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ABSTRACT
We study the performance of the Metropolis algorithm for
the problem of finding a code word of weight less than or
equal to M , given a generator matrix of an [n, k]-binary
linear code. The algorithm uses the set Sk of all k × k in-
vertible matrices as its search space where two elements are
considered adjacent if one can be obtained from the other via
an elementary row operation (i.e by adding one row to an-
other or by swapping two rows.) We prove that the Markov
chains associated with the Metropolis algorithm mix rapidly
for suitable choices of the temperature parameter T . We ran
the Metropolis algorithm for a number of codes and found
that the algorithm performed very well in comparison to
previously known experimental results.

Categories and Subject Descriptors
G.1.6 [Optimization]: Simulated annealing; G.3 [Probability
and Statistics]: Probabilistic algorithms (including Monte
Carlo); H.1.1 [Systems & Information Theory]: Infor-
mation Theory

General Terms
Theory, Algorithms

Keywords
Metropolis Algorithm; Minimum weight code word; search
space; conductance; rapid mixing of Markov chain

1. INTRODUCTION
An [n, k] binary linear code is a k-dimensional subspace

of the vector space of n-dimensional binary vectors, its code
words are the elements of the subspace, and a minimum
weight code word of such a code is a non-zero code word
with minimum number of 1’s. (We provide the formal defi-
nitions in the next Section). Such a code can be succinctly
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presented by providing a basis of the k-dimensional sub-
space. The minimum weight code word problem requires
one to find a minimum weight code word, given a basis of the
code. This problem is important for several reasons: a min-
imum weight code word is a measure of the error correction
capability of the code [9], also, codes with large minimum
weight code words have applications in diverse areas such as
cryptography [18, 17, 16], pseudorandom generators [1, 11].

The problem has been shown to be NP-hard [6], moreover,
it remains hard even to obtain a constant factor approxima-
tion [10]. It is for this reason that researchers have pro-
posed several probabilistic and heuristic algorithms to find
low weight code words, given a basis of a binary linear code.
Examples are: GA [4, 13, 5], hill climbing [4, 13, 5], tabu
search [8], and ACO [7].

We study in this paper the efficacy of the Metropolis algo-
rithm for solving the problem. Our Metropolis algorithm for
an [n, k] code uses the set of all k×k invertible binary matri-
ces as its search space set. Two such elements are considered
neighbours if one can be obtained from the other by an el-
ementary row operation. We prove that the search space
graph has large magnification and use this result to prove
that the family of Markov chains, as defined by the Metropo-
lis algorithm on an input instance, has a large conductance.
It is known that [21] the Metropolis algorithm solves a com-
binatorial optimization problem like ours in polynomial time
if and only if (1) the associated Markov chain family has high
conductance (2) the probability of the favorable event in the
stationary distribution is high. As our Metropolis algorithm
tries to find a code word of weight less than or equal to M ,
where M is given as an input parameter, the algorithm will
be efficient, in view of the conductance result, if the prob-
ability pM of getting a code word of weight M is high in
the stationary distribution. A good bound for pM is diffi-
cult to estimate, this quantity closely related to the weight
distribution of the binary linear codes. Therefore, to un-
derstand how well the Metropolis algorithm works for this
problem, we experiment with a few codes. The codes that
we use for our experiments are certain BCH codes and full
dimensional codes of dimensions 50 and 100. We found that
the Metropolis algorithm performed well for several BCH
(Bose, Chaudhuri and Hocquenghem) codes [20], even ob-
taining the minimum in certain cases. For the full dimen-
sional case, where the minimum weight is 1, the algorithm
was able to converge quickly to a small weight code word.
This compares favorably with previously known experimen-



tal results on BCH codes which used certain other search
heuristics. Details are given in Section 5.

2. PRELIMINARIES

Definition 2.1. (Binary Linear Codes) An [n, k]-binary
linear code is a k-dimensional vector subspace C of the n-
dimensional vector space Fn2 over the finite field F2. The
parameter n is called the length and k the dimension of the
code C.

A binary linear [n, k]-code C can be succinctly described
by giving a basis for it. This is typically done by giving a
generator matrix for the code C.

Definition 2.2. (Generator Matrix) A generator ma-
trix for an [n, k] linear code C is a k × n matrix G whose
rows form a basis for C.

