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Abstract. We give a deterministic polynomial-time algorithm to check
whether the Galois group Gal (f) of an input polynomial f(X) ∈ Q[X] is
nilpotent: the running time is polynomial in size (f). Also, we generalize
the Landau-Miller solvability test to an algorithm that tests if Gal (f)
is in Γd: this algorithm runs in time polynomial in size (f) and nd and,
moreover, if Gal (f) ∈ Γd it computes all the prime factors of #Gal (f).

1 Introduction

Computing the Galois group of a polynomial is a fundamental problem in al-
gorithmic number theory. Asymptotically, the best known algorithm is due to
Landau [3]: on input f(X), it takes time polynomial in size (f) and the order
of its Galois group Gal (f). If f(X) has degree n then Gal (f) can have n! el-
ements. Thus, Landau’s algorithm takes time exponential in input size. It is a
long standing open problem if there is an asymptotically faster algorithm for
computing Gal (f). Lenstra’s survey [6] discusses this and related problems.

A different kind of problem is to test for a given f(x) if Gal (f) satisfies a
specific property without explicitly computing it. Galois’s seminal work showing
f(X) is solvable by radicals if and only if Gal (f) is solvable is a classic example.
Landau and Miller [4] gave a remarkable polynomial-time algorithm for testing
solvability of the Galois group without computing the Galois group.

1.1 The results of this article

Our main result is a deterministic polynomial-time algorithm for testing if Gal (f)
is nilpotent. Although nilpotent groups are a proper subclass of solvable groups,
the Landau-Miller solvability test does not give a nilpotence test. Basically, the
Landau-Miller test is a method of testing that all composition factors of Gal (f)
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are abelian, which tests solvability. Nilpotence however is a more “global” prop-
erty, in the sense that it cannot be inferred by properties of the composition
factors alone.

We note here that nilpotence testing of Galois groups has been addressed
by other researchers with the goal of developing good practical algorithms. For
example in [2] an algorithm for nilpotence testing is given which takes time
polynomial in size (f) and #Gal (f). However, ours is the first algorithm that is
provably polynomial time, i.e. runs in time polynomial in size (f), on all inputs.

Next, we show that the Landau-Miller solvability test can be extended to a
polynomial-time algorithm for checking, given f ∈ Q[X], if Gal (f) is in Γd for
constant d. A group G is in Γd if there is a composition series G = G0B. . .BGt =
{1} such that each nonabelian composition factor Gi/Gi+1 is isomorphic to a
subgroup of Sd. The class Γd often arises in permutation group algorithms (see
e.g. [7]). Moreover, if Gal (f) ∈ Γd, the prime factors of #Gal (f) can be found
in polynomial time.

1.2 Galois theory overview

We quickly recall some Galois theory (see, e.g. [5] for details). Let L and K be
fields. If L ⊃ K, we say that L is an extension of K and denote it by L/K. If
L/K then L is a vector space over K and by the degree of L/K, denoted by
[L : K], we mean its dimension. An extension L/K is finite if its degree [L : K]
is finite. If L/M and M/K are finite extensions then [L : K] = [L : M ].[M : K].
The polynomial ring K[X] is a unique factorisation domain: every polynomial
can be uniquely (up to scalars) written as a product of irreducible polynomials.
Let L/K be an extension. An α ∈ L is algebraic over K if f(α) = 0 for some
f(X) ∈ K[X]. For α algebraic over K, the minimal polynomial of α over K is
the unique monic polynomial µα[K](X) of least degree in K[X] for which α is a
root. We write µα(X) for µα[K](X) when K is understood. Elements α, β ∈ L
are conjugates over K if they have the same minimal polynomial over K. The
smallest subfield of L containing K and α is denoted by K(α).

The splitting field Kf of f ∈ K[X] is the smallest extension of K contain-
ing all the roots of f . A finite extension L/K is normal if for all irreducible
polynomials f(X) ∈ K[X], either f(X) splits or has no root in L. Any normal
extension over K is the splitting field of some polynomial in K[X]. An extension
L/K is separable if for all irreducible polynomials f(X) ∈ K[X] there are no
multiple roots in L. A normal and separable finite extension L/K is a Galois
extension.

The Galois group Gal (L/K) of L/K is the subgroup of automorphisms σ of
L that leaves K fixed, i.e. σ(α) = α for all α ∈ K. The Galois group Gal (f) of
f ∈ K[X] is Gal (Kf/K). For a subgroup G of automorphisms of L, the fixed
field LG is the largest subfield of L fixed by G. We now state the fundamental
theorem of Galois.

