have seen lower bounding techniques for symmetric functions. A prominent technique to give lower bound
on approximate degree of non-symmetric functions is called dual witness technique.

A ϕ : {0, 1}n → R is called a dual witness for f : {0, 1}n → R of degree d iff

– norm condition: ∥ϕ∥1 = 1
2n

∑
x |ϕ(x)| = 1,

– correlation condition: ⟨ϕ|f⟩ > 1/3,
– and pure high degree: ϕ has no monomial of degree less than equal to d

are satisfied. We will show that such a ϕ implies a d lower bound on the approximate degree of f .

Proof. The proof comes from analyzing ⟨ϕ|f⟩ in another way. Suppose there is a polynomial p of degree d
approximating f .

⟨ϕ|f⟩ = ⟨ϕ|f − p⟩ ≤ ∥ϕ∥1 max
x

|(f − p)(x)| ≤ 1/3.

Exercise 8. Make sure that you can prove each of the inequalities using the properties of p and ϕ.

This gives a contradiction with the correlation condition. So no polynomial of degree less than equal to
d can approximate f .

The above proof does not give much intuition about how would someone come up with such set of
conditions. They arrive quite naturally by creating a linear program to optimize the error for all polynomials
of degree less than equal to d and taking its dual.

We give another justification (not complete). Suppose you want to show that a vector v can’t be close to
any vector in a subspace S. If you can show that v is orthogonal to S (all vectors of S), then you are done.
Though that need not be the case always. Instead, it is enough to give a unit vector v′ which is orthogonal
to S but close to v.

Dual witness ϕ is like v′, except that v′ is for L2 distance. In case of dual witness, we need to optimize
L∞ and hence the dual norm (1-norm) shows up.
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3 Assignment

Exercise 9. Read about duality theory of linear programming.

Exercise 10. Give an example of a function where R is not same as its approximate degree.

Exercise 11. Prove that if f is a non-constant symmetric Boolean function, then d̃eg1/3(f) = Ω(
√
n).
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