This is called a generator matrix because a vector is a code
word if and only if it is a linear combination of the rows of
the generator matrix.

Definition 2.3. (Elementary row operations) For a
k × n matrix G over the field F2 with rows gr, 1 ≤ r ≤ k,
the following are the elementary row operations for distinct
i and j.

1. gi ← gi + gj (the j-th row is added to the i-th row),

2. gi ↔ gj (rows i and j are interchanged).

Definition 2.4. (Minimum weight code word) For
a code C, a non-zero vector v ∈ C of minimum Hamming
weight is called a minimum weight code word. The minimum
weight code word problem is to compute, given a generator
matrix G of an [n, k]-code C, a minimum weight code word
of C.

The decision version of the minimum weight code word
problem can be stated as follows.

Definition 2.5. (Decision version) Given G, a gener-
ator matrix for C and an integer M , decide whether there
exists a non-zero vector in C of weight M or less.

3. SEARCH SPACE
In this section, we define the search space which we use in

our Metropolis algorithm. Our search space is similar to the
search space defined for shortest lattice vector problem [2,
3]. The algorithm attempts to construct a generator matrix
which has a minimum weight code word as one of its rows.
It is easy to see that such a generator matrix always exists.

Fact 3.1. [12] Let G be a generator matrix of the [n, k]
binary linear code C, then G′ is a generator matrix for C
if and only if there is a k × k invertible matrix U such that
G′ = UG.

Consequently, for any input generator matrix G, the set
of all matrices UG as U varies over k×k invertible matrices
is precisely the set of all generator matrices of C. Therefore,
the search space of our Metropolis algorithm will be the set
Sk of all k × k invertible matrices and given a generator
matrix G of C as input, our goal is to find a matrix U in

Sk such that UG contains a minimum weight code word as
one of its rows. A natural neighbourhood structure on the
search spaces Sk can be defined in terms of elementary row
operations on matrices in Sk. We now formally define our
search space.

Definition 3.2. (Search Space) Given an [n, k]-code
C via a generator matrix G we define the search space as
follows.

Elements: The elements of the search space Sk are the k×k
invertible matrices U over GF (2).

Neighbourhood: For a matrix U in Sk, the set N(U) of
neighbours consists of matrices V that can be obtained
from U by any of the following elementary operations:

1. add the j-th row to the i-th row,

2. swap the i-th and j-th rows,

where i and j are two distinct rows of U . This makes
the underlying graph a D-regular graph where D is
k(k − 1).

Cost: For an element U of the search space, the cost c(U)
is defined to be wα where w is the minimum of the
Hamming weights of rows of UG and α is a parameter
which takes positive values.

Convention: The elementary row operations that we de-
fined above can be carried out on a matrix A by post mul-
tiplying by a suitable elementary matrix say E. We often
identify a row operation with the corresponding elementary
matrix. Note that |Sk| equal to number of binary k × k in-

vertible matrices which is less than 2k
2

, the total number of
k × k binary matrices.

We now show that the diameter of the search space graph
is bounded by a polynomial in k.

Proposition 3.3. For any two matrices U and V in the
search space Sk there is a path between them in the search
space graph of length at most k2.

Proof. The matrix V −1U is invertible as both U and
V are. Therefore, V −1U can be transformed to the k × k
identity matrix Ik by Gauss-Jordan elimination which uses
a sequence of elementary row operations. This is done in k-
stages one for each column. In the i-th stage, we transform
the i-th column to the vector ei which has a 1 at the i-th
position and 0’s elsewhere. Each of these stages can be car-
ried out using at most k elementary row operations (more
details in the proof of Lemma 3.4) and thus using ` ≤ k2

elementary operations, V −1U gets transformed into Ik. Let
E1, . . . , E` be the elementary matrices associated with the
elementary row operations described above. Consequently,
the product V −1UE1 · · ·E` is the identity matrix Ik. There-
fore, V is the product UE1 · · ·E`. The sequence of matrices
Ui = U ·

∏i
j=1Ei for 0 ≤ i ≤ ` gives the path from matrix

U = U0 to V = U`.

