| CS 771A: | Intro to Machine Le | Endsem Exam (30 Apr 2023) |  |  |                           |
|----------|---------------------|---------------------------|--|--|---------------------------|
| Name     |                     |                           |  |  | 40 marks                  |
| Roll No  |                     | Dept.                     |  |  | Page <b>1</b> of <b>4</b> |

## Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in **block letters** with **ink** on **each page**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases may get 0 marks.

**Q1. (Total Confusion)** The *confusion matrix* is often used to evaluate classification models. For a *C*-class problem, this is a  $C \times C$  matrix that tells us, for any two classes  $c, c' \in [C]$ , how many instances of class c were classified as c' by the model. In the example below, C = 2, there were P + Q + R + S points in the test set where P, Q, R, S are strictly positive integers. The matrix tells us that Q points were in class +1 but were (incorrectly) classified as -1 by the model, S points were in class -1 and were (correctly) classified as -1 by the model, etc. **Give expressions for the specified quantities in terms of** P, Q, R, S. No derivations needed. Note that y denotes the true class of a test point and  $\hat{y}$  is the predicted class for that point. **(5 x 1 = 5 marks)** 

 $\begin{array}{c|c} & Predicted \\ class <math>\hat{y} \\ \hline +1 & -1 \\ \hline \hat{x} \\ rightarrow \\$ 

**Confusion Matrix** 

True positive rate (**TPR**)  $\mathbb{P}[\hat{y} = 1 | y = 1]$ 

False positive rate (**FPR**)  $\mathbb{P}[\hat{y} = 1 | y = -1]$ 

True negative rate (**TNR**)  $\mathbb{P}[\hat{y} = -1 | y = -1]$ 

False negative rate (**FNR**)  $\mathbb{P}[\hat{y} = -1|y = 1]$ 

Misclassification rate (**MIS**)  $\mathbb{P}[\hat{y} \neq y]$ 

**Q2. (Kernel Smash)** Melbi has created two Mercer kernels  $K_1, K_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  with the feature map for  $K_i$  as  $\phi_i: \mathbb{R} \to \mathbb{R}^3$  i.e., for any  $x, y \in \mathbb{R}$ , we have  $K_i(x, y) = \langle \phi_i(x), \phi_i(y) \rangle$  for  $i \in \{1,2\}$ . Melbi tells us that  $\phi_1(x) = (x, x^3, x^5)$  and  $\phi_2(x) = (1, x^2, x^4)$ . Melbo creates two new kernels  $K_3, K_4$  so that for any  $x, y \in \mathbb{R}, K_3(x, y) = K_1(x, y) + K_2(x, y)$  and  $K_4(x, y) = K_1(x, y) \cdot K_2(x, y)$ . Design feature maps  $\phi_3, \phi_4: \mathbb{R} \to \mathbb{R}^6$  for the kernels  $K_3, K_4$ . Note that  $\phi_3, \phi_4$  must not have more than 6 dimensions each. Write your answer in the space provided. No derivations required. If your feature map for either  $K_3$  or  $K_4$  requires fewer than 6 dimensions, you may fill-in the rest of the dimensions with 0 features. (2 + 3 = 5 marks)







## Page 2 of 4

**Q3. (The optimal classifier)** Melbo is solving a binary classification problem with 1D features where features of datapoints labelled -1 are uniformly distributed in the interval [a, a + 1] and features of points labelled +1 are uniformly distributed in [b, b + 1] i.e.,  $\mathbb{P}[x \mid y = -1] = \mathcal{U}([a, a + 1])$  and  $\mathbb{P}[x \mid y = +1] = \mathcal{U}([b, b + 1])$ . Thrice as many points are labelled -1 as are labelled +1 i.e.,  $\mathbb{P}[y = -1] = 3 \cdot \mathbb{P}[y = +1]$ . Melbo wants to learn a **threshold classifier**  $f_{\eta}(\cdot)$  that classifies a data point with feature x as +1 if  $x \ge \eta$  and as -1 if  $x < \eta$ . We have two scenarios for which the figure below depicts  $\mathbb{P}[x \mid y] \cdot \mathbb{P}[y]$  (**images not to scale**). In scenario 1, we have a = 0, b = 1.5 while in

scenario 2, we have a = 0, b = 0.5.  $\mathbb{P}[y = +1]$  is the same for both scenarios. Your answer for parts 1, 2, 3, 7 and 11 should be a real number e.g., 0.5 or 1.414 etc. Your answer for parts 4, 5, 6, 8, 9 and 10 should be an expression in  $\eta$  e.g.,  $\frac{(1-\eta)}{2}$  or  $\frac{\eta^2}{2} + \frac{1}{2}$ , etc.



