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Instructions: 

1. This question paper contains 2 pages (4 sides of paper). Please verify. 

2. Write your name, roll number, department in block letters with ink on each page. 

3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged. 

4. Don’t overwrite/scratch answers especially in MCQ – ambiguous cases will get 0 marks. 

Q1. Write T or F for True/False in the box. Also, give justification. (4 x (1+2) = 12 marks) 

1 
For 𝐱, 𝐲, 𝐳 ∈ ℝ2 s.t. ‖𝐱‖2 = ‖𝐲‖2 = √2, ‖𝐳‖2 = 1 and 𝐱⊤𝐲 ≥ 𝐱⊤𝐳, we always have 
‖𝐱 − 𝐲‖2

2 ≤ ‖𝐱 − 𝐳‖2
2. Give a brief proof if True else give a counter example if False. 

F 

 
Consider the following counterexample: 

𝐱 = [√2, 0], 𝐲 = [1,1], 𝐳 = [1,0]. 

We have 𝐱⊤𝐲 = √2 ≥ √2 = 𝐱⊤𝐳 however we also have 

‖𝐱 − 𝐲‖2
2 = (√2 − 1)

2
+ 1 > (√2 − 1)

2
= ‖𝐱 − 𝐳‖2

2  

 
 
 

2 

Let 𝑓, 𝑔: ℝ → ℝ be two distinct, non-constant, convex functions i.e., 𝑓 ≠ 𝑔 and it is 
not the case that for some 𝑐, 𝑑 ∈ ℝ, 𝑓(𝑥) = 𝑐, 𝑔(𝑥) = 𝑑 for all 𝑥 ∈ ℝ. Then ℎ: ℝ →
ℝ defined as ℎ(𝑥) ≝ 𝑓(𝑥) 𝑔(𝑥)⁄  can never be convex. Give a brief proof if True else 
if False, give a counter example using two distinct non-constant, convex functions. 
It is okay to give a counter example where ℎ has isolated, removable discontinuities. 

F 

 
Consider the following counterexample: 
𝑓(𝑥) = 𝑒2𝑥, 𝑔(𝑥) = 𝑒𝑥. 
Both are distinct, non-constant, convex functions.  

Note that 𝑓(𝑥) = (𝑔(𝑥))
2
. However, 

𝑓(𝑥) 𝑔(𝑥)⁄ = 𝑒𝑥, 
which is a convex function itself. 
 

3 
𝑋 is a discrete random variable that takes value −1 with probability 𝑝 and 1 with 
probability 1 − 𝑝. The value of 𝑝 at which 𝑋 has maximum entropy is the same as 
the value of 𝑝 at which 𝑋 has maximum variance. 

T 

 
𝔼[𝑋] = 1 − 2𝑝, 𝔼[𝑋2] = 1 i.e., Var[𝑋] = 4𝑝(1 − 𝑝). Applying FOO 
and the second-derivative test tells us that the maximum variance 
is achieved at 𝑝 = 1/2. The entropy of 𝑋 is defined as 
Ent[𝑋] = −𝑝 ln 𝑝 − (1 − 𝑝) ln(1 − 𝑝). Applying FOO tells us that 
entropy is maximized at 1/2 as well. 
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4 
𝑌 is a Boolean random variable ℙ[𝑌 = 1] = 1 (1 + exp(−𝑡))⁄ . Then 𝑌’s entropy is 
maximized as 𝑡 → ∞. Justify your answer by giving brief calculations. 

F 

 
Let ℙ[𝑌 = 1] = 1 (1 + exp(−𝑡))⁄ ≝ 𝑝. As 𝑌 is Boolean, this gives us  ℙ[𝑌 = 0] = 1 − 𝑝. Thus, 
the entropy of 𝑌 is Ent[𝑌] = −𝑝 ln 𝑝 − (1 − 𝑝) ln(1 − 𝑝). The derivative of the entropy is 
ln((1 − 𝑝) 𝑝⁄ ) which is maximized as 𝑝 → 1/2. However, as 𝑡 → ∞, 𝑝 → 1 i.e., 𝑌’s entropy is not 
maximized as 𝑡 → ∞. Note that entropy goes to 0 as 𝑡 → ∞ or 𝑡 →  −∞.  In fact, entropy is 
maximized as 𝑡 → 0.  
 
 

Q2. (X marks the split) Create a feature map 𝜙: ℝ2 → ℝ𝐷 for some 

𝐷 > 0 so that for any 𝐳 = (𝑥, 𝑦) ∈ ℝ2, sign(𝟏⊤𝜙(𝐳)) takes value 

−1 if 𝐳 is in the dark cross-hatched region and +1 if 𝐳 is in the light 

dotted region (see fig). 𝟏 = (1,1, … ,1) ∈ ℝ𝐷 is the 𝐷-dimensional 

all-ones vector. The dashed lines in the fig are 𝑥 = 𝑦 and 𝑥 = −𝑦. 