We prove next that our search space graph has large mag-
nification. This will be used later to show that the family
of Markov chains as defined by our Metropolis algorithm
mixes rapidly. We now recall the definition of magnifica-
tion [23]. Let G = (V,E) be an undirected graph. Let S be
a non-empty subset of V and let S denote its complement,



i.e. V \ S. Let E(S, S) denote the set of edges that go out
of S. The magnification µ(S) is defined as

µ(S) =
|E(S, S)|
|S| .

The magnification for the graph G (also called as edge
expansion), denoted by µ(G), is the minimum µ(S) where
the minimization is done over all non-empty subsets S of V

of cardinality at most |V |
2

.

Lemma 3.4. A search space graph for minimum weight
code word problem has magnification at least 1

2
.

Proof. We use the canonical path method [22] to lower-
bound the magnification of the search graph. For this, we
first canonize the Gauss-Jordan elimination procedure de-
scribed in the proof of Proposition 3.3 that transforms an
arbitrary k × k invertible matrix A to identity matrix. The
procedure works in k-stages. The i-th stage starts with a
matrix Ai−1 whose r-th column, for any r < i is the vector
er, the vector which has a 1 at r-th entry and 0 every where
else. In the i-th stage, we convert the i-th column into ei
using elementary row operations. The stage begins with a
swap of i-th row if and only if the (i, i)-th entry of Ai−1 is
a 0. In such a case, we choose to swap the i-th row and
the j-th row, where j is the smallest integer greater than i
such that the (j, i)-th entry is 1. There is always one such j
because the matrix Ai−1 is invertible. Having ensured that
the (i, i)-th entry is 1, we convert each 1 in the i-th column,
except the (i, i)-th entry to 0 by adding the i-th row. This
gives us the matrix Ai. The elimination process ends when
i is k and the resulting matrix Ak becomes identity. Let us
call the sequence E1, . . . , E` of elementary operations used
to reach the identity matrix from A in the above process
as the canonical Gauss-Jordan sequence associated with the
matrix A.

We show that canonical Gauss-Jordan sequences satisfy
the following properties.

Claim 3.4.1. 1. There is a unique canonical Gauss-
Jordan sequence associated with a given k × k invert-
ible matrix-A. Moreover, two distinct matrices A and
A′ in Sk will have distinct canonical Gauss-Jordan se-
quences.

2. The number of distinct canonical Gauss-Jordan sequences
is equal to the cardinality of the search spaces Sk.

3. If E1, . . . , E` is the canonical Gauss-Jordan sequence
of some k×k matrix-A, then no two operators Er and
Es in the sequence are the same.

Proof. The way in which we have canonize the Gauss-
Jordan elimination procedure above, it is clear that there is
a unique canonical Gauss-Jordan sequence associated with
a given k × k invertible matrix A. Now suppose that two
distinct matrices A and A′ in Sk have the same canonical
Gauss-Jordan sequence, i.eAE1 . . . E` = I andA′E1 . . . E` =
I which implies A = A′ = IE−1

` . . . E−1
1 which is a contra-

diction. Hence two distinct invertible matrices A and A′

will have distinct canonical Gauss-Jordan sequences. This
completes the proof of part 1 of our claim. To prove part 2
notice that the number of distinct canonical Gauss-Jordan
sequences is equal to the number of invertible matrices in
Sk which is equal to |Sk|. Finally to prove part 3, consider

any elementary row operation that occurs in the canonical
Gauss-Jordan sequence. Either it is a row addition or a swap
of two rows. It is clear that all the row additions are distinct
as we add the row i only in the i-th stage of the procedure
and that too to distinct rows in the i-th stage. A swap is
used only to convert a 0-diagonal entry to 1. Consider such
swap between rows i and j where j > i. This swap can hap-
pen only at the i-th stage and not at the j-th stage because
to convert a 0 in the diagonal we use a row that is lower
down in the matrix. This completes the proof of part 3.

We now define the canonical path between two search
graph elements U and V as follows: Let E1, . . . , E` be the
canonical Gauss-Jordan sequence associated with the matrix
V −1U . Then the canonical path from U to V is the sequence
U = U0, . . . , U` = V where Ui = U ·

∏i
j=1Ei. Given U and

V , by a slight abuse of notation, the canonical Gauss-Jordan
sequence associated with V −1U is also called the canonical
Gauss-Jordan sequence associated with the canonical path1

from U to V .
Fix two neighbours C and D in the search space Sk. We

now estimate the number of canonical paths that go through
the edge (C,D).

