CS 771A: Intro to Machine Learning, IIT Kanpur Endsem Exam				(30 Apr 2023)		
Name	MELBO				40 marks	
Roll No	007	Dept.	AWSM		Page 1 of 4	

Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in block letters with ink on each page.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases may get 0 marks.

Q1. (Total Confusion) The *confusion matrix* is often used to evaluate classification models. For a C-class problem, this is a $C \times C$ matrix that tells us, for any two classes $c, c' \in [C]$, how many instances of class c were classified as c' by the model. In the example below, C = 2, there were P + Q + R + S points in the test set where P, Q, R, S are strictly positive integers. The matrix tells us that Q points were in class +1 but were (incorrectly) classified as -1 by the model, S points were in class -1 and were (correctly) classified as -1 by the model, etc. **Give expressions for the specified quantities in terms of** P, Q, R, S. No derivations needed. Note that S denotes the true class of a test point and S is the predicted class for that point. (5 x 1 = 5 marks)

		Predicted class ŷ		
		+1	-1	
rue class y	+1	P	Q	
True c	-1	R	S	

Confusion Matrix

True positive rate (TPR) $\mathbb{P}[\hat{y} = 1 y = 1]$	True positive ra	ate (TPR)	$\mathbb{P}[\hat{y} =$	1 y = 1	.]
---	------------------	-----------	------------------------	---------	----

False positive rate (**FPR**) $\mathbb{P}[\hat{y} = 1|y = -1]$

True negative rate (**TNR**) $\mathbb{P}[\hat{y} = -1|y = -1]$

False negative rate (**FNR**) $\mathbb{P}[\hat{y} = -1|y = 1]$

Misclassification rate (MIS) $\mathbb{P}[\hat{y} \neq y]$

(3 X I - 3 IIIai K3)
Р
$\overline{P+Q}$
R
$\overline{R+S}$
S
$\overline{R+S}$
Q
$\overline{P+Q}$
Q+R
$\overline{P+Q+R+S}$
m . m

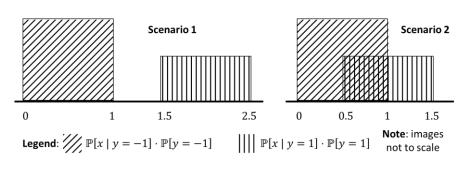
Q2. (Kernel Smash) Melbi has created two Mercer kernels $K_1, K_2 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with the feature map for K_i as $\phi_i : \mathbb{R} \to \mathbb{R}^3$ i.e., for any $x, y \in \mathbb{R}$, we have $K_i(x,y) = \langle \phi_i(x), \phi_i(y) \rangle$ for $i \in \{1,2\}$. Melbi tells us that $\phi_1(x) = (x, x^3, x^5)$ and $\phi_2(x) = (1, x^2, x^4)$. Melbo creates two new kernels K_3, K_4 so that for any $x, y \in \mathbb{R}$, $K_3(x,y) = K_1(x,y) + K_2(x,y)$ and $K_4(x,y) = K_1(x,y) \cdot K_2(x,y)$. Design feature maps $\phi_3, \phi_4 : \mathbb{R} \to \mathbb{R}^6$ for the kernels K_3, K_4 . Note that ϕ_3, ϕ_4 must not have more than 6 dimensions each. Write your answer in the space provided. No derivations required. If your feature map for either K_3 or K_4 requires fewer than 6 dimensions, you may fill-in the rest of the dimensions with 0 features. (2 + 3 = 5 marks)

$$\phi_3(x) = (1, x, x^2, x^3, x^4, x^5)$$

$$\phi_4(x) = (x, \sqrt{2}x^3, \sqrt{3}x^5, \sqrt{2}x^7, x^9, 0)$$

Q3. (The optimal classifier) Melbo is solving a binary classification problem with 1D features where features of datapoints labelled -1 are uniformly distributed in the interval [a, a+1] and features of points labelled +1 are uniformly distributed in [b, b+1] i.e., $\mathbb{P}[x \mid y=-1] = \mathcal{U}([a, a+1])$ and $\mathbb{P}[x \mid y=+1] = \mathcal{U}([b, b+1])$. Thrice as many points are labelled -1 as are labelled +1 i.e., $\mathbb{P}[y=-1] = 3 \cdot \mathbb{P}[y=+1]$. Melbo wants to learn a **threshold classifier** $f_{\eta}(\cdot)$ that classifies a data point with feature x as +1 if $x \geq \eta$ and as -1 if $x < \eta$. We have two scenarios for which the figure below depicts $\mathbb{P}[x \mid y] \cdot \mathbb{P}[y]$ (**images not to scale**). In scenario 1, we have a=0,b=1.5 while in

scenario 2, we have a=0,b=0.5. $\mathbb{P}[y=+1]$ is the same for both scenarios. Your answer for parts 1, 2, 3, 7 and 11 should be a real number e.g., 0.5 or 1.414 etc. Your answer for parts 4, 5, 6, 8, 9 and 10 should be an expression in η e.g., $\frac{(1-\eta)}{2}$ or $\frac{\eta^2}{2} + \frac{1}{2}$, etc.



