| CS 771A: Intro to Machine Learning, IIT Kanpur Quiz II ( |        |       |      |  | 29 Mar 2023)              |
|----------------------------------------------------------|--------|-------|------|--|---------------------------|
| Name                                                     | MELBO  |       |      |  | 20 marks                  |
| Roll No                                                  | 230001 | Dept. | AWSM |  | Page <b>1</b> of <b>2</b> |

## Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in **block letters neatly with ink**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

**Q1.** The random variable X is sampled from the uniform distribution over the interval [0,1] i.e., the probability density function of X looks like p(x) = 1 if  $x \in [0,1]$  and p(x) = 0 if x < 0 or x > 1. The r.v. Y is such that  $\mathbb{E}[X^2 + Y^2] = 1$  and  $Var[Y] = \frac{5}{9}$ . Y need not be independent of X and may have different support than X. Calculate the following (no derivation needed). (4 x 1 = 4 marks)

| $\mathbb{E}[X] = 1/2$                  | Var[X] = 1/12                                           |
|----------------------------------------|---------------------------------------------------------|
| $\mathbb{E}[Y] = 1/3 \text{ or } -1/3$ | $\mathbb{E}[X+Y] = \frac{5}{6} \text{ or } \frac{1}{6}$ |

**Q2.** Melbo is playing a cricket match with his rival Oblem and they use a coin to decide who bats first. The coin has  $\mathbb{P}[Toss = H] = p$  and  $\mathbb{P}[Toss = T] = 1 - p$  but Melbo is suspicious that Oblem is cheating and that  $p \neq \frac{1}{2}$ . To promote fair play, Melbo proposes an unconventional process. The coin is tossed twice (independently), and the outcome is decided as follows:

- 1. If the tosses are HT (in that order), then Melbo bats first (let's call this event M).
- 2. If the tosses are TH (in that order), then Oblem bats first (let's call this event O).
- 3. If the tosses are TT or HH, then a Null result is declared (let's call this event N).

The coin is tossed twice. Calculate the following.  $(\neg N \text{ is the event "not } N")$  (4 x 1 = 4 marks)

|                                                                                    | $\mathbb{P}[N] = 2p^2 - 2p + 1$ $\mathbb{P}[M \mid \neg N] = 1/2$ |  |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
|                                                                                    | Recall that $p$ is unknown and it is suspected that $p \neq 0.5$  |  |  |  |
| so $\mathbb{P}[N]$ must be in terms of p and we cannot claim $\mathbb{P}[N] = 0.5$ |                                                                   |  |  |  |
|                                                                                    | $\mathbb{P}[O \mid \neg N] = 1/2 \qquad \mathbb{P}[M \mid N] = 0$ |  |  |  |
|                                                                                    |                                                                   |  |  |  |

**Q3.** Oblem still wants to cheat and proposes another way to decide batting. The Poisson distribution allows us to sample non-negative integers i.e., 0,1,2,3,4 .... The distribution has a single parameter  $\lambda > 0$  and if X is a Poisson( $\lambda$ ) random variable, then for any  $n \in \{0,1,2,3,4 \dots\}$ , we have

$$\mathbb{P}[X=n] = \frac{\lambda^n \exp(-\lambda)}{n!}$$

Oblem chooses  $\lambda_1, ..., \lambda_D > 0$ . Then, D variables  $X_i \sim \text{Poisson}(\lambda_i)$  are independently drawn. If the sum of the drawn variables is equal to zero i.e.,  $\sum_{d \in [D]} X_d = 0$ , then Melbo will bat first (call it event M) else Oblem will bat first (call it event O). Find expressions for  $\mathbb{P}[O]$  and  $\mathbb{P}[M]$  in terms of  $\lambda_1, ..., \lambda_D$ . Give brief derivation. Melbo suspects that Oblem may cheat by choosing values of  $\lambda_1, ..., \lambda_D$  that maximize Oblem's chances of batting first. To avoid this, Melbo imposes a constraint