No derivation needed – just give the final map below. (3 marks) 

 

 

 

 

 

Q3. (Maximum stretch) Consider the optimization problem min
𝐱∈ℝ3

1

2
‖𝐱‖2

2    s. t.   𝐜⊤𝐱 ≥ 𝑝 which has 

a single constraint and 𝐜 ∈ ℝ3 is a constant vector and 𝑝 ∈ ℝ is a real constant. (3+2 = 5 marks) 

(a) Give brief derivation solving the problem for 𝐜 = (1,2,3) and 𝑝 = 7. Write the value of 𝐱 at 

which the optimum is achieved. (Hint: try orthogonal decomposition or some other trick) 

 

 

 

 

 

 

 

 

(b) Give brief derivation solving the problem for 𝐜 = (−1, −2, −3) and 𝑝 = −7. Write the value 

of 𝐱 at which the optimum is achieved. 

 

 

 

Several solutions are possible e.g., [𝑥2, −𝑦2] ∈ ℝ2, [𝑥2 − 𝑦2] ∈ ℝ, 

[|𝑥|, −|𝑦|] ∈ ℝ2, [|𝑥| − |𝑦|] ∈ ℝ. 

Incorrect solutions include [|𝑥𝑦|, −1] ∈ ℝ2, [|𝑥𝑦|, −𝑦2] ∈ ℝ2 and 

[𝑦2 − 𝑥2, 𝑥𝑦] ∈ ℝ2. Note that all these solutions give a wrong label 

on the point (1,0). The label should be +1 on this point but we 

have |𝑥𝑦| − 1 = |𝑥𝑦| − 𝑦2 = 𝑦2 − 𝑥2 + 𝑥𝑦 = −1 for 𝑥 = 1, 𝑦 = 0. 

 

Decompose 𝐱 = 𝐱∥ + 𝐱⊥ where 𝐱∥ is along 𝐜 and 𝐱⊥ is perpendicular to 𝐜. Note that 𝐜⊤𝐱 = 𝐜⊤𝐱∥ 

but by Pythagoras’s theorem, ‖𝐱‖2
2 = ‖𝐱∥‖

2

2
+ ‖𝐱⊥‖2

2 > ‖𝐱∥‖
2

2
 unless ‖𝐱⊥‖2 = 0. This means 

that having 𝐱∥ ≠ 𝟎 does not contribute to the constraint but increases the objective value. This 

means that the optimum must be achieved at 𝐱⊥ = 𝟎. This means 𝐱 = 𝜆 ⋅ 𝐜. We want  𝐜⊤𝐱 ≥ 𝑝 

i.e., 𝜆 ≥ 𝑝 ‖𝐜‖2
2⁄ = 7/14 = 1/2. Since we wish to minimize 

1

2
‖𝐱‖2

2, we choose the smallest 

value of 𝜆 that satisfies the constraint i.e., the optimal value of 𝐱 = (0.5,1,1.5) 

The optimal value of 𝐱 = (0,0,0). To see this, notice that this value achieves 
1

2
‖𝐱‖2

2 = 0 which 

is the smallest possible value since norms always take non-negative values. Moreover, this also 

satisfies the constraint since 𝐜⊤𝐱 = 0 ≥ −7. 
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Q4 (Elastic-net regression) Given 𝑛 pts (𝐱𝑖 , 𝑦𝑖) 𝐱𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ ℝ, 

we wish to solve min
𝐰∈ℝ𝑑

1

2
‖𝐰‖2

2 + ‖𝐰‖1 +
1

2
∑ (𝑦𝑖 − 𝐰⊤𝐱𝑖)

2
𝑖∈[𝑛] . 

To create its dual, we introduce variables 𝐳 = [𝑧1, … , 𝑧𝑑] ∈ ℝ𝑑  

and 𝐫 = [𝑟1, … , 𝑟𝑛] ∈ ℝ𝑛 to give us the constrained problem in 

the box on the right. Note that 𝟏 ∈ ℝ𝑑  is the all-ones vector. 

We introduce dual variables 𝛼𝑗  for the constraints 𝑤𝑗 − 𝑧𝑗 ≤ 0, 𝛽𝑗 for −𝑤𝑗 − 𝑧𝑗 ≤ 0 and 𝜆𝑖 for 

𝑦𝑖 − 𝐰⊤𝐱𝑖 − 𝑟𝑖 = 0. For simplicity, we collect the dual variables as vectors 𝛂, 𝛃 ∈ ℝ𝑑  and 𝛌 ∈ ℝ𝑛. 