If a part has multiple correct answers, any correct answer will receive full marks. Hint: pay attention to the form of $f_n(x)$ and how it uses the threshold. (1+2+2+1+1+1+2+1+1+2 = 15 marks)

Find the value of $\mathbb{P}[y=+1]$. Recall that this value remains same in both scenarios.

 $\frac{1}{4}$

For parts 2 and 3, we consider scenario 1 i.e. a = 0, b = 1.5

- 2 Find a value η for which the misclassification rate of Melbo's classifier is the smallest i.e., find arg $\min_{\eta} \{ \mathbb{P}[f_{\eta}(x) \neq y] \}$.
- 3 Find a value η for which the sum TPR and TNR is largest i.e., $\arg\max_{\eta} \{ \mathbb{P} \big[f_{\eta}(x) = 1 \big| y = 1 \big] + \mathbb{P} \big[f_{\eta}(x) = -1 \big| y = -1 \big] \}.$

Any value $\eta \in (1,1.5]$ will give $\mathbb{P}[f_{\eta}(x) \neq y] = 0$

Any value $\eta \in (1,1.5]$ will give TPR + TNR = 2

For parts 4, 5, 6, 7, 8, 9, 10, 11 we consider scenario 2 i.e. $a = 0, \underline{b} = 0.5$

- 4 Give an expression for the misclassification rate of Melbo's classifier $\mathbb{P}[f_{\eta}(x) \neq y]$ if Melbo chooses $\eta \in [0, 0.5)$
- Give an expression for the misclassification rate of Melbo's classifier $\mathbb{P}[f_{\eta}(x) \neq y]$ if Melbo chooses $\eta \in [0.5, 1)$
- Give an expression for the misclassification rate of Melbo's classifier $\mathbb{P}[f_{\eta}(x) \neq y]$ if Melbo chooses $\eta \in [1, 1.5]$
- 7 Using your solutions to parts 4, 5 and 6, find a value of η with smallest misclassification rate i.e., $\arg\min_{\eta} \{\mathbb{P}[f_{\eta}(x) \neq y]\}$.
- 8 Give an expression for the TPR + TNR of Melbo's classifier $\mathbb{P}[f_{\eta}(x) = 1|y = 1] + \mathbb{P}[f_{\eta}(x) = -1|y = -1]$ if Melbo chooses a $\eta \in [0, 0.5)$
- Give an expression for the TPR + TNR of Melbo's classifier $\mathbb{P}\big[f_{\eta}(x)=1|y=1\big]+\mathbb{P}\big[f_{\eta}(x)=-1|y=-1\big]$ if Melbo chooses a $\eta\in[0.5,1)$

$$\frac{3}{4} \cdot (1 - \eta) + 0 = \frac{3}{4} - \frac{3\eta}{4}$$

$$\frac{3}{4} \cdot (1 - \eta) + \frac{1}{4} \cdot \left(\eta - \frac{1}{2}\right) = \frac{5}{8} - \frac{\eta}{2}$$

$$0 + \frac{1}{4} \cdot \left(\eta - \frac{1}{2} \right) = \frac{\eta}{4} - \frac{1}{8}$$

1

$$1 + \eta$$

$$(1.5 - \eta) + \eta = 1.5$$

CS 771A: Intro to Machine Learning, IIT Kanpur E				Endsem Exam	(30 Apr 2023)	
	Name	MELBO				40 marks
	Roll No	007	Dept.	AWSM		Page 3 of 4

10 Give an expression for the TPR + TNR of Melbo's classifier $\mathbb{P}\big[f_{\eta}(x)=1|y=1\big]+\mathbb{P}\big[f_{\eta}(x)=-1|y=-1\big]$ if Melbo chooses a $\eta\in[1,1.5)$

$$(1.5 - \eta) + 1 = 2.5 - \eta$$

Using your solutions to parts 8, 9, 10, find a value of η for which the TPR + TNR of the classifier is the largest i.e., $\arg\max_{\eta}\{\mathbb{P}\big[f_{\eta}(x)=1|y=1\big]+\mathbb{P}\big[f_{\eta}(x)=-1|y=-1\big]\}$

