Flexible See-Through Base VM Images

Akshay Sharma
Pranjal Singh

Course Project - Topics in Operating Systems

2024-25 - T Semester

Supervisor - Prof. Debadatta Mishra

1 Introduction

1.1 QCOW2 Disk Images - Copy-on-Write VM Clones

The QEMU emulator’s default disk image format is QCOW2, or QEMU Copy on Write (version
2). As the name suggests, this format supports taking snapshots of disks for checkpointing or
forking VMs. As the snapshot is modified over time, only the blocks (clusters of blocks, more
formally) that are touched are copied with the changes made.

The base image is also known as the backing image.

1.2 See-through Base Images

A common use case for using backing images is to avoid storing redundant copies of common
files. For example, system utilities (/usr), operating system images and ML datasets might be
the same in multiple VMs in a cloud server. Further, these are not writable files.

For example, a cloud user may use a certain base VM as the default system, and modify
files within it (for example, change the default shell from bash to csh).

However, system files receive periodic updates, including security fixes. At present, the user
is required to make the update in each of the child snapshots. Over time, redundancy creeps
in. We discuss the reasons for this in later sections.

2 Current Solutions and Limitations

Consider a simplified example where the disk block size is 4096 B and the snapshot cluster size
is also 4096 B. As described earlier, our goal is to permit both the base image and the snapshot
to be modified.

If possible, we also wish to fork multiple children from the base image.

2.1 Filesystem Consistency Requirements in EXT4
The EXT4 filesystem has the following entities corresponding to a file:

’ Entity ‘ Location ‘ Description Size
Inode Inode table Create/update Inode 256 B
. Dedicated inode . .
Inode bitmap bitmap blocks Mark inode used 1 bit
Non-metadata . FS
Data blocks blocks Write data for non-empty files block
Data block Dedlcated block Mark block used 1 bit
bitmap bitmap
Extent troe Non-metadata Allocated/used as data blocks, block | FS
blocks bitmap is set block
Dlre'ctory en- | b oits data blocks Parent 1n0de§ extent tree and file length <263 B
try in parent depend on children
Superblock Beginning of disk, | Free block/inode count, aggregate statis- | FS
(global) some backup copies | tics block(s)
BlOCk. Group Beginning of disk Has free block count, free inode count 64 B
Descriptor

Thus, a file operation in EXT4 might need to update 9 different entities. This count excludes
the block bitmap bits for the extent tree, and if the parent directory’s data blocks are full, then
its next data block, modified extent tree (which may need even more blocks), corresponding
block bitmap bits, the parent inode’s extent status and parent inode’s file length entry.

In brief, filesystem consistency is a global notion. It is not easy to isolate some part of a
filesystem (or an update) and declare it consistent /safe.
Concrete examples of consistency issues are discussed in the next section.

2.2 Consistency Issues in EXT4

Consider the following sequences:

e Data block 1050 is free when snapshot is taken

o Child FS writes a new file /snapshot_1050 to block 1050 of the snapshot and CoW
mapping of block 1050 to base image is overwritten with the new data.

o Base image (being operated by parent VM) is unaware of above write. Parent creates file
/base_1050 which is written to block 1050 of the base image.

o Now, it is possible that the child VM (running the disk snapshot) sees the directory entry
and inode for /base_1050 correctly.

o Child reads /base_1050, but the disk access is redirected to the new data block containing
/snapshot_1050.

or,

e Assuming inodes have size 256 B, 16 inodes fit in a disk block.

e Inodes 5 and 6 (residing in first block of inode table) were free when the snapshot was
taken.

o Child VM uses inode 5 in block O for a new file /snapshot_5 and replaces the CoW
mapping by a new block. Inodes 0 to 15 reside in the first block.

o Parent uses inode 6, also in block 0 for a new file /base_6 in the base image.

e Child sees the directory entry for /base_6 and reads inode 6

e The read is redirected to the new block and the child reads garbage values

More generally, the base VM might use a (a) disk block that the child had earlier
dirtied and has a separate copy of (data blocks and extent trees have 4 KB granularity). Or,
the base VM might use some (b) part of a disk block, of which the child has dirtied a
different part, and created a copy (for remaining metadata entities with smaller size).

2.3 Overview of Limitations

In a nutshell, a VM modifying a disk snapshot needs to take responsibility for the 9 filesystem
entities in the snapshot (listed above), as well as the same 9 entities in the base image. Block
layer writes are done at a granularity of 512 B or 4096 B. Moreover, QCOW2 snapshots have a
default cluster size of 64 KB.

Filesystem consistency is guaranteed if (i) the base image is modified , but the child VM
abstains from writing, or (ii) the base image is not modified (and the child VM has virtual
“control” over the base image), but the Copy-on-Write snapshot is dirtied.