Theorem 1. [5, Theorem 1.1, Chapter VI] Let L/K be a Galois extension with
Galois group G. There is a one-to-one correspondence between subfields E of L
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containing K and subgroups H of G, given by E 
 LH . The Galois group of
Gal (L/E) is H and E/K is a Galois extension if and only if H is a normal
subgroup of G. If H is a normal subgroup of G and E = LH then Gal (E/K) is
isomorphic to the quotient group G/H.

1.3 Presenting algebraic numbers, number fields and Galois groups

The algorithms we describe take objects like algebraic numbers, number fields
etc. as input. We define sizes of these objects. Integers are encoded in binary. A
rational r is given by coprime integers a, b such that r = a/b. Thus, size (r) is
size (a) + size (b). A polynomial T (X) = a0 + . . . + anX

n ∈ Q[X] is given by a
list of its coefficients. Thus, size (T ) is defined as

∑
size (ai).

A number field is a finite extension of Q. Let K/Q be a number field of degree
n. By the primitive element theorem [5, Theorem 4.6, Chapter V], there is an
algebraic number η ∈ K such that K = Q(η). Such an element is a primitive
element of K/Q and its minimal polynomial is a primitive polynomial. Let µη(X)
be the minimal polynomial of η over Q. Then the field K can be written as the
quotient K = Q[X]/µη(X). Thus K can be presented by giving a primitive
polynomial for K/Q. We can assume that η is an algebraic integer and hence its
minimal polynomial µη(X) has integer coefficients [5, Proposition 1.1, Chapter
VII]. When we say that an algorithm takes a number field K as input we mean
that it takes a primitive polynomial µη(X) for K as input. Thus the input size
for K, which we denote by size (K), is defined to be size (µη).

Suppose K = Q(η) is presented by µη(X). Notice that each α ∈ K can be
expressed as α = Aα(η) for a unique polynomial Aα(X) ∈ Q[X] of degree less
than n. By size (α) we mean size (Aα(X)). Note that the size of α ∈ K depends
on the primitive element η ∈ K. Now, for a polynomial f(X) = a0 + . . .+amX

m

in K[X] we define size (f) to be
∑

size (ai).
Let f(X) ∈ Q[X] of degree n. For an algorithm purporting to compute

Gal (f), one possibility is that it outputs the complete multiplication table for
Gal (f). However, this could be exponential in size (f) as Gal (f) can be as
large as n!. A succinct presentation of Gal (f) is as a permutation group acting
on the roots of f since elements of Gal (f) permute the roots of f and are
completely determined by their action on the roots of f . Thus, by numbering
the roots of f , we can consider Gal (f) as a subgroup of the symmetric group
Sn (note here that Gal (f) is determined only up to conjugacy as the numbering
of the roots is arbitrary). Since any subgroup of Sn has a generator set of size
n − 1 (see e.g. [8]), we can present Gal (f) in size polynomial in n. Thus, by
computing Gal (f) we mean finding a small generator set for it as a subgroup of
Sn. Determining Gal (f) as a subgroup of Sn is a reasonable way of describing
the output. Algorithmically, we can answer several natural questions about a
subgroup G of Sn given by generator set in polynomial time. E.g. testing if G is
solvable, finding a composition series for G etc. [8].

Previous complexity results As mentioned, the best known algorithm for com-
puting the Galois group of a polynomial is due to Landau [3].
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Theorem 2 (Landau). There is a deterministic algorithm that takes as input a
number field K, a polynomial f(X) ∈ K[X] and a positive integer b in unary, and
in time bounded by size (f), size (K) and b, decides if Gal (Kf/K) has at most
b elements, and if so computes Gal (Kf/K) by finding the entire multiplication
table of Gal (Kf/K) (and hence also by giving the generating set of Gal (Kf/K)
as a permutation group on the roots of f(X)).

The algorithm first computes a primitive element θ of Kf . Determining
Gal (f) amounts to finding the action of the automorphisms on θ. Subsequently,
Landau and Miller [4] gave their polynomial-time solvability test.

Theorem 3 (Landau-Miller). Given f(X) ∈ Q[X] there is a deterministic
polynomial-time algorithm for testing if Gal (f) is solvable.

