CS 771A: Intro to Machine Learning, IIT Kanpur				Quiz	l (1 Feb 2022)
Name	MELBO	20 marks			
Roll No	220001	Dept.	AWSM		Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in **block letters neatly with ink**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. Write T or F for True/False (write only in the box on the right-hand side) (6 x 1 = 6 marks)

1	If $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$ are two non-empty convex sets, then their union i.e., $\mathcal{P} \cup \mathcal{Q}$ can never be convex.	F
2	$f: \mathbb{R} \to \mathbb{R}$ is convex, non-differentiable and $-1 \in \partial f(x_0)$ (i.e., -1 is a subgradient), then f must be decreasing around x_0 i.e., for some $\epsilon > 0$, $f(x_0 - \epsilon) > f(x_0 + \epsilon)$.	F
3	If $C \stackrel{\text{def}}{=} \{(x, y) \in \mathbb{R}^2 : 2 \le x + y \le 3\}$ is the set of all 2D vectors whose sum of coordinates is between 2 and 3, then C is a convex set.	Т
4	If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ are two vectors such that $\ \mathbf{u}\ _2 \le 1$ and $\ \mathbf{v}\ _2 < 2$ then it is possible that $\mathbf{u}^{T}\mathbf{v} > 2.5$ for certain values of \mathbf{u}, \mathbf{v} .	F
5	If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ are two vectors such that $\ \mathbf{u}\ _2 \le 1$ and $\ \mathbf{v}\ _2 < 2$ then it is possible that $\ \mathbf{u} - \mathbf{v}\ _2 > 2.5$ for certain values of \mathbf{u}, \mathbf{v} .	Т
6	Classification models such as SVMs are more confident about their predictions on data points that lie very close to their decision boundary.	F

Q2. (Sliding parabolas) Consider the two functions $f(x) = (x - a)^2 + b$ and $g(x) = x^4 + x^2$.

Find values of $a, b \in \mathbb{R}$ such that the functions f, g share a tangent at $x = 1$.	a = -2 $b = -7$
For the values you find above, find out the value of the function f at $x = 1$.	f(1) = 2
Write down the equation of the (shared) tangent of the functions at $x = 1$.	6x - 4
Find values of $a, b \in \mathbb{R}$ such that the functions f, g share a stationary point x_0 such that $f(x_0) = g(x_0)$.	a = 0 $b = 0$

Note that your equation for the tangent must not contain variables like a, b and should contain only absolute constants. Write your answers only in the space provided. (2 + 1 + 1 + 2 = 6 marks)

Q3 (Robust regression) Training with the absolute loss can make regression models less sensitive to outliers. Let us analyse a simplified version of the objective function used in this technique.

a. Consider the function $f(w) = |b \cdot w - a|$ where $a, b, w \in \mathbb{R}$. For any value of $a, b, w^0 \in \mathbb{R}$, write down an expression for the (entire) subdifferential of f at w^0 . No derivation needed.

Page 2 of 2

b. Consider the function $g(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 + |\mathbf{w}^\top \mathbf{x} - y|$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Write down an expression for the (entire) subdifferential of g at \mathbf{w}^0 for any value of $\mathbf{w}^0, \mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$. No derivation needed. Write your answer in the space given. (2 + 2 = 4 marks)

The function $a(x) \stackrel{\text{def}}{=} |x|$ is convex with a single point of non-differentiability at x = 0. Thus, we have $\partial a(x) = \begin{cases} \{-1\} & x < 0 \\ [-1,1] & x = 0 \end{cases}$. Applying the chain rule tells us that: $\{1\} & x > 0 \end{cases}$ $\partial f(w^0) = \begin{cases} \{-b\} & bw^0 < a \\ S & bw^0 = a \\ \{b\} & bw^0 > a \end{cases}$ where $S = \{b \cdot g : g \in [-1,1]\}$. Note that the subdifferential is a set so ideally, we should write $\{-b\}$ and not just -b.

The first term in the function $\frac{1}{2} \|\mathbf{w}\|_2^2$ is differentiable. Applying the chain rule and the sum rule tells us that:

$$\partial g(\mathbf{w}^0) = \begin{cases} \{\mathbf{w}^0 - \mathbf{x}\} & \mathbf{w}^\mathsf{T} \mathbf{x} < y \\ S & \mathbf{w}^\mathsf{T} \mathbf{x} = y \\ \{\mathbf{w}^0 + \mathbf{x}\} & \mathbf{w}^\mathsf{T} \mathbf{x} > y \end{cases}$$

where $S = { \mathbf{w}^0 + g \cdot \mathbf{x} : g \in [-1,1] }$

Q4. (Vector line-up) Give examples of 4D vectors (fill-in the 4 boxes) with the following properties. Any example will get full marks so long as it satisfies the property mentioned in the question part. Your answers to the parts a, b, c, d may be same/different. $(4 \times 1 = 4 \text{ marks})$

- a. A vector $\mathbf{v} \in \mathbb{R}^4$ such that $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{v}^{\mathsf{T}}\mathbf{u} = 0$ where $\mathbf{u} = (1, -1, 1, -1) \in \mathbb{R}^4$.
- b. A vector $\mathbf{v} \in \mathbb{R}^4$ with unit L_3 norm i.e., $\|\mathbf{v}\|_3 = 1$.
- c. A vector $\mathbf{v} \in \mathbb{R}^4$ with $\|\mathbf{v}\|_2 \le 1$ and $\|\mathbf{v} \mathbf{u}\|_2 \ge 2$ where $\mathbf{u} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \in \mathbb{R}^4$.
- d. A vector $\mathbf{v} \in \mathbb{R}^4$ such that $\mathbf{v} \neq \mathbf{0}$ and whose L_2 norm is half its L_1 norm i.e., $\|\mathbf{v}\|_2 = \frac{1}{2} \|\mathbf{v}\|_1$.

1	1	1	1
1	0	0	0
$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$