## Page 2 of 2

that the  $\lambda_d$  values must satisfy  $\sum_{d \in [D]} \lambda_d^2 \leq 1$ . Set up an optimization problem to find the values of  $\lambda_1, ..., \lambda_D > 0$  that maximize Oblem's chances of batting first, subject to Melbo's constraint. Find the value of that probability too. Give brief derivations. Note that  $0! \stackrel{\text{def}}{=} 1, \lambda_d^0 \stackrel{\text{def}}{=} 1$ . (12 marks)

$$\mathbb{P}[O] = 1 - \exp\left(-\sum_{d \in [D]} \lambda_d\right) \quad \mathbb{P}[M] = \exp\left(-\sum_{d \in [D]} \lambda_d\right)$$

Brief derivation for win probability in terms of  $\lambda_1, ..., \lambda_D$  (2 marks)

Melbo bats first if  $\sum_{d \in [D]} X_d = 0$  which can only happen if each  $X_d = 0$  since all  $X_d \ge 0$ . We have  $\mathbb{P}[X_d = 0] = \frac{\lambda_d^0 \exp(-\lambda_d)}{0!} = \exp(-\lambda_d)$ . Since the draws are independent, we get

$$\mathbb{P}[M] = \mathbb{P}\left[\sum_{d \in [D]} X_d = 0\right] = \prod_{d \in [D]} \mathbb{P}[X_d = 0] = \exp\left(-\sum_{d \in [D]} \lambda_d\right)$$

Highest win probability for Oblem subject to Melbo's constraint (2 marks)

$$\max_{\lambda_i > 0} \mathbb{P}[O] = 1 - \exp(-\sqrt{D})$$

## $\sum_{d\in [D]}\lambda_d^2{\leq}1$

The value of  $\lambda_1, ..., \lambda_D$  that satisfy Melbo's constraint at which Oblem's win probability is maximized (2 marks)

## $[\lambda_1, \dots \lambda_D] = \left[1/\sqrt{D}, 1/\sqrt{D}, \dots, 1/\sqrt{D}\right]$

Brief derivation for Oblem's highest win probability subject to Melbo's constraint (4 marks)

Maximizing  $\mathbb{P}[M]$  is equivalent to minimizing  $-\sum_{d\in[D]}\lambda_d$ . However, we also have constraints  $\sum_{d\in[D]}\lambda_d^2 \leq 1$  and  $\lambda_d \geq 0$  for all  $d\in[D]$ . Introducing Lagrange multipliers  $\alpha \geq 0$  and  $\beta_d \geq 0$  gives us the Lagrangian  $\mathcal{L}(\lambda, \alpha, \beta) = -\lambda^{\mathsf{T}}\mathbf{1} + \alpha(\|\lambda\|_2^2 - 1) - \beta^{\mathsf{T}}\lambda$  where  $\lambda = [\lambda_1, \dots, \lambda_D]$ ,  $\mathbf{1} = [1, 1, \dots, 1] \in \mathbb{R}^D$  and  $\boldsymbol{\beta} = [\beta_1, \dots, \beta_D]$ .

Stationarity tells us that  $\partial \mathcal{L}/\partial \lambda = \mathbf{0} = -1 + 2\alpha \cdot \lambda - \beta$  i.e.,  $\lambda = (\beta + 1)/2\alpha$ . Substituting this back into the Lagrangian eliminates  $\lambda$  and gives us the following dual problem.

$$\max_{\alpha,\beta\geq 0} -\frac{(\boldsymbol{\beta}^{\mathsf{T}}\mathbf{1}+D)}{2\alpha} + \left(\frac{\|\boldsymbol{\beta}+\mathbf{1}\|_{2}^{2}}{4\alpha} - \alpha\right) - \frac{\|\boldsymbol{\beta}\|_{2}^{2} + \boldsymbol{\beta}^{\mathsf{T}}\mathbf{1}}{2\alpha} = \min_{\alpha,\beta\geq 0} \frac{\|\boldsymbol{\beta}+\mathbf{1}\|_{2}^{2}}{4\alpha} + \alpha$$

For any fixed value of  $\alpha \ge 0$ , applying the QUIN rule tells us that the optimal value of  $\beta_d = 0$ . Thus, we are left to solve  $\min_{\alpha \ge 0} \frac{D}{4\alpha} + \alpha$  which is optimized at  $\alpha = \sqrt{D/4}$  which gives  $\lambda_d = 1/\sqrt{D}$ .