This also holds when multiple copies of a snapshot are created and used by multiple VMs.
(Pitfall: we don’t mean modifying a live disk here. We mean modifying the base image after
taking the snapshot, regardless of the child image being live/unmounted.)

These complications arise because the disk image is being CoW-ed at the granularity of 4
KB (64 KB by default). At the VFS layer, for instance, we would only need to worry about
clashes in the names of files.

2.4 Alternate Solutions: Partitioning the Disk

Disk partitions can be kept consistent independently, unlike a directory or a file (with the 9
entities listed earlier). One can partition a disk and assign a partition to a single writer.

Under this scheme, it is also easy for k sibling VMs to have a writable partition, and
read the partitions assigned to the remaining £ — 1 siblings. FS consistency is maintained
because a partition has a single writer. However, the disk allocation size under this scheme
is inflexible. One workaround could be to have a large number of partitions and dynamically
change ownership.

2.5 Alternate Solutions: Network Filesystem

NF'S mounts spare the VM filesystem the responsibility of filesystem consistency because sharing
is done at the VFS view. That would also permit simultaneous, direct modifications to the base
image’s and snapshot’s designated directories. Additionally, space savings would be even larger
if devices across multiple nodes can share data. However, NF'S mounts suffer from a large access
latency and low bandwidth.

3 Disallowing Writes to Selected Block Groups

In this section, we discuss our current approach.

3.1 EXT4 Block Groups

To avoid frequent disk seeks, EXT4 divides the disk into block groups (BG), which are physically
contiguous portions of the disk. To the extent possible, all blocks in a file as well as its metadata
elements are stored within a block group.

The block bitmap is always stored within the containing block group. An inode bitmap and
inode table are also neighbours on disk, although the corresponding file’s blocks may be in a
different block group.

EXT4 also has an extension to block groups, known as flexible block groups which is func-
tionally similar to block groups. It links multiple block groups into a virtual BG (typically 16)
and stores their metadata For simplicity, we disable this feature, although we can accomodate
it easily owing to physical contiguity. To disable it (when creating the partition):

mkfs.ext4 -0 “flex_bg [options] device

Thus, the layout of a typical BG in a partition without flexible BGs is:
(bash# echo stats | debugfs /dev/your_ext4_disk)

e Block bitmap at X

e Inode bitmap at X+1

o Inode table at X+2 (typically 8K Inode blocks spanning 8Kx256 bytes, 512 disk blocks)
« Data blocks from X+42+512 to X + 215

With flexible BGs, (say 16 BGs per virtual BG) it is

e 16 block bitmaps: X to X 4+ 15

e 16 Inode bitmaps: X + 16 to X + 31

e Inode table from X 4+ 32 to Y

o Data blocks from Y+1 to X + (16 x2!%) - 1

This permits storing large files contiguously on disk.

3.2 Restricting Writes to Designated Block Groups

By assigning a block group to a single writer, FS consistency can be maintained even if the
partition as a whole is operated upon by multiple entities. Some disparities crop up in the free

block/inode count, which can be fixed by fsck. Our approach is to writes to designated BGs
in the base image as well as the snapshot.
The semantics of this assignment are:

] Ownership ‘ Operation Permitted \ Notes ‘

Owned Read Y Allowed
Owned Write v Ne\.)v blocks & extents must be in owned
region

New Inode must be in owned region.
Owned Creation Y Parent’s inode, extents and data must
be in owned region

Inode must be in owned region. Par-
Owned Deletion Y ent’s inode, extents and data must be
in owned region

Not Owned Read Y Don’t write access timestamp
Write,
Not Owned Create, N Not allowed
Update
Superblock Might need to maintain a separate copy
M Y
(shared) ount for parent and child
?;f;izzl)o ok Update Parent Only | Child can have a separate copy
. Up-to-date BG descriptors are not ab-
B .
to?s descrip Update Y solutely necessary, but better to let the

child maintain a separate copy

Additionally, one directory needs to be created in the BGs assigned to the child, whose
parent is in a BG assigned to the base image’s writer. These blocks need to be kept fixed
through the disk image lifetime. This is a special operation, as it is not permitted under the
semantics described above. This can be done when the disk is being created.

4 Results and Observations

4.1 Partitioning the Disk Image

We created a secondary disk for VMs and took two snapshots of the same, corresponding to two
child VMs. Two EXT4 partitions were created on the disk, of which the first was designated to
be updated only in the base image, and the second only in the snapshots.

QEMU locks QCOW?2 files upon exposing them as disks to VMs. We modified QEMU to
not do so.

Linux tries storing disk metadata and data in memory to avoid disk 1O for performance, in
the page cache. (See $ top’s output.) The page cache can be flushed using this command:
(as root)# echo 3 > /proc/sys/vm/drop_caches
From the behaviour of this command, it appears that directory metadata is not cleared. (Some
parts corresponding to open files cannot be cleared.) We used -o sync in mounting these
partitions, and observed that file contents are read and cached upon the first read usually.
Regular file contents are always observed as updated by the writer after dropping the cache.