For each part, give your answers in the space demarcated for that part. (3+2+6+5+4=20 marks) 

a. `Fill in the circle indicating the correct constraint for the dual variables 𝛼𝑗 , 𝛽𝑗 , 𝜆𝑖. (3x1 marks) 

 

 

b. Write down the Lagrangian ℒ(𝐰, 𝐳, 𝐫, 𝛂, 𝛃, 𝛌) – no derivation needed. (2 marks) 

 

 

 

 

 

c. The dual problem is max
𝛂,𝛃,𝛌

{min
𝐰,𝐳,𝐫

ℒ(𝐰, 𝐳, 𝐫, 𝛂, 𝛃, 𝛌)}. To simplify it, solve the 3 inner problems 

min
𝐰

ℒ, min
𝐳

ℒ and min
𝐫

ℒ. In each case, give brief derivation and write the expression you get 

while solving the inner problem (e.g., in CSVM min𝐰ℒ gives 𝐰 = ∑ 𝛼𝑖𝑦𝑖𝐱𝑖
𝑖 ). (3x(1+1) marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ℒ(𝐰, 𝐳, 𝐫, 𝛂, 𝛃, 𝛌) =
1

2
‖𝐰‖2

2 + 𝐳⊤𝟏 +
1

2
‖𝐫‖2

2 + 𝛂⊤(𝐰 − 𝐳) − 𝛃⊤(𝐰 + 𝐳) + 𝛌⊤(𝐲 − 𝐗𝐰 − 𝐫) 

Expression + derivation for min
𝐰

ℒ. 

Applying FOO and setting 
𝜕ℒ

𝜕𝐰
= 𝟎 gives us 𝐰 = 𝑋⊤𝛌 + 𝛃 − 𝛂 

Expression + derivation for min
𝐳

ℒ. 

The term in the Lagrangian involving 𝐳 is 𝐳⊤(𝟏 − 𝛂 − 𝛃) which is linear. The minimization of a 

linear function always yields −∞ unless the linear function is identically 0. This means that at 

the optimum, we must have 𝛂 + 𝛃 = 𝟏 
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d. Use the expressions obtained above and eliminate 𝛃. Fill in the 5 blank boxes below to show 

us the simplified dual you get. 𝑋 ∈ ℝ𝑛×𝑑 is the feature matrix with the 𝑖th row being 𝐱𝑖. We 

have turned the max dual problem into a min problem by negating the objective. (5x1 marks) 

 

 

 

 

 

 

 

e. For the simplified dual obtained above, let us perform block coordinate minimization. 

1. For any fixed value of 𝛂 ∈ ℝ𝒅, obtain the optimal value of 𝛌 ∈ ℝ𝒏. 

2. For any fixed value of 𝛌 ∈ ℝ𝒏, obtain the optimal value of 𝛂 ∈ ℝ𝒅. 

Note: the optimal value for a variable must satisfy its constraints (if any). Show brief calculations. 

You may use the QUIN trick and invent shorthand notation to save space e.g., 𝐦 ≝ 𝑋𝛂.(2+2 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For any fixed value of 𝛂 ∈ ℝ𝒅, obtain the optimal value of 𝛌 ∈ ℝ𝒏: Applying FOO (since there 

are no constraints on 𝛌) gives us 𝑋(𝑋⊤𝛌 + 𝟏 − 2𝛂) + 𝛌 − 𝐲 = 0 i.e., 

𝛌 = (𝑋𝑋⊤ + 𝐼𝑛)−1(𝐲 + 𝑋(2𝛂 − 𝟏)) 

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. 

For any fixed value of 𝛌 ∈ ℝ𝒏, obtain the optimal value of 𝛂 ∈ ℝ𝒅: The optimization problem 

becomes min
𝟎≤𝛂≤𝟏

1

2
‖𝑋⊤𝛌 + 𝟏 − 2𝛂‖2

2 which splits neatly into 𝑑 separate coordinate-wise 

problems as shown below: 

min
𝛼𝑖∈[0,1]

1

2
(𝑘𝑖 + 1 − 2𝛼𝑖)2 

where 𝐤 = [𝑘1, 𝑘2, … , 𝑘𝑑] ≝ 𝑋⊤𝛌 ∈ ℝ𝑑. The above problem can be solved in a single step using 

the QUIN trick i.e., 

𝛼𝑖 = Π[0,1] (
𝑘𝑖 + 1

2
) 

 

Expression + derivation for min
𝐫

ℒ. 

Applying FOO and setting 
𝜕ℒ

𝜕𝐫
= 𝟎 gives us 𝐫 = 𝛌. 

min
𝛂∈ℝ𝑑

𝛌∈ℝ𝑛

1

2
‖𝑋⊤(      𝛌𝟐  ) + ( 𝟏 − 𝟐𝛂𝟐 )‖

2

2
+

1

2
‖𝛌‖2

2 − 𝛌⊤(   𝐲𝟐     )  

 
𝟎 ≤ 𝛂 ≤ 𝟏 

No constraint or equivalently 𝛌 ∈ ℝ𝑛 

⟸ Write constraint for 𝛂 here. 

⟸ Write constraint for 𝛌 here. 
s.t. 