Any value $\eta \in (0.5,1)$ will give TPR + TNR = 1.5

Q4. (Opt. to Prob.) Melbo has a regression problem with 1D features, n datapoints (x_i, y_i) , $i \in [n]$ with $x_i, y_i \in \mathbb{R}$ and tried learning a 1D linear model w by solving the optimization problem: $\min_{w \in [-1,1]} \left\{ |w| + \frac{1}{2} \sum_{i \in [n]} (y_i - w \cdot x_i)^2 \right\}$. Note: w is a 1D scalar, is constrained in the interval [-1,1] and is also L_1 regularized. Melbo's friend Melba claims that this is just a MAP solution. To convince Melbo, create a likelihood distribution over labels $\mathbb{P}[y \mid x, w]$ and a prior distribution over models $\mathbb{P}[w]$ s.t. $\arg\max_{w \in \mathbb{R}} \left\{ \mathbb{P}[w] \cdot \prod_{i \in [n]} \mathbb{P}[y_i \mid x_i, w] \right\} = \arg\min_{w \in [-1,1]} \left\{ |w| + \frac{1}{2} \sum_{i \in [n]} (y_i - w \cdot x_i)^2 \right\}$. Give brief derivation. Hint: the prior (and not the likelihood) will introduce the constraint. The PDF for a Gaussian with mean μ and variance $\sigma^2 > 0$ is $\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. The PDF for a Laplacian with mean m and scale s > 0 is $\mathcal{L}(x; m, s) = \frac{1}{2s} \exp\left(-\frac{|x-m|}{s}\right)$. (2 + 3 = 5 marks)

$$\mathbb{P}[y \mid x, w] = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y - w \cdot x)^2}{2}\right)$$

$$\mathbb{P}[w] = \begin{cases} \frac{e}{2(e-1)} \exp(-|w|) & |w| \le 1\\ 0 & |w| > 1 \end{cases}$$

The loss term for a single point looks like $\frac{(y_i-w\cdot x_i)^2}{2}$ which corresponds to the negative log likelihood. Negating and exponentiating gives us a likelihood that looks like $\mathbb{P}[y_i \mid x_i, w] \propto \exp\left(-\frac{(y_i-w\cdot x_i)^2}{2}\right)$.

Normalizing so that the likelihood integrates to unity directs us to choose a Gaussian with $\sigma=1$.

Consider the following barrier regularization function $r(w) = \begin{cases} |w| & |w| \leq 1 \\ \infty & |w| > 1 \end{cases}$. Note that we have $\underset{w \in [-1,1]}{\arg\min} \left\{ |w| + \frac{1}{2} \sum_{i \in [n]} (y_i - w \cdot x_i)^2 \right\} = \underset{w \in \mathbb{R}}{\arg\min} \left\{ r(w) + \frac{1}{2} \sum_{i \in [n]} (y_i - w \cdot x_i)^2 \right\}$. Negating and

exponentiating as before tells us that the prior should look like $\mathbb{P}[w] \propto \begin{cases} \exp(-|w|) & |w| \leq 1 \\ 0 & |w| > 1 \end{cases}$.

Normalizing so that the prior integrates to unity solves the problem.

Q5. (Unity in Diversity) We have 2 datasets with d-dim features. Dataset 1 has m points, features $X = [\mathbf{x}_1, ..., \mathbf{x}_m] \in \mathbb{R}^{m \times d}$ and labels $\mathbf{u} = [u_1, ..., u_m] \in \mathbb{R}^m$. Dataset 2 has n points, features $Z = [\mathbf{z}_1, ..., \mathbf{z}_n] \in \mathbb{R}^{n \times d}$ and labels $\mathbf{v} = [v_1, ..., v_n] \in \mathbb{R}^n$. Melbo wants to learn a linear model using both datasets but has been told by Melbi that the while the optimal model vector $\mathbf{w}^* \in \mathbb{R}^d$ is the same for both datasets, the datasets require different bias terms b_1^* and b_2^* such that $b_2^* = 2 \cdot b_1^*$. Thus, Melbo wants to solve the following problem: $(\mathbf{1}_m = [1, ..., 1] \in \mathbb{R}^m$ and $\mathbf{1}_n = [1, ..., 1] \in \mathbb{R}^n)$

$$\min_{\mathbf{w} \in \mathbb{R}^d, b_1, b_2 \in \mathbb{R}} \ \{ \|X\mathbf{w} + b_1 \cdot \mathbf{1}_m - \mathbf{u}\|_2^2 + \|Z\mathbf{w} + b_2 \cdot \mathbf{1}_n - \mathbf{v}\|_2^2 + \|\mathbf{w}\|_2^2 \} \quad \text{ such that } \quad b_2 = 2 \cdot b_1$$