2 Preliminaries

We recall some permutation group theory from Wielandt’s book [9]. Let Ω be
a finite set. The symmetric group Sym (Ω) is the group of all permutations on
Ω. By a permutation group on Ω we mean a subgroup of Sym (Ω). For α ∈ Ω
and g ∈ Sym (Ω), let αg denote the image of α under the permutation g. For
A ⊆ Sym (Ω), αA denotes the set {αg : g ∈ A}. In particular, for G ≤ Sym (Ω)
the G-orbit containing α is αG. The G-orbits form a partition of Ω. Given
G ≤ Sym (Ω) by a generating set A and α ∈ Ω, there is a polynomial-time
algorithm to compute αG [8].

For ∆ ⊆ Ω and g ∈ Sym (Ω), ∆g denotes {αg : α ∈ ∆}. The setwise stabilizer
of ∆, i.e. {g ∈ G : ∆g = ∆}, is denoted by G∆. If ∆ is the singleton set {α} we
write Gα instead of G{α}. For any ∆ by G|∆ we mean G∆ restricted to ∆. An
often used result is the orbit-stabilizer formula stated below [9, Theorem 3.2].

Theorem 4 (Orbit-stabilizer formula). Let G be a permutation group on
Sym (Ω) and let α be any element of Ω then the order of the group G is given
by #G = #Gα.#α

G.

A permutation group G on Ω is transitive if there is a single G-orbit. Suppose
G ≤ Sym (Ω) is transitive. Then a non-empty subset ∆ of Ω is a G-block if for
all g ∈ G either ∆g = ∆ or ∆g ∩ ∆ = ∅. For every G, Ω is a block and each
singleton {α} is a block. These are the trivial blocks of G. A transitive group G
is primitive if it has only trivial blocks and it is imprimitive if it has nontrivial
blocks. A G-block ∆ is a maximal subblock of a G-block Σ if ∆ ⊂ Σ and there
is no G-block Υ such that ∆ ⊂ Υ ⊂ Ω. Let ∆ and Σ be two G-blocks. A chain
∆ = ∆0 ⊂ . . . ⊂ ∆t = Σ is a maximal chain of G-blocks between ∆ and Σ if
for all i, ∆i is a maximal subblock of ∆i+1.

For a G-block ∆ and g ∈ G, ∆g is also a G-block such that #∆ = #∆g. Let
∆ and Σ be two G-blocks such that ∆ ⊆ Σ. The ∆-block system of Σ, is the
collection

B (Σ/∆) = {∆g : g ∈ G and ∆g ⊆ Σ}.
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The set B (Σ/∆) is a partition of Σ. It follows that #∆ divides #Σ and by
index of ∆ in Σ, which we denote by [Σ : ∆], we mean #B (Σ/∆) = #Σ

#∆ . We

will use B (∆) to denote B (Ω/∆). We state the connection between blocks and
subgroups [9, Theorem 7.5].

Theorem 5 (Galois correspondence of blocks). Let G ≤ Sym (Ω) be tran-
sitive and α ∈ Ω. For G ≥ H ≥ Gα the orbit ∆ = αH is a G-block and G∆ = H.
The correspondence αH = ∆
 G∆ = H is a one-to-one correspondence between
G-blocks ∆ containing α and subgroups H of G containing Gα. Furthermore for
G-blocks ∆ ⊆ Σ we have [GΣ : G∆] = [Σ : ∆].

Let G ≤ Sym (Ω) be transitive and ∆ and Σ be two G-blocks such that
∆ ⊆ Σ. Let G(Σ/∆) denote the group {g ∈ G : Υ g = Υ for all Υ ∈ B (Σ/∆)}.
We write G∆ for the group G (Ω/∆). For any g ∈ GΣ , since g setwise stabilises
Σ, g permutes the elements of B (Σ/∆). Hence for any Υ ∈ B (Σ/∆) we have

Υ g
−1G(Σ/∆)g = Υ . Thus, G (Σ/∆) is a normal subgroup of GΣ . In particular,

G∆ is a normal subgroup of G.

Remark. The following two lemmata are quite standard in permutation group
theory. For the reader’s convenience we have included short proofs. The following
lemma lists important properties of G∆.

Lemma 1.

1. For a G-block ∆ ⊆ Σ, G (Σ/∆) is the largest normal subgroup of GΣ con-
tained in G∆.

2. Let Σ be G-block then GΣ ↪→
∏
Υ∈B(Σ) G|Υ .

3. Let ∆ be a G-subblock of Σ then GΣ
G(Σ/∆) is a faithful permutation group on

B (Σ/∆) and is primitive when ∆ is a maximal subblock.

4. The quotient group GΣ/G∆ can be embedded as a subgroup of
(

GΣ
G(Σ/∆)

)l
for

some l.