Claim 3.4.2. For two neighbours C and D in Sk consider
any canonical Gauss-Jordan sequence E1, . . . , E` containing
the matrix C−1D. There is a unique canonical path through
the edge (C,D) that has E1, . . . , E` as its associated canon-
ical Gauss-Jordan sequence.

Proof. Consider any canonical Gauss-Jordan sequence
E1, . . . , E` such that Er = C−1D for some 1 ≤ r ≤ `. By
Claim 3.4.1 all operators Es, s 6= r, are different from C−1D.
Therefore, the only canonical path that passes through the
edge (C,D) and has E1, . . . , E` as its associated canonical
Gauss-Jordan sequence starts at U = CE−1

r−1 . . . E
−1
1 and

ends at V = DEr+1 . . . E`.

We have the following consequence of the above claim.

Claim 3.4.3. Let C and D be neighbours in the search
space Sk. Then the number of canonical paths passing through
the edge (C,D) is bounded by the total number of points in
the search space Sk.

This is because such a canonical path is uniquely deter-
mined by its canonical Gauss-Jordan sequence. The number
of distinct Gauss-Jordan sequences is equal to the number
of k× k invertible matrices which is the number of elements
of the search space.

We now prove the bound on the magnification as given
in the statement of the Lemma 3.4. Consider any non-

empty subset S such that |S| ≤ |Sk|
2

. There are |S| × |S|
canonical paths that go from S to S. Each of these paths
passes through one of the edges in E(S, S). As no edge
can have more than |Sk| canonical paths passing through it
by Claim 3.4.3, we have |Sk| × |E(S, S)| ≥ |S| × |S|. As

|S| ≥ |Sk|
2

we have |Sk| × |E(S, S)| ≥ |S| × |Sk|
2

. Therefore,

the magnification µ(S) = |E(S,S)|
|S| is greater than 1/2 for all

1We note that two different canonical paths may have the
same associated Gauss-Jordan sequences: The canonical
paths from U to V and from U ′ to V ′ will have the same
associated canonical Gauss-Jordan sequence if and only if
U ′ = AU and V ′ = AV for some invertible k × k matrix A



S of cardinality at most |Sk|/2. Since magnification µk of
the search space Sk is the minimum over all such µ(S)’s, we
have µk ≥ 1

2
. This completes the proof of Lemma 3.4.

4. MIXING TIME ANALYSIS
We use the Metropolis algorithm for the minimum weight

code word problem. On a given input instanceG, the Metropo-
lis algorithm runs a Markov chain: the state space of the
chain is the set Sk of k× k invertible matrices, which is the
search space of our problem. Recall that the cost c(U) asso-
ciated with a search space element U , a matrix, is wα where
w is the minimum Hamming weight of the rows of UG. The
Markov chain makes use of this cost function to define a ran-
dom walk biased towards code words of lower weights. We
now define the transition probabilities pUV , the probability
of making a transition to V given that the chain is at U .

pUV =


0 if U 6= V, V /∈ N(U)
1

2D
·min

(
1, exp

(
c(U)−c(V )

T

))
if V ∈ N(U)

1−
∑
W 6=U pUW if U = V.

In the above definition T stands for the temperature pa-
rameter, which remains fixed for the algorithm, and D is
the degree of the underlying regular graph Sk. Recall that
D is k(k−1). It is well known [19, Chapter: 10.4.1] that the
above Markov chain has the stationary distribution given by

πU =
exp

(
−c(U)
T

)
∑
V ∈Sk

exp
(
−c(V )
T

) .
The complete algorithm (Algorithm 1) is given below:

Algorithm 1 Metropolis Algorithm

1: Input : The generator matrix G of linear code C and
an integer M

2: Output : Matrix U such that UG contains a vector v
with wH(v) ≤M .
Let U be the starting state in the search space as in
Definition 3.2 and c(U) denote its cost.