If a part has multiple correct answers, any correct answer will receive full marks. *Hint: pay attention to the form of*  $f_{\eta}(x)$  *and how it uses the threshold.* (1+2+2+1+1+1+2+1+1+1+2 = 15 marks)

| 1   | Find the value of $\mathbb{P}[y = +1]$ . Recall that this value remains same in both scenarios.                                                                                               |         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| For | parts 2 and 3, we consider scenario 1 i.e. $a = 0, b = 1.5$                                                                                                                                   |         |
| 2   | Find a value $\eta$ for which the misclassification rate of Melbo's classifier is the smallest i.e., find $\arg \min_{\eta} \{ \mathbb{P}[f_{\eta}(x) \neq y] \}$ .                           |         |
| 3   | Find a value $\eta$ for which the sum TPR and TNR is largest i.e.,<br>arg max <sub><math>\eta</math></sub> { $\mathbb{P}[f_{\eta}(x) = 1   y = 1] + \mathbb{P}[f_{\eta}(x) = -1   y = -1]$ }. |         |
| For | parts 4, 5, 6, 7, 8, 9, 10, 11 we consider scenario 2 i.e. $a = 0$ ,                                                                                                                          | b = 0.5 |
| 4   | Give an expression for the misclassification rate of Melbo's classifier $\mathbb{P}[f_{\eta}(x) \neq y]$ if Melbo chooses $\eta \in [0, 0.5)$                                                 |         |
| 5   | Give an expression for the misclassification rate of Melbo's classifier $\mathbb{P}[f_{\eta}(x) \neq y]$ if Melbo chooses $\eta \in [0.5, 1)$                                                 |         |
| 6   | Give an expression for the misclassification rate of Melbo's classifier $\mathbb{P}[f_{\eta}(x) \neq y]$ if Melbo chooses $\eta \in [1, 1.5]$                                                 |         |
| 7   | Using your solutions to parts 4, 5 and 6, find a value of $\eta$ with smallest misclassification rate i.e., $\arg \min_{\eta} \{ \mathbb{P}[f_{\eta}(x) \neq y] \}.$                          |         |
| 8   | Give an expression for the TPR + TNR of Melbo's classifier<br>$\mathbb{P}[f_{\eta}(x) = 1 y = 1] + \mathbb{P}[f_{\eta}(x) = -1 y = -1]$ if Melbo<br>chooses a $\eta \in [0, 0.5)$             |         |
| 9   | Give an expression for the TPR + TNR of Melbo's classifier<br>$\mathbb{P}[f_{\eta}(x) = 1 y = 1] + \mathbb{P}[f_{\eta}(x) = -1 y = -1]$ if Melbo<br>chooses a $\eta \in [0.5, 1)$             |         |

| CS 771A: | Intro to Machine Le | Endsem Exam (30 Apr 2023) |  |  |                           |  |  |  |
|----------|---------------------|---------------------------|--|--|---------------------------|--|--|--|
| Name     |                     |                           |  |  | 40 marks                  |  |  |  |
| Roll No  |                     | Dept.                     |  |  | Page <b>3</b> of <b>4</b> |  |  |  |

- 10 Give an expression for the TPR + TNR of Melbo's classifier  $\mathbb{P}[f_{\eta}(x) = 1|y = 1] + \mathbb{P}[f_{\eta}(x) = -1|y = -1]$  if Melbo chooses a  $\eta \in [1, 1.5)$
- 11 Using your solutions to parts 8, 9, 10, find a value of  $\eta$  for which the TPR + TNR of the classifier is the largest i.e.,  $\arg \max_{\eta} \{ \mathbb{P}[f_{\eta}(x) = 1 | y = 1] + \mathbb{P}[f_{\eta}(x) = -1 | y = -1] \}$

