CS 771A: Intro to Machine Learning, IIT Kanpur			Midsem Exam	(26 Feb 2023)		
Name					40 marks	
Roll No		Dept.			Page 1 of 4	

OF TEO

 $(4 \times (1+2) = 12 \text{ marks})$

Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in **block letters** with **ink** on **each page**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases will get 0 marks.

Q1. Write **T** or **F** for True/False **in the box**. Also, **give justification**.

1	For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^2$ s.t. $\ \mathbf{x}\ _2 = \ \mathbf{y}\ _2 = \sqrt{2}$, $\ \mathbf{z}\ _2 = 1$ and $\mathbf{x}^\top \mathbf{y} \ge \mathbf{x}^\top \mathbf{z}$, we always have $\ \mathbf{x} - \mathbf{y}\ _2^2 \le \ \mathbf{x} - \mathbf{z}\ _2^2$. Give a brief proof if True else give a counter example if False.	
	Let $f, g: \mathbb{R} \to \mathbb{R}$ be two distinct, non-constant, convex functions i.e., $f \neq g$ and it is not the case that for some $c, d \in \mathbb{R}$, $f(x) = c, g(x) = d$ for all $x \in \mathbb{R}$. Then $h: \mathbb{R} \to \mathbb{R}$	
2	\mathbb{R} defined as $h(x) \stackrel{\text{\tiny def}}{=} f(x)/g(x)$ can never be convex. Give a brief proof if True else if False, give a counter example using two distinct non-constant, convex functions.	
	It is okay to give a counter example where h has isolated, removable discontinuities.	
3	X is a discrete random variable that takes value -1 with probability p and 1 with probability $1 - p$. The value of p at which X has maximum entropy is the same as	
	the value of p at which X has maximum variance.	

Page 2 of 4

4	<i>Y</i> is a Boolean random variable $\mathbb{P}[Y = 1] = 1/(1 + \exp(-t))$. Then <i>Y</i> 's entropy is maximized as $t \to \infty$. Justify your answer by giving brief calculations.
I	
	(X marks the split) Create a feature map $\phi \colon \mathbb{R}^2 \to \mathbb{R}^D$ for some
D >	0 so that for any $\mathbf{z} = (x, y) \in \mathbb{R}^2$, sign $(1^{T} \phi(\mathbf{z}))$ takes value $(x - y)$
—1 i	f ${f z}$ is in the dark cross-hatched region and $+1$ if ${f z}$ is in the light $ig<$
dott	ed region (see fig). $1 = (1, 1,, 1) \in \mathbb{R}^{D}$ is the <i>D</i> -dimensional
all-o	nes vector. The dashed lines in the fig are $x = y$ and $x = -y$.
No d	lerivation needed – just give the final map below. (3 marks)
<i>ل</i> د	
$\varphi()$	(x, y) =
Q3. ((Maximum stretch) Consider the optimization problem $\min_{\mathbf{x}\in\mathbb{R}^3} \frac{1}{2} \mathbf{x} _2^2$ s.t. $\mathbf{c}^\top \mathbf{x} \ge p$ which has
	gle constraint and $\mathbf{c} \in \mathbb{R}^3$ is a constant vector and $p \in \mathbb{R}$ is a real constant. (3+2 = 5 marks)
(a	a) Give brief derivation solving the problem for $\mathbf{c} = (1,2,3)$ and $p = 7$. Write the value of \mathbf{x} at
	which the optimum is achieved. (<i>Hint: try orthogonal decomposition or some other trick</i>)

(b) Give brief derivation solving the problem for $\mathbf{c} = (-1, -2, -3)$ and p = -7. Write the value of \mathbf{x} at which the optimum is achieved.

CS 771A: Intro to Machine Learning, IIT Kanpur			Midsem Exam	(26 Feb 2023)	
Name					40 marks
Roll No		Dept.			Page 3 of 4