Proof. Let N ⊆ G∆ be a normal subgroup of GΣ . Since ∆N = ∆, and since
GΣ acts transitively on B (Σ/∆), for any Υ ∈ B (Σ/∆) there is a g ∈ GΣ such
that Υ = ∆g. Therefore, ΥN = ∆gN = ∆Ng = Υ for each Υ ∈ B (Σ/∆). Thus
N ⊆ G (Σ/∆). Since G (Σ/∆)EGΣ we have proved part 1.

Part 2 directly follows from the definition of GΣ . Part 3 follows from the fact
that g, h ∈ GΣ have the same action on B (Σ/∆) precisely when gG (Σ/∆) =
hG (Σ/∆). The nontrivial GΣ

G(Σ/∆) -blocks of B (Σ/∆) are in 1-1 correspondence

with the G-blocks properly between ∆ and Σ. Thus, GΣ
G(Σ/∆) is primitive if and

only if ∆ is a maximal subblock of Σ.

For Part 4 notice that we have the group isomorphism

G|Υ
G (Υ/∆Υ )|Υ

∼=
GΥ

G (Υ/∆Υ )
,
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for each Υ ∈ B (Σ). As G∆ = GΣ ∩
∏

G (Υ/∆Υ )|Υ we have

GΣ/G∆ ↪→
∏

Υ∈B(Σ)

G|Υ
G (Υ/∆Υ )|Υ

=
∏

Υ∈B(Σ)

GΥ
G (Υ/∆Υ )

.

Let g ∈ G such that ∆g = ∆Υ . Then, GΥ = g−1GΣg and G (Υ/∆Υ ) =
g−1G (Σ/∆)g. Thus, GΣ

G(Σ/∆) and GΥ
G(Υ/∆Υ ) are isomorphic, which implies that

GΣ/G∆ is isomorphic to a subgroup of
(

GΣ
G(Σ/∆)

)l
for some l.

Lemma 2. Let G ≤ Sym (Ω) be transitive and N E G. Let α ∈ Ω. Then the
N -orbit αN is a G-block and the collection of N -orbits is an αN -block system of
Ω under G action. If N 6= {1} then ‖αN‖ > 1. Furthermore, if Gα ≤ N 6= G
then the αN -block system is nontrivial implying that G is not primitive.

Proof. Let α ∈ Ω and g ∈ G. Then (αN )g = αNg = αgN = (αg)N . Thus (αN )g

and αN are N -orbits, and hence are identical or disjoint. Thus, αN is a G-block
and the N -orbits form a block system. Clearly, if αN = {α} then N = {1}.
Finally, by the Orbit-Stabilizer formula #G = #Ω ·#Gα and #N = #αN ·#Gα.
Thus, if {1} 6= N 6= G then αN is a proper G-block.

3 Nilpotence testing for Galois groups

First we recall crucial properties of nilpotent transitive permutation groups.
These are standard group theoretic facts that we assemble together and, for the
sake of completeness, provide proof sketches where necessary. We start with a
characterization of finite nilpotent groups. Let G be a finite group and p1, . . . , pk
be the prime factors of #G. For each i, let Gpi be a pi-Sylow subgroup of G. Then
G is nilpotent if and only if G is the (internal) direct product Gp1 × . . . ×Gpk .
Consequently, Gpi is the unique pi-Sylow subgroup of G for each i and hence
Gpi CG.

Lemma 3. Let G ≤ Sym (Ω) be transitive and nilpotent, and p be any prime.
Then

(1) The prime p divides #G if and only if p divides #Ω.
(2) If p | #G and α ∈ Ω then there is a block Σα

p containing α such that #Σα
p

is the highest power of p that divides #Ω.
(3) Let ∆ be any G-block containing α such that #∆ = pl and suppose p divides

#G. Then ∆ ⊆ Σα
p . Also, for q 6= p, the q-Sylow subgroup of G∆ is given by

Gq ∩G∆ = Gq ∩Gα.

Proof. Part (1): As G is transitive, #Ω divides #G. Hence, each prime factor
of #Ω divides #G. Let p be a prime factor of #G. For α ∈ Ω, let Σα

p = αGp .
Since Gp is transitive on Σα

p , it follows from the Orbit-Stabilizer formula that

#Σα
p divides #Gp. Hence #Σα

p is pl for some l. Since Gp C G, by Lemma 2 it
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follows that its orbit Σα
p is G-block which contains more than one element of Ω.

Hence #Σα
p = pl for some l > 0. Since p divides the cardinality of a G-block

Σα
p , p divides #Ω.