3: Set BestWeight = c(U), steps=0
4: while BestWeight > M and steps < TSteps

[TSteps denotes Max. No. of steps specified by user]
do

5: Select any one of the neighbour U of V uniformly at
random by performing one of the elementary
operations as defined in Definition 3.2

6: Set U = V with probability

α =
1

2
.min

exp
(
−c(V )
T

)
exp

(
−c(U)
T

) , 1


7: if BestWeight > c(U) then
8: BestWeight = c(U)
9: end if

10: steps = steps+ 1;
11: end while

We now show that the above Markov chain has large con-
ductance for an appropriate choice of the temperature pa-
rameter T .

Definition 4.1. (Conductance)[23] For any non empty
subset S of states in Sk with non empty complement S, the
conductance φ(S) of S is defined as

φ(S) =
FS
CS

where

CS =
∑
U∈S

πU

FS =
∑

U∈S,V ∈S

pUV πU

The conductance φk of the Markov chain is defined to be

φk = min
S:CS≤ 1

2

φ(S)

It is easy to see that FS = FS for all such sets S. This im-

plies that φ(S) = φ(S) CS
1−CS

(since CS +CS =
∑
U∈Sk

πU =

1 which implies CS = 1−CS), so we may equivalently write

φk = min
S
{max(φ(S), φ(S))}

Theorem 4.2. The conductance φk of the Markov chain
associated with our Metropolis algorithm for solving the min-
imum code word problem for an [n, k]-code satisfies

φk ≥
1

4D exp
(

2(nα−1)
T

) ,
where T is the temperature parameter and α is the exponent
used in the cost function. In particular, when T = Ω(nα)
the conductance is Ω

(
1
D

)
, where D-denotes the number of

neighbours for a node in the search graph.

Proof. Consider any non-empty subset S of Sk such that

CS ≤ 1
2
. There are two possibilities: either |S| ≤ |Sk|

2
or

|S| > |Sk|
2

. We handle these cases separately.

First assume that |S| ≤ |Sk|
2

. The flow out of S is bounded
as follows.

FS =
∑

U∈S,V ∈S

pUV πU ≥ min(pUV ) min(πU )|E(S, S)|

By Lemma 3.4, our search graph has magnification at
least 1/2 and hence |E(S, S)| ≥ 1

2
|S|. As a result we have:

FS ≥ min(pUV ) min(πU )
|S|
2
. (1)

We know that:

πU =
exp

(
−c(U)
T

)
∑
V ∈Sk

exp
(
−c(V )
T

) =
exp

(
−c(U)
T

)
Z

.

where Z is the partition function
∑
V ∈Sk

exp
(
−c(V )
T

)
. Let

cmax and cmin denote the maxima and minima of the cost
function c(.) respectively. Notice that cmax ≤ nα and cmin ≥
1. Therefore, for any element U of the search space, its
stationary probability πU is bounded above and below as
follows.

exp
(
−nα
T

)
Z

≤ πU ≤
exp

(−1
T

)
Z

(2)



Also, the transition probabilities pUV satisfies

pUV ≥
1

2D exp
(
cmax−cmin

T

) ≥ 1

2D exp
(
nα−1
T

) . (3)

From Equations (1),(2) and (3) we obtain

FS ≥
exp

(
−nα
T

)
Z

· 1

2D exp
(
nα−1
T

) · |S|
2

(4)

The capacity CS is bounded as follows:

CS =
∑
U∈S

πU ≤ max(πU ) · |S| =
exp

(−1
T

)
Z

· |S| (5)

Therefore from Equations (4) and (5), the conductance φ(S)
of the subset S is lower bounded as:

φ(S) =
FS
CS
≥ 1

4D exp
(

2(nα−1)
T

) (6)

Now consider the case when |S| > |Sk|
2

. Using Equation

(6) for S, we obtain:

φ(S) ≥ 1

4D exp
(

2(nα−1)
T

) .
Since CS ≥ 1

2
and

C
S

1−C
S
≥ 1, we have:

φ(S) =
CS

1− CS
φ(S) ≥ 1

4D exp
(

2(nα−1)
T

)
Thus, we find that for both the cases, viz., |S| ≤ |Sk|

2
and

|S| > |Sk|
2

,

φ(S) ≥ 1

4D exp
(

2(nα−1)
T

) .
As a result, the conductance φk of the Markov chain is
bounded by

φk ≥
1

4D exp
(

2(nα−1)
T

) .