Q4 (Elastic-net regression) Given n pts (\mathbf{x}^i, y^i) $\mathbf{x}^i \in \mathbb{R}^d$, $y^i \in \mathbb{R}$,	1
Q4 (Elastic-net regression) Given n pts $(\mathbf{x}^{l}, y^{l}) \mathbf{x}^{l} \in \mathbb{R}^{d}, y^{l} \in \mathbb{R}$, we wish to solve $\min_{\mathbf{w} \in \mathbb{R}^{d}} \frac{1}{2} \mathbf{w} _{2}^{2} + \mathbf{w} _{1} + \frac{1}{2} \sum_{i \in [n]} (y^{i} - \mathbf{w}^{T} \mathbf{x}^{i})^{2}$.	$ \min_{\substack{\mathbf{w},\mathbf{z}\in\mathbb{R}^d\\\mathbf{r}\in\mathbb{R}^n}} - \ \mathbf{w}\ _2^2 + \mathbf{z}^{T}1 + - \ \mathbf{r}\ _2^2 \text{s. t.} \\ $
To create its dual, we introduce variables $\mathbf{z} = [z_1,, z_d] \in \mathbb{R}^d$	$w_j - z_j \le 0$ for all $j \in [d]$
and $\mathbf{r} = [r_1,, r_n] \in \mathbb{R}^n$ to give us the constrained problem in	
the box on the right. Note that $1 \in \mathbb{R}^d$ is the all-ones vector.	$y^i - \mathbf{w}^\top \mathbf{x}^i - r_i = 0$ for all $i \in [n]$

We introduce dual variables α_j for the constraints $w_j - z_j \leq 0$, β_j for $-w_j - z_j \leq 0$ and λ_i for $y^i - \mathbf{w}^{\mathsf{T}} \mathbf{x}^i - r_i = 0$. For simplicity, we collect the dual variables as vectors $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}^d$ and $\boldsymbol{\lambda} \in \mathbb{R}^n$. For each part, give your answers in the space demarcated for that part. (3+2+6+5+4=20 marks)

a. Fill in the circle indicating the correct constraint for the dual variables α_i , β_i , λ_i . (3x1 marks)

$\begin{array}{c} \alpha_j \leq 0 \bigcirc \\ \alpha_j \geq 0 \bigcirc \\ \end{array}$	$\beta_j \le 0 \bigcirc \\ \beta_j \ge 0 \bigcirc \\ \bigcirc$	$\begin{array}{c} \lambda_i \leq 0 \bigcirc \\ \lambda_i \geq 0 \bigcirc \end{array}$			
No constraint on α_j O	No constraint on β_j O	No constraint on λ_i O			
b. Write down the Lagrangian $\mathcal{L}(\mathbf{w}, \mathbf{z}, \mathbf{r}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\lambda})$ – no derivation needed. (2 marks)					

c. The dual problem is $\max_{\alpha,\beta,\lambda} \left\{ \min_{w,z,r} \mathcal{L}(w,z,r,\alpha,\beta,\lambda) \right\}$. To simplify it, solve the 3 inner problems $\min \mathcal{L}, \min \mathcal{L}$ and $\min \mathcal{L}$. In each case, give brief derivation and write the expression you get while solving the inner problem (e.g., in CSVM $\min_{\mathbf{w}} \mathcal{L}$ gives $\mathbf{w} = \sum_{i} \alpha_{i} y^{i} \mathbf{x}^{i}$). (3x(1+1) marks)

Expression + derivation for $\min \mathcal{L}$.

Expression + derivation for $\min \mathcal{L}$.

Expression + derivation for $\min \mathcal{L}$.

d. Use the expressions obtained above and eliminate β . Fill in the 5 blank boxes below to show us the simplified dual you get. $X \in \mathbb{R}^{n \times d}$ is the feature matrix with the *i*th row being \mathbf{x}^{i} . We have turned the max dual problem into a min problem by negating the objective. (5x1 marks)

$$\begin{array}{c} \min_{\substack{\alpha \in \mathbb{R}^{d} \\ \lambda \in \mathbb{R}^{n} \\ \text{s.t.}}} \frac{1}{2} \left\| X^{\mathsf{T}}(\underline{\qquad}) + (\underline{\qquad}) \right\|_{2}^{2} + \frac{1}{2} \left\| \lambda \right\|_{2}^{2} - \lambda^{\mathsf{T}}(\underline{\qquad}) \\ \leftarrow \text{ Write constraint for } \alpha \text{ here.} \\ \leftarrow \text{ Write constraint for } \lambda \text{ here.} \end{array}\right.$$

e. For the simplified dual obtained above, let us perform block coordinate minimization.

- 1. For any fixed value of $\alpha \in \mathbb{R}^d$, obtain the optimal value of $\lambda \in \mathbb{R}^n$.
- 2. For any fixed value of $\lambda \in \mathbb{R}^n$, obtain the optimal value of $\alpha \in \mathbb{R}^d$.

Note: the optimal value for a variable must satisfy its constraints (if any). Show brief calculations. You may use the QUIN trick and invent shorthand notation to save space e.g., $\mathbf{m} \stackrel{\text{def}}{=} X \boldsymbol{\alpha}$.(2+2 marks)