CS 771A: Intro to Machine Learning, IIT Kanpur		Quiz II (29 Mar 2023)
Name		20 marks
Roll No	Dept.	Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. The random variable X is sampled from the uniform distribution over the interval [0,1] i.e., the probability density function of X looks like p(x) = 1 if $x \in [0,1]$ and p(x) = 0 if x < 0 or x > 1. The r.v. Y is such that $\mathbb{E}[X^2 + Y^2] = 1$ and $\mathrm{Var}[Y] = \frac{5}{9}$. Y need not be independent of X and may have different support than X. Calculate the following (no derivation needed). (4 x 1 = 4 marks)

$$\mathbb{E}[X] =$$
 $Var[X] =$ $\mathbb{E}[Y] =$ $\mathbb{E}[X + Y] =$

- **Q2.** Melbo is playing a cricket match with his rival Oblem and they use a coin to decide who bats first. The coin has $\mathbb{P}[\text{Toss} = \text{H}] = p$ and $\mathbb{P}[\text{Toss} = \text{T}] = 1 p$ but Melbo is suspicious that Oblem is cheating and that $p \neq \frac{1}{2}$. To promote fair play, Melbo proposes an unconventional process. The coin is tossed twice (independently), and the outcome is decided as follows:
 - 1. If the tosses are HT (in that order), then Melbo bats first (let's call this event M).
 - 2. If the tosses are TH (in that order), then Oblem bats first (let's call this event O).
 - 3. If the tosses are TT or HH, then a Null result is declared (let's call this event N).

The coin is tossed twice. Calculate the following. ($\neg N$ is the event "not N") (4 x 1 = 4 marks)

$$\mathbb{P}[N] = \qquad \qquad \mathbb{P}[M \mid \neg N] =$$

$$\mathbb{P}[O \mid \neg N] = \qquad \qquad \mathbb{P}[M \mid N] =$$

Q3. Oblem still wants to cheat and proposes another way to decide batting. The Poisson distribution allows us to sample non-negative integers i.e., 0,1,2,3,4 The distribution has a single parameter $\lambda > 0$ and if X is a Poisson(λ) random variable, then for any $n \in \{0,1,2,3,4$... $\}$, we have

$$\mathbb{P}[X=n] = \frac{\lambda^n \exp(-\lambda)}{n!}$$

Oblem chooses $\lambda_1,\ldots,\lambda_D>0$. Then, D variables $X_i\sim \operatorname{Poisson}(\lambda_i)$ are independently drawn. If the sum of the drawn variables is equal to zero i.e., $\sum_{d\in[D]}X_d=0$, then Melbo will bat first (call it event M) else Oblem will bat first (call it event M). Find expressions for $\mathbb{P}[O]$ and $\mathbb{P}[M]$ in terms of $\lambda_1,\ldots,\lambda_D$. Give brief derivation. Melbo suspects that Oblem may cheat by choosing values of $\lambda_1,\ldots,\lambda_D$ that maximize Oblem's chances of batting first. To avoid this, Melbo imposes a constraint

that the λ_d values must satisfy $\sum_{d\in[D]}\lambda_d^2\leq 1$. Set up an optimization problem to find the values of $\lambda_1,\ldots,\lambda_D>0$ that maximize Oblem's chances of batting first, subject to Melbo's constraint. Find the value of that probability too. Give brief derivations. Note that $0!\stackrel{\text{def}}{=} 1,\lambda_d^0\stackrel{\text{def}}{=} 1$. (12 marks)

Expressions for win probability in terms of $\lambda_1,\ldots,\lambda_D$ (1 + 1 = 2 marks)

$$\mathbb{P}[O] = \mathbb{P}[M] =$$

Brief derivation for win probability in terms of $\lambda_1,\ldots,\lambda_D$ (2 marks)

Highest win probability for Oblem subject to Melbo's constraint (2 marks)

$$\max_{\lambda_i > 0} \quad \mathbb{P}[O] =$$

$$\textstyle\sum_{d\in[D]}\lambda_d^2\leq 1$$

The value of $\lambda_1, \dots, \lambda_D$ that satisfy Melbo's constraint at which Oblem's win probability is maximized (2 marks)

$$[\lambda_1, \dots \lambda_D] =$$

Brief derivation for Oblem's highest win probability subject to Melbo's constraint (4 marks)