Part (2): From the Galois correspondence of G-blocks (Theorem 5) we have
[Ω : Σα

p ] = [G : GΣαp ]. Notice that p is not a factor of [G : Gp] as Gp is the
p-Sylow subgroup of G. Since Gp C GΣαp it follows that p is not a factor of
[G : GΣαp ]. Hence p is not a factor of [Ω : Σα

p ].
Part (3): notice that G∆ is a nilpotent group with the unique normal q-Sylow

subgroup Gq ∩G∆. Thus, G∆ =
∏
q(Gq ∩G∆). By Theorem 5 we have

#∆ = [G∆ : Gα] =
∏
q

[Gq ∩G∆ : Gq ∩Gα]. (1)

Since Gq ∩G∆ is a q-group, p divides [Gq ∩G∆ : Gq ∩Gα] if and only if q = p.
However, in Equation 1, #∆ is a power of p. This forces [Gq∩G∆ : Gq∩Gα] = 1
for all q 6= p. Thus Gq ∩G∆ = Gq ∩Gα for q 6= p. Therefore, G∆ is the product
group Gp ∩G∆ ×

∏
q 6=pGq ∩Gα. Since GΣαp contains both Gp and Gα we have

GΣαp ≥ G∆. Thus, ∆ is a G-subblock of Σα
p .

We recall a result about permutation p-groups (see e.g. Luks [7, Lemma 1.1]).

Lemma 4. Let G ≤ Sym (Ω) be a transitive p-group and ∆ be a maximal G-
block. Then [Ω : ∆] = p and G∆ = G (Ω/∆) = G∆ is a normal group of index p
in G.

The next lemma is an easy consequence of Lemma 4 and it states a useful
property of permutation p-groups.

Lemma 5. Let H ≤ Sym (Ω) be a transitive p-group and α ∈ Ω. Let {α} =
∆0 ⊂ . . . ⊂ ∆t = Ω be any maximal chain of H-blocks. Then

1. [∆i+1 : ∆i] = p for all 0 ≤ i < t.
2. H(∆i+1/∆i) = H∆i . Hence, H∆i C H∆i+1

and the quotient H∆i+1
/H∆i is

cyclic of order p.

We continue with the notation of Lemma 3. In the next lemma we show that
the block structure of transitive nilpotent permutation group G is similar to the
block structure p-groups.

Lemma 6. Let G be a nilpotent transitive permutation group on Ω and let p be
a prime factor of #G. Let ∆ be any subset of Σα

p . Then ∆ is a G-block if and
only if ∆ is a Gp block (in its transitive action on Σα

p ).

Proof. Let H denote the p-Sylow subgroup Gp. Let Ĥ denote the product∏
q 6=pGq of all other Sylow subgroups of G. Then G = H × Ĥ. Recall that

Σα
p is the H-orbit of α.
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Firstly any G-block ∆ ⊆ Σα
p is an H-block. To prove the converse consider

any H-block Σ ⊆ Σα
p . Consider the group G′ = HΣ × (Ĥ ∩Gα). Firstly notice

that the group G′ is a subgroup of GΣαp . Also since Gα is nilpotent, we have

Gα = Hα × (Ĥ ∩ Gα). Furthermore since Σ is a H-block, we have HΣ ≥ Hα.
Therefore G′ ≥ Gα and by the Galois correspondence of blocks (Theorem 5),
Σ = αG

′
is a G-block and GΣ = G′.

We give a characterisation of nilpotent transitive permutation groups by
properties of maximal chains of G-blocks between {α} and Σα

p which is crucial
for our polynomial-time nilpotence test. This characterization is probably well-
known to group theorists. However, as we haven’t seen it anywhere, we include
a proof.

Theorem 6. Let G ≤ Sym (Ω) be a transitive permutation group satisfying
properties (1) and (2) of Lemma 3 (which are necessary conditions for nilpotence
of G). Fix an α ∈ Ω. The following statements are equivalent.

(1) G is nilpotent.
(2) For each prime factor p of #G, every maximal chain of G-blocks {α} =

∆0 ⊂ . . . ⊂ ∆m = Σα
p has the property that [∆i+1 : ∆i] = p, G∆i is a

normal subgroup of G∆i+1 , and p does not divide the order of G/G∆m .
(3) For each prime p dividing #G, there is a maximal chain of G-blocks {α} =

∆0 ⊂ . . . ⊂ ∆m = Σα
p with the property that [∆i+1 : ∆i] = p, G∆i is a

normal subgroup of G∆i+1
, and p does not divide the order of G/G∆m .

