| CS 771A: Intro to Machine Learning, IIT Kanpur |  |       |  | <b>Quiz I</b> (1 Feb 2022) |                           |  |
|------------------------------------------------|--|-------|--|----------------------------|---------------------------|--|
| Name                                           |  |       |  |                            | 20 marks                  |  |
| Roll No                                        |  | Dept. |  |                            | Page <b>1</b> of <b>2</b> |  |

## Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in **block letters neatly with ink**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

## Q1. Write T or F for True/False (write only in the box on the right-hand side) (6 x 1 = 6 marks)

| 1 | If $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^2$ are two non-empty convex sets, then their union i.e., $\mathcal{P} \cup \mathcal{Q}$ can never be convex.                                                                               |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2 | $f: \mathbb{R} \to \mathbb{R}$ is convex, non-differentiable and $-1 \in \partial f(x_0)$ (i.e., -1 is a subgradient), then $f$ must be decreasing around $x_0$ i.e., for some $\epsilon > 0$ , $f(x_0 - \epsilon) > f(x_0 + \epsilon)$ .  |  |  |  |
| 3 | If $C \stackrel{\text{def}}{=} \{(x, y) \in \mathbb{R}^2 : 2 \le x + y \le 3\}$ is the set of all 2D vectors whose sum of coordinates is between 2 and 3, then $C$ is a convex set.                                                        |  |  |  |
| 4 | If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ are two vectors such that $\ \mathbf{u}\ _2 \le 1$ and $\ \mathbf{v}\ _2 < 2$ then it is possible that $\mathbf{u}^{T}\mathbf{v} > 2.5$ for certain values of $\mathbf{u}, \mathbf{v}$ .      |  |  |  |
| 5 | If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ are two vectors such that $\ \mathbf{u}\ _2 \le 1$ and $\ \mathbf{v}\ _2 < 2$ then it is possible that $\ \mathbf{u} - \mathbf{v}\ _2 > 2.5$ for certain values of $\mathbf{u}, \mathbf{v}$ . |  |  |  |
| 6 | Classification models such as SVMs are more confident about their predictions on data points that lie very close to their decision boundary.                                                                                               |  |  |  |

## **Q2.** (Sliding parabolas) Consider the two functions $f(x) = (x - a)^2 + b$ and $g(x) = x^4 + x^2$ .

| Find values of $a, b \in \mathbb{R}$ such that the functions $f, g$ share a tangent at $x = 1$ .                                 | <i>a</i> = | <i>b</i> = |
|----------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| For the values you find above, find out the value of the function $f$ at $x = 1$ .                                               | f(1) =     |            |
| Write down the equation of the (shared) tangent of the functions at $x = 1$ .                                                    |            |            |
| Find values of $a, b \in \mathbb{R}$ such that the functions $f, g$ share a stationary point $x_0$ such that $f(x_0) = g(x_0)$ . | a =        | b =        |

Note that your equation for the tangent must not contain variables like a, b and should contain only absolute constants. Write your answers only in the space provided. (2 + 1 + 1 + 2 = 6 marks)

**Q3 (Robust regression)** Training with the absolute loss can make regression models less sensitive to outliers. Let us analyse a simplified version of the objective function used in this technique.

a. Consider the function  $f(x) = |b \cdot x - a|$  where  $a, b, x \in \mathbb{R}$ . For any value of  $a, b, x_0 \in \mathbb{R}$ , write down an expression for the (entire) subdifferential of f at  $x_0$ . No derivation needed.



## Page 2 of 2

b. Consider the function  $g(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 + |\mathbf{w}^\top \mathbf{x} - y|$  where  $\mathbf{w}, \mathbf{x} \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ . Write down an expression for the (entire) subdifferential of g at  $\mathbf{w}^0$  for any value of  $\mathbf{w}^0, \mathbf{x} \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ . No derivation needed. Write your answer in the space given. (2 + 2 = 4 marks)

Your answer to part a.

Your answer to part b.

**Q4. (Vector line-up)** Give examples of 4D vectors (fill-in the 4 boxes) with the following properties. Any example will get full marks so long as it satisfies the property mentioned in the question part. Your answers to the parts a, b, c, d may be same/different. (4 x 1 = 4 marks)

- a. A vector  $\mathbf{v} \in \mathbb{R}^4$  such that  $\mathbf{v} \neq \mathbf{0}$  and  $\mathbf{v}^{\mathsf{T}}\mathbf{u} = 0$  where  $\mathbf{u} = (1, -1, 1, -1) \in \mathbb{R}^4$ .
- b. A vector  $\mathbf{v} \in \mathbb{R}^4$  with unit  $L_3$  norm i.e.,  $\|\mathbf{v}\|_3 = 1$ .
- c. A vector  $\mathbf{v} \in \mathbb{R}^4$  with  $\|\mathbf{v}\|_2 \le 1$  and  $\|\mathbf{v} \mathbf{u}\|_2 \ge 2$ where  $\mathbf{u} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \in \mathbb{R}^4$ .
- d. A vector  $\mathbf{v} \in \mathbb{R}^4$  such that  $\mathbf{v} \neq \mathbf{0}$  and whose  $L_2$  norm is half its  $L_1$  norm i.e.,  $\|\mathbf{v}\|_2 = \frac{1}{2} \|\mathbf{v}\|_1$ .