We use the above conductance result to show that the
Markov chain for the Metropolis algorithm mixes rapidly,
i.e., in time polynomial in n for an input [n, k]-code. Let
P t(U0, .) denote the probability distribution obtained by
running the Markov chain for t steps starting the chain at
U0. As before π denotes the stationary probability distri-
bution. To define mixing time we need the concept of total
variation distance.

Definition 4.3. Total Variation Distance[15] Total
variation distance between two probability distributions P t(U0, .)
and π is defined as:

||P t(U0, .)− π||TV =
1

2
·
∑
V ∈Sk

|P t(U0, V )− π(V )|

The mixing time tmix(ε) of the Markov chain is defined as

tmix(ε) = min{t : ∆(t) ≤ ε},

where ∆(t) = maxU0∈Sk ||P
t(U0, .)−π||TV denotes maximal

variation distance between P t(U0, .) and π as U0 varies over
the elements of the search space Sk[15]. In other words,
independent of the choice of the initial state U0 to start the
chain, if we run the Markov chain for t ≥ tmix(ε) steps,
we have the guarantee that in the resulting distribution,
the probability P t(U0, U) of obtaining the any state U is
bounded above and below as follows.

πU − ε ≤ P t(U0, U) ≤ πU + ε.

A lower bound on the conductance φM of a Markov chain
M translates to an upper bound on the mixing time as fol-
lows [23, Equation (2.13), page 58].

tMmix(ε) ≤ 2

φ2
M

(
ln ε−1 + lnπ−1

min

)
. (7)

where πmin denotes the smallest of the stationary probabil-
ities for the chain M and tMmix(ε) denotes its mixing time.
Using Theorem 4.2 we obtain the following bound on mixing
time.

Corollary 4.4. The mixing time tmix(ε), of the Markov
chain associated with our Metropolis algorithm on an input
[n, k]-code satisfies:

tmix(ε) ≤ 32D2 exp

(
4(nα − 1)

T

)
·(k2 ln 2+

nα − 1

T
+ln ε−1),

where D is the number of neighbours of any search point
which we know to be k(k − 1).

In particular, when the temperature parameter T is Ω(nα),
the mixing time tmix(ε) is O(k6 + k4 ln ε−1).

Proof. We first derive a bound on the probability πmin

as follows. For any element U , we have

πU =
exp

(
−c(U)
T

)
∑
V ∈Sk

exp
(
−c(V )
T

) .
Using the bound 1 ≤ c(U) ≤ nα for the cost function c(.),
we obtain the following.

πU ≥
exp

(
−nα
T

)
∑
V ∈Sk

exp
(−1
T

) =
1

exp
(
nα−1
T

)
|Sk|

.

The set Sk is the set of all k × k invertible matrices and

hence |Sk| ≤ 2k
2

. Thus:

πmin ≥
1

2k2 exp
(
nα−1
T

) . (8)

Therefore, lnπ−1
min ≤ k

2 ln 2 + nα−1
T

.
The result follows from the above, Equation (7), and the

bound on conductance given in Theorem 4.2.

Given the generator matrix G of an [n, k]-code C and a
bound M , our task is to find a code word of Hamming weight
M or less if it exists. Every run of the Metropolis algorithm
for tmix(ε) steps provides us with a sample U with probabil-
ity at least πU − ε. By taking the row of minimum weight
in UG, we get a sample code word x of C. Let pM be the
probability that the sample code word x is of weight less
than or equal to M . Then we have:

pM ≥
∑

U :wt(UG)≤M

(πU − ε),



where wt(UG) denotes the minimum of the Hamming weights
of the rows of the matrix UG.

We take S samples x1, . . . ,xS obtained through S runs of
the Metropolis algorithm each for tmix(ε) time and choose
the one with the least Hamming weight. The probability
that we fail to find a code word of weight M or less is upper
bounded by (1−pM )S . Therefore, to obtain the such a code

word with probability at least δ, we need S ≥ log(1−δ)
log(1−pM )

.

Let NM (G) denote the number of k×k invertible matrices
U such that UG has a row of Hamming weight less than or
equal to M . Choosing ε = 1

2
· πmin, we get pM to be greater

than 1
2
· NM (G) · πmin. Further, setting the temperature

T to nα we obtain, the mixing time tmix(ε) to be O(k6)
(Corollary 4.4) and πmin to be 1

e2k
2 (Equation (8)). Using

these values, we have a bound on the total time ttotal(δ,M)
as

ttotal(δ,M) = S · tmix(ε) = O

(
k6 · log(1− δ)

log(1− pM )

)
.

where pM is O
(
NM (G)

2k
2

)
.