Proof. Clearly (2) implies (3). It suffices to show that (3) implies (1) and (1)
implies (2).

To see that (3) implies (1) it is enough to show that each Sylow subgroup of
G is normal. To this end, let p be a prime factor of #G and let {α} = ∆0 ⊂ . . . ⊂
∆m = Σα

p be a maximal chain of G-blocks having the properties mentioned in
(3).

Firstly, since G (∆i+1/∆i) is the largest normal subgroup of G∆i+1
that is

contained in G∆i (part 1 of Lemma 1), (3) implies that G∆i = G (∆i+1/∆i).
Furthermore it follows from Lemma 1 that there is a positive integer li for each
i such that the quotient group G∆i+1/G∆i is embeddable in an li-fold product

of copies of
G∆i+1

G(∆i+1/∆i)
= G∆i+1

/G∆i . Since [G∆i+1
: G∆i ] = p it follows that

G∆i+1/G∆i is a p-group for each i. As #G∆m =
∏m−1
i=0 [G∆i+1 : G∆i ], G∆m is

also a p-group. Since G∆m CG and p does not divide [G : G∆m ] it follows that
G∆m is a normal p-Sylow subgroup of G. The nilpotence of G follows as this
holds for all prime factors of #G.

Next, we show that (1) implies (2). Suppose G is nilpotent. Let p be a prime
factor of #G and α ∈ Ω. Let H be the p-Sylow subgroup Gp of G and let

Ĥ =
∏
q 6=pGq be the product of all its other Sylow subgroups. Let {α} = ∆0 ⊂

∆1 ⊂ . . . ⊂ ∆m = Σα
p be any maximal chain of G-blocks between α and Σα

p . It
follows from Lemma 6 that the chain {∆}0≤i≤m is a maximal chain of Gp-blocks.
By Lemma 5 we have [∆i+1 : ∆i] = p, H∆i CH∆i+1 , and H∆i+1/H∆i is cyclic
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of order p. The group G∆i = H∆i × Ĥ∆i and G∆i+1
= H∆i+1

× Ĥ∆i+1
. Also

since Ĥ∆i is the product of q-Sylow subgroups of H∆i where q varies over all

prime factors of #G different from p, it follows from Lemma 3 that Ĥ∆i = Ĥα.
Therefore G∆i C G∆i+1

and quotient group G∆i+1
/G∆i

∼= H∆i+1
/H∆i . The

group G/G∆m acts faithfully on B (Ω/∆m) and is transitive under this action.
Since p - [Ω : ∆m], p cannot divide the order of G/G∆m (Lemma 3).

The following lemma is crucial for the nilpotence testing algorithm. If G
is nilpotent then, for each prime factor p of #G, the lemma implies that no
matter how the maximal chain of blocks ∆i of Theorem 6 is constructed, it
must terminate in Σα

p .

Lemma 7. Let G be a transitive nilpotent permutation group on Ω. Let p be any
prime dividing #G. Let ∆ be any G-block such that #∆ = pl for some integer
l ≥ 0. Let m be the highest power of p that divides #Ω. If l < m then we have

1. There exists a G-block Σ such that ∆ is a maximal G-subblock of Σ and
[Σ : ∆] = p.

2. For all G-blocks Σ such that ∆ is a maximal G-subblock of Σ and [Σ : ∆] =
p, G∆ is a normal subgroup of GΣ.

Proof. Since #∆ is pl it follows that ∆ is a G-subblock of Σα
p (Lemma 3). It

follows from Lemma 6 that ∆ is a Gp-block on the transitive action of Gp on Σα
p .

Furthermore if l < m there is a Gp-block Σ (and hence by Lemma 6 a G-block)
such that Σα

p ⊇ Σ ⊃ ∆ and [Σ : ∆] = p. This proves part 1.
Let α ∈ ∆. It follows from Lemma 3 that for q 6= p the q-Sylow subgroup

of GΣ and G∆ are both Gq ∩Gα. Let Ĝp be
∏
q 6=pGq. The groups GΣ and G∆

are (Gp ∩GΣ)× (Ĝp ∩Gα) and (Gp ∩G∆)× (Ĝp ∩Gα) respectively. Moreover,
Gp ∩ GΣ and Gp ∩ G∆ are p-groups with index [Gp ∩ GΣ : Gp ∩ G∆] = [GΣ :
G∆] = [Σ : ∆] = p. Therefore, Gp ∩ G∆ is normal in Gp ∩ GΣ . Thus, G∆ =

(Gp∩G∆)×(Ĝp∩Gα) is normal in GΣ = (Gp∩GΣ)×(Ĝp∩Gα) and GΣ
G∆

=
Gp∩GΣ
Gp∩G∆

is isomorphic to Zp.