4.2 Disallowing Allocations to Selected Block Groups

We attempted to assign block group 1 to the snapshot and the remaining block groups to the
base image for modifications.

For simplicity, we used a disk partition without a journal and copies of the superblock.
(mkfs.ext4 -0 “has_journal,sparse_super2 -E num_backup_sb=0. See mke2fs.conf (5)).

4.2.1 Blocking Writes at the QEMU layer

Typically, if a write fails, the filesystem attempts to write the same data to a different sector.
Relying on this filesystem feature, we blocked writes to the designated block groups at the
QEMU block layer.

This did not work, as the files did not persist through a remount. Lengthy error messages
are printed to the console.

4.2.2 Filling the Block Bitmap

Our first attempt was to present a modified view to the filesystem in which no blocks were
available for writes. This can be done in the function ext4_read_block_bitmap_nowait().
Similar changes need to be made in the inode bitmap. This causes the (solvable) issue that
upon unmount, the all-ones bitmap is flushed back to disk from the page cache. We did not
test this extensively as we moved on to modifying EXT4’s block allocation (next section).

4.2.3 Modifying Block and Inode Allocation Helpers

Determining a file’s ownership: As mentioned earlier, a directory needs to be reserved for the
child’s data. We assume this is done before the child’s BGs are dirtied, ie when creating the
partition. Under this assumption, the residency of an inode (within the family of owned BGs
or not) is the same as that of its contents. Thus, checking either the inode or any data block of
a file is sufficient to determine the effective owner. We made the following changes:

e ext4_mb_regular_allocator, the multi-block allocator function calls a helper,
ext4_mb_good_group_nolock to determine if a block group has sufficient free space. We
modified this function to ignore non-owned block groups.

e The function __ext4_new_inode allocates inodes from the pool of unused inodes. We
modified it to ignore non-owned block groups.

o To disallow writes to non-owned files/directories, we modified ext4_file_open. For files
opened in write mode, the inode number is checked to determine ownership and allow/stop
writes. The inode of the parent directory is also checked, as files cannont be created. This
function is EXT4’s interface to the VFS and is called even if the file and its metadata are
in memory.

o At the QEMU block layer, writes to the corresponding BGs can be disallowed. However,
one would need to account for the superblock separately. We were able to isolate writes
without enabling such filtering.

o To ease debugging with gdb, we made EXT4 a part of the kernel image instead of a
loadable module (and incurred higher build times).

This approach succeeds in stopping illegal writes and allocating blocks only from permitted
BGs. However, we were not able to stop illegal file creation. File creation happens before
ext4_file_open() is called, and needs to be dealt with separately.

Figures 1, 2 and 3 verify our changes to the allocator.

4.2.4 Concurrency and Page Cache

Under the above approach, directory contents and file contents are usually loaded only on the
first access. Updates in the parent image done after the first read are not visible immediately.

Group

Group

Graup

Group

Graup

| tail -19 | head -18

Figure 1: Base Image: Second block group is not used even if others are full

CEEroup-c

gts 1.4

110
||||||'

Figure 2: Snapshot/child Image: Blocks and inodes are allocated from the second BG only.

filefi
dout

for 1 in {
ata" » child_dirsfilesi

Figure 3: Illegal writes in the snapshot are stopped and legal writes are allowed

Empirically, clearing the page cache (described earlier) refreshes file contents but not direc-
tory entries. A complete remount is needed to refresh directory entries. Thus, this arrangement
would not perform if data is being shared dynamically.

4.2.5 DPossible Extensions

o The base image can use the child-owned regions as well, if it maintains similar isolation.

o Rather than reserving certain block groups, the child’s view can be modified to include
some block groups not present in the parent. This can save space and simplify the design.

o If one binds certain directories to a BG(s) such that all directory contents wil be within
those BGs, that increases the granularity of sharing to a directory (from a block) and can
allow the child and parent to have separate contents/views of a directory.

	Introduction
	QCOW2 Disk Images - Copy-on-Write VM Clones
	See-through Base Images

	Current Solutions and Limitations
	Filesystem Consistency Requirements in EXT4
	Consistency Issues in EXT4
	Overview of Limitations
	Alternate Solutions: Partitioning the Disk
	Alternate Solutions: Network Filesystem

	Disallowing Writes to Selected Block Groups
	EXT4 Block Groups
	Restricting Writes to Designated Block Groups

	Results and Observations
	Partitioning the Disk Image
	Disallowing Allocations to Selected Block Groups
	Blocking Writes at the QEMU layer
	Filling the Block Bitmap
	Modifying Block and Inode Allocation Helpers
	Concurrency and Page Cache
	Possible Extensions