For a fixed code C if G and G′ are two generator matri-
ces of C we have G′ = UG for some U in Sk. Therefore,
NM (G) = NM (G′). As a result NM (G) is an invariant of
the code C. We do not have an analytical expression for it.
It is closely related to the well studied weight distribution
function of the code.

The above discussions show that our algorithm will be
able to find a code word of weight M or less in polynomial
time if NM (G) is large at most a polynomial factor away

from 2k
2

. Since we do not have a closed form expression for
NM (G) for most codes, we run experiments to see how the
algorithm performs on typical binary linear codes.

5. EXPERIMENTAL RESULTS
In the previous section, we proved that for the cost func-

tion c(U) = wα, the family of Markov chains associated with
the Metropolis algorithm is guaranteed to mix rapidly if we
set the temperature T as nα. To understand the perfor-
mance as α varies, we performed experiments on two BCH
codes BCH(511,58,183) and BCH(511,184,91) and the triv-
ial [50, 50, 1] and [100, 100, 1] codes with α set as 1/2, 1, 2, 3,
5 and 7. We chose the trivial codes because their minimum
weight code words are known: they are code words with a
single 1. For BCH(n, k, d) codes d stands for the design dis-
tance (see Section 7.3 in [14]) and it lower bounds the actual
minimum weights. The performance is plotted in Figure 1
in which we observe that the performance is best for α = 1.
With α set to 1, we tested our algorithm on the set of 20 test
cases given in six previous publications [4, 13, 8, 5, 7, 24].
The heuristic search algorithms used in these publications
are Wallis’s GA [4, 13], Askali’s GA [4, 5], Tabu-search [4,
13, 8, 5], Hill Climbing [4, 13, 5], Ant colony optimization [7]
and simulated annealing[7, 24]. Each of these heuristics use
the same set, namely, the set of all length k binary words,
as their search space.

We report the comparison of our algorithm against the al-
gorithms cited above in Table 1, where the last two columns
report the performance of our algorithm. The last but one
column is for the case when our algorithm is run for k2 steps
and the best of 5000 samples is chosen. In the last column,
we do the same with 500-steps, taking the best of 2000 sam-

ples. The other columns in the Table 1 give the performance
of the previously studied algorithms. Based on the result, it
can be seen that our Metropolis algorithm outperforms hill
climbing, tabu search, Wallis’s genetic algorithm and ant
colony optimization [4, 13, 8, 5, 7] in all the twenty cases
considered. When compared to the Askali’s genetic algo-
rithm [5, 4] on the twenty test cases, the performance was
same in 9 cases, the genetic algorithm outperforms our al-
gorithm in 4 test cases and our algorithm outperforms the
genetic algorithm in 7 test cases.

We also compared the performance of our algorithm with
that of the simulated annealing as reported in [7]. The pa-
per [7] considered two BCH codes namely BCH(127, 64, 21)
and BCH(255, 91, 51) and obtained code words of weight 27
and 75 respectively. In comparison, our algorithm was able
to attain the minimum weight as 21 and 55 respectively.

6. CONCLUSION
In this paper, we studied the performance of the Metropo-

lis algorithm for the minimum weight code word problem for
binary linear codes. For an [n, k]-code, the algorithm uses a
search space consisting of k × k invertible matrices and two
such matrices are considered neighbours if one can be ob-
tained from the other by an elementary row operation. We
prove that the magnification of the search graph is large.
Since this is the property of the search space, other ran-
dom search heuristics can also possibly use the same search
space profitably. Using the magnification result, we also
prove that the Markov chain associated with a problem in-
stance has large conductance, which is a necessary condi-
tion for the Metropolis algorithm to preform well on that
instance. As simulated annealing (SA) has a close connec-
tion to the Metropolis algorithm, it would be instructive to
try SA for this problem on our search space. We performed
experiments to see how well does our algorithm perform on
certain codes as against previously studied heuristics for the
problem. The experimental results show that our algorithm
performs quite well, it out-performs several previous heuris-
tic algorithms used for this problem.
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