3.1 The nilpotence test

Given f(X) ∈ Q[X] our goal is to test if Gal (f) is nilpotent. We can assume
that f(X) is irreducible. For, otherwise we can compute the irreducible factors
of f(X) over Q using the LLL algorithm, and perform the nilpotence test on
each distinct irreducible factor. This suffices because nilpotent groups are closed
under products and subgroups. Let G be Gal (f). We consider G as a subgroup
of Sym (Ω), where Ω is the set of roots of f(X). Since f is irreducible, G is
transitive on Ω.

For any G-block ∆, let Q∆ be the fixed field of the splitting field Qf under
the automorphisms of G∆. Let ∆ be a G-block containing α. Since G∆ ≥ Gα,
Q∆ is a subfield of Q{α} = Q(α).

We describe the main idea. By Theorem 6, G is nilpotent if and only if for
all primes p that divide the order of G, there is a maximal chain of G-blocks
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{α} = ∆0 ⊂ . . . ⊂ ∆m satisfying conditions of part (3) of Theorem 6. We
show these conditions can be verified in polynomial time once the tower of fields
Q(α) = Q∆0 ⊃ . . . ⊃ Q∆m are known. Thus, for testing nilpotence of G we
will first need a polynomial-time algorithm that computes Q∆i . The following
theorem is essentially due to Landau and Miller [4] restated in a form suitable
for our application.

Theorem 7. Let f(X) ∈ Q[X] be irreducible, G = Gal (f) be its Galois group
and Ω be the set of roots of f . Let ∆ ⊆ Ω be any G-block and α ∈ ∆. There is
an algorithm that given a primitive polynomial µ∆(X) ∈ Q[X] of Q∆, runs in
time polynomial in size (f) and size (µ∆) and computes a primitive polynomial
µΣ(X) ∈ Q[X] of QΣ for all G-blocks Σ such that ∆ is a maximal block of
Σ. Moreover size (µΣ) is at most a polynomial in size (f) and is independent of
size (µ∆).

We now give the algorithm for testing nilpotence.

Input: A polynomial f(X) ∈ Q[X] of degree n
Output: “Accept” if Gal (f) is nilpotent;“Reject” otherwise
Verify that f(X) is solvable;

1 Compute the set P of all the prime factors of #Gal (f);
Let G ≤ Sym (Ω) denote the Galois group of f , where Ω is the set of roots of f .

2 for every p ∈ P do
if p does not divide n then

print Reject
end
Let m be the highest power of p dividing n.

3 Attempt to compute the tower Q∆m ⊂ . . . ⊂ Q∆0 for a maximal chain of
G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m such that [Q∆i+1 : Q∆i ] = p.

4 if Step 3 fails or Q∆i+1 is not normal over Q∆i then
print Reject

end
Let µ∆m(X) be the primitive polynomial for Q∆m

5 if p divides #Gal (µ∆m) then
print Reject

end

end
print Accept

Algorithm 1: Nilpotence test

We prove that Algorithm 1 runs in polynomial time. For the steps 1 and 5
note that for polynomials f with solvable Galois groups, as a byproduct of the
Landau-Miller test [4], the prime factors of #Gal (f) can be found in polynomial
time (see also Theorem 11). We explain how step 3 can be done in polynomial
time using Theorem 7. We construct Q∆i inductively starting with Q∆0

= Q(α).
Assume we have computed Q∆i . Using Theorem 7 we compute QΣ for each G-
block Σ containing ∆i as a maximal G-subblock. Among them choose a QΣ for
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which [Σ : ∆i] = p and let Q∆i+1
be QΣ . The inductive construction of Q∆i+1

from Q∆i can be done in time bounded by a polynomial in size (f). Putting it
together we have the following proposition.

Proposition 1. Algorithm 1 runs in time polynomial in size (f).