Part 1: Melbo wants to use alternating optimization to solve the problem. Given fixed values of b_1 and b_2 s.t. $b_2 = 2 \cdot b_1$, solve $\underset{\mathbf{w} \in \mathbb{R}^d}{\min} \{ \|X\mathbf{w} + b_1 \cdot \mathbf{1}_m - \mathbf{u}\|_2^2 + \|Z\mathbf{w} + b_2 \cdot \mathbf{1}_n - \mathbf{v}\|_2^2 + \|\mathbf{w}\|_2^2 \}$ to

get a value for w. Give brief derivation. Note: optimization is only over w in this part. (4 marks

Stationarity tells us that at the optimum, we must have

$$X^{\mathsf{T}}(X\mathbf{w} + b_1 \cdot \mathbf{1}_m - \mathbf{u}) + Z^{\mathsf{T}}(Z\mathbf{w} + b_2 \cdot \mathbf{1}_n - \mathbf{v}) + \mathbf{w} = 0$$

Another way of writing this is the following (I_d is the d-dim identity matrix)

$$(X^{\mathsf{T}}X + Z^{\mathsf{T}}Z + I_d)\mathbf{w} = X^{\mathsf{T}}(\mathbf{u} - b_1 \cdot \mathbf{1}_m) + Z^{\mathsf{T}}(\mathbf{v} - b_2 \cdot \mathbf{1}_n)$$

This gives us the following value for the model

$$\mathbf{w} = (X^{\mathsf{T}}X + Z^{\mathsf{T}}Z + I_d)^{-1} \big(X^{\mathsf{T}} (\mathbf{u} - b_1 \cdot \mathbf{1}_m) + Z^{\mathsf{T}} (\mathbf{v} - b_2 \cdot \mathbf{1}_n) \big)$$

Note that the matrix $X^{\mathsf{T}}X + Z^{\mathsf{T}}Z + I_d$ is always invertible due to the identity matrix being added.

Part 2: Now instead, if we are given a fixed value of $\mathbf{w} \in \mathbb{R}^d$, find out values for b_1, b_2 by solving $\underset{b_1, b_2 \in \mathbb{R}}{\min} \{ \|X\mathbf{w} + b_1 \cdot \mathbf{1}_m - \mathbf{u}\|_2^2 + \|Z\mathbf{w} + b_2 \cdot \mathbf{1}_n - \mathbf{v}\|_2^2 \}$ subject to the constraint $b_2 = 2 \cdot b_1$.

Give brief derivation. Note: optimization is only over b_1 and b_2 in this part.

(6 marks)

Let us introduce a new variable t and replace $b_1 = t$, $b_2 = 2t$ to get

$$\underset{t \in \mathbb{R}}{\arg\min} \ \{ \|X\mathbf{w} + t \cdot \mathbf{1}_m - \mathbf{u}\|_2^2 + \|Z\mathbf{w} + 2t \cdot \mathbf{1}_n - \mathbf{v}\|_2^2 \}$$

Stationarity tells us that the optimal value of t satisfies

$$(X\mathbf{w} + t \cdot \mathbf{1}_m - \mathbf{u})^{\mathsf{T}} \mathbf{1}_m + (Z\mathbf{w} + 2t \cdot \mathbf{1}_n - \mathbf{v})^{\mathsf{T}} (2 \cdot \mathbf{1}_n) = 0$$

This means that $(m+4n) \cdot t = (\mathbf{u} - X\mathbf{w})^{\mathsf{T}} \mathbf{1}_m + (\mathbf{v} - Z\mathbf{w})^{\mathsf{T}} (2 \cdot \mathbf{1}_n)$. This gives us

$$t = \frac{1}{m+4n} \left((\mathbf{u} - X\mathbf{w})^{\mathsf{T}} \mathbf{1}_m + (\mathbf{v} - Z\mathbf{w})^{\mathsf{T}} (2 \cdot \mathbf{1}_n) \right)$$
$$= \frac{1}{m+4n} \left(\sum_{i \in [m]} (u_i - \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) + 2 \sum_{i \in [n]} (v_i - \mathbf{w}^{\mathsf{T}} \mathbf{z}_i) \right)$$

This gives us
$$b_1 = \frac{1}{m+4n} \left(\sum_{i \in [m]} (u_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i) + 2 \sum_{i \in [n]} (v_i - \mathbf{w}^\mathsf{T} \mathbf{z}_i) \right)$$

Similarly, we get
$$b_2 = \frac{2}{m+4n} \left(\sum_{i \in [m]} (u_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i) + 2 \sum_{i \in [n]} (v_i - \mathbf{w}^\mathsf{T} \mathbf{z}_i) \right)$$