**Q4.** (Opt. to Prob.) Melbo has a regression problem with 1D features, *n* datapoints  $(x_i, y_i), i \in [n]$  with  $x_i, y_i \in \mathbb{R}$  and tried learning a 1D linear model *w* by solving the optimization problem:  $\min_{w \in [-1,1]} \left\{ |w| + \frac{1}{2} \sum_{i \in [n]} (y_i - w \cdot x_i)^2 \right\}$ Note: *w* is a 1D scalar, is constrained in the interval [-1,1] and is also  $L_1$  regularized. Melbo's friend Melba claims that this is just a MAP solution. To convince Melbo, create a likelihood distribution over labels  $\mathbb{P}[y \mid x, w]$  and a prior distribution over models  $\mathbb{P}[w]$  s.t.  $\arg\max_{w \in \mathbb{R}} \left\{ \mathbb{P}[w] \cdot \prod_{i \in [n]} \mathbb{P}[y_i \mid x_i, w] \right\} = \arg\min_{w \in [-1,1]} \left\{ |w| + \frac{1}{2} \sum_{i \in [n]} (y_i - w \cdot x_i)^2 \right\}$ . Give brief derivation. Hint: the prior (and not the likelihood) will introduce the constraint. The PDF for a Gaussian with mean  $\mu$  and variance  $\sigma^2 > 0$  is  $\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ . The PDF for a Laplacian with mean m and scale s > 0 is  $\mathcal{L}(x; m, s) = \frac{1}{2s} \exp\left(-\frac{|x-m|}{s}\right)$ . (2 + 3 = 5 marks)



## Page 4 of 4

**Q5.** (Unity in Diversity) We have 2 datasets with *d*-dim features. Dataset 1 has *m* points, features  $X = [\mathbf{x}_1, ..., \mathbf{x}_m] \in \mathbb{R}^{m \times d}$  and labels  $\mathbf{u} = [u_1, ..., u_m] \in \mathbb{R}^m$ . Dataset 2 has *n* points, features  $Z = [\mathbf{z}_1, ..., \mathbf{z}_n] \in \mathbb{R}^{n \times d}$  and labels  $\mathbf{v} = [v_1, ..., v_n] \in \mathbb{R}^n$ . Melbo wants to learn a linear model using both datasets but has been told by Melbi that the while the optimal model vector  $\mathbf{w}^* \in \mathbb{R}^d$  is the same for both datasets, the datasets require different bias terms  $b_1^*$  and  $b_2^*$  such that  $b_2^* = 2 \cdot b_1^*$ . Thus, Melbo wants to solve the following problem:  $(\mathbf{1}_m = [1, ..., 1] \in \mathbb{R}^m$  and  $\mathbf{1}_n = [1, ..., 1] \in \mathbb{R}^n)$ 

 $\min_{\mathbf{w} \in \mathbb{R}^{d}, b_{1}, b_{2} \in \mathbb{R}} \{ \| X\mathbf{w} + b_{1} \cdot \mathbf{1}_{m} - \mathbf{u} \|_{2}^{2} + \| Z\mathbf{w} + b_{2} \cdot \mathbf{1}_{n} - \mathbf{v} \|_{2}^{2} + \| \mathbf{w} \|_{2}^{2} \} \text{ such that } b_{2} = 2 \cdot b_{1}$ 

**Part 1:** Melbo wants to use alternating optimization to solve the problem. Given fixed values of  $b_1$  and  $b_2$  s.t.  $b_2 = 2 \cdot b_1$ , solve  $\underset{\mathbf{w} \in \mathbb{R}^d}{\arg \min} \{ \|X\mathbf{w} + b_1 \cdot \mathbf{1}_m - \mathbf{u}\|_2^2 + \|Z\mathbf{w} + b_2 \cdot \mathbf{1}_n - \mathbf{v}\|_2^2 + \|\mathbf{w}\|_2^2 \}$  to get a value for  $\mathbf{w}$ . Give brief derivation. *Note: optimization is only over*  $\mathbf{w}$  *in this part.* (4 marks)

**Part 2:** Now instead, if we are given a fixed value of  $\mathbf{w} \in \mathbb{R}^d$ , find out values for  $b_1, b_2$  by solving arg min  $\{ \|X\mathbf{w} + b_1 \cdot \mathbf{1}_m - \mathbf{u}\|_2^2 + \|Z\mathbf{w} + b_2 \cdot \mathbf{1}_n - \mathbf{v}\|_2^2 \}$  subject to the constraint  $b_2 = 2 \cdot b_1$ .

Give brief derivation. Note: optimization is only over  $b_1$  and  $b_2$  in this part.

(6 marks)