We now argue its correctness. Part (1) of Theorem 6 implies that if G is
nilpotent then Algorithm 1 accepts. Conversely, suppose the algorithm accepts.
Then for each prime p dividing #G we have a maximal chain of G-blocks {α} =
∆0 ⊂ . . . ⊂ ∆m such that Q∆i/Q∆i+1 are normal extensions for each 0 ≤ i < m
(this we verify in step 4 of Algorithm 1). Recall that Q∆i is the fixed field of Qf
w.r.t. G∆i . Hence by checking Q∆i/Q∆i+1

is a normal extension we have verified
that G∆i CG∆i+1

. Also, the splitting field of the primitive polynomial µ∆m(X)
is the normal closure of Q∆m over Q. It follows from Lemma 1 and Theorem 1
that Gal (µ∆m) is G∆m . Hence, by checking p does not divide #Gal (µ∆) we
have verified that p does not divide #G/G∆m . Thus, we have verified that the
maximal chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m satisfies the conditions of
Part(3) of Theorem 6 implying that G is nilpotent. Putting it all together we
have the following theorem.

Theorem 8. There is a polynomial-time algorithm that takes f ∈ Q[X] as input
and tests if Gal (f) is nilpotent.

4 Generalizing the Landau-Miller solvability test

In this section we show that the Landau-Miller solvability test can be adapted
to test if the Galois group of f(X) ∈ Q[X] is in Γd for constant d. Note that for
d < 5, Γd is the class of solvable groups and hence our result is a generalization
of the result of Landau-Miller [4]. We first recall a well-known bound on the size
of primitive permutation groups in Γd.

Theorem 9 ([1]). Let G ≤ Sn be a primitive permutation group in Γd for a
constant d. Then #G ≤ nO(d).

Theorem 10. For constant d > 0, there is an algorithm that takes as input
f(X) ∈ Q[X] and in time polynomial in size (f) and nO(d) decides whether
Gal (f) is in Γd.

Proof. We sketch the proof. Assume without loss of generality that f(X) is
irreducible. Let G = Gal (f) as a subgroup of Sym (Ω), where Ω is the set of
roots of f . Let {α} = ∆0 ⊂ . . . ⊂ ∆t = Ω be any maximal chain of G-blocks.
The series {1} = G∆0 C . . . C G∆t = G gives a normal series for G. By closure

properties of Γd, G ∈ Γd iff G∆i+1

G∆i
∈ Γd for each i. If G is in Γd so are G∆i+1

and G (∆i+1/∆i) and hence their quotient
G∆i+1

G(∆i+1/∆i)
. On the other hand since

G∆i+1

G∆i
is isomorphic to a subgroup of

(
G∆i+1

G(∆i+1/∆i)

)l
for some l (Lemma 1),
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G∆i+1

G∆i
∈ Γd if

G∆i+1

G(∆i+1/∆i)
∈ Γd. Hence G ∈ Γd iff

G∆i+1

G(∆i+1/∆i)
is in Γd for each i .

We give a polynomial-time algorithm to verify the above fact for some maximal
chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆t = Ω.

First, by Theorem 7we compute Ki = Q∆i for a maximal chain of G-blocks
{α} = ∆0 ⊂ . . . ⊂ ∆t = Ω. Let Li be the fixed field of Qf with respect to
the automorphisms of G (∆i+1/∆i) then Li+1 is the normal closure of Ki over
Ki+1. This follows because G (∆i+1/∆i) is the largest proper normal subgroup of

G∆i+1 = Gal
(
Qf/Q∆i+1

)
. Hence Gal (Li+1/Ki+1) is

G∆i+1

G(∆i+1/∆i)
, and it suffices

to check that each Gal (Li/Ki) is in Γd.

The group
G∆i+1

G(∆i+1/∆i)
acts faithfully and primitively on Ω′ = B (∆i+1/∆i),

by Lemma 1 and since ∆i is a maximal subblock of ∆i+1. If G ∈ Γd then
[Li+1 : Ki+1] = #Gal (Li+1/Ki+1) ≤ nO(d) and degrees [Li : Q] are all less
than nO(d). We can use Theorem 2 to compute Gal (Li/Ki) as a multiplication
table in time polynomial in size (f) and nd for each i. We then verify that
Gal (Li/Ki) ∈ Γd by computing a composition series for it and checking that
each composition factor is in Γd. At any stage in the computation of Gal (Li/Ki)
if the sizes of the fields becomes too large, i.e. larger than the bound of Theorem 9
we abort the computation and decide that Gal (f) is not in Γd. Clearly, these
steps can be done in polynomial time.

It follows from the proof of Theorem 10 that a prime p divides #Gal (f) if
and only if it divides [Li : Ki] for some 1 ≤ i ≤ t.

Theorem 11. Given f(X) ∈ Q[X] with Galois group in Γd there is an algorithm
running in time polynomial in size (f) and nd that computes all the prime factors
of #Gal (f).
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