
Bounded Color Multiplicity Graph Isomorphism

is in the #L Hierarchy∗

V. Arvind, Piyush P Kurur, and T.C. Vijayaraghavan
Institute of Mathematical Sciences, C.I.T Campus

Chennai 600113, India
email: {arvind,ppk,tcvijay}@imsc.res.in

Abstract

In this paper we study the complexity of Bounded Color Multiplic-
ity Graph Isomorphism BCGIb: the input is a pair of vertex-colored
graphs such that the number of vertices of a given color in an input
graph is bounded by b. We show that BCGIb is in the #L hierarchy
(more precisely, the ModkL hierarchy for some constant k depending
on b). Combined with the fact that Bounded Color Multiplicity Graph
Isomorphism is logspace many-one hard for every set in the ModkL hi-
erarchy for any constant k, we get a tight classification of the problem
using logspace-bounded counting classes.

1 Introduction

In the last decade or so, logspace bounded classes, particularly logspace
counting classes, have played an important role in classifying natural prob-
lems in NC2. A well-known example is the problem of computing the de-
terminant. We know from Toda and Vinay’s work [Tod91, Vin91] that the
complexity class GapL exactly captures the complexity of computing integer
determinants. Likewise, computing determinants over finite fields of char-
acteristic p is captured by the class ModpL [BDHM92]. More recently, the
results of [ABO99] classify important linear algebraic problems like finding
the rank and checking feasibility of linear equations. Also, the complexity of
perfect matching is now quite well characterized in [ARZ99] using logspace
counting classes and the isolation lemma. For other results in this area,
including connections to circuit complexity questions, we refer the reader to
the recent survey article by Allender [Al04].

∗Part of this work was supported by a DST-DAAD project supporting exchange visits.

1

1.1 Graph Isomorphism and Logspace Counting Classes

In this paper we study the following restricted version of Graph Isomor-
phism problem: The input is a pair of vertex-colored graphs (G1, G2) with
the additional property that the number of vertices of a given color in the
graphs is less than a prescribed constant bound b. And, the restricted Graph
Isomorphism problem is to check if there is a color-preserving isomorphism
between G1 and G2.

This problem is known as the Bounded Color Multiplicity Graph Isomor-
phism problem (which we denote by BCGIb). It is a well-studied restriction
of Graph Isomorphism: This was the first version of Graph Isomorphism
studied using group-theoretic methods when Babai gave a randomized poly-
nomial time algorithm for BCGIb for each constant b [Bab79]. This result
was improved to a deterministic polynomial time algorithm in [FHL80]. Sub-
sequently, Luks in [Lu86] gave a remarkable NC algorithm for the BCGIb
problem. Building on earlier work by McKenzie and Cook [MC87]) and Luks
and McKenzie [LM88], in [Lu86] Luks introduced group-theoretic techniques
to handle the nonabelian parts of permutation groups in the class NC. The
earlier papers [MC87, LM88] developed techniques to show that several per-
mutation group problems for abelian and solvable groups are in the class
NC. These methods are linear-algebraic and do not extend to general per-
mutation groups.

Luks’ NC algorithm in [Lu86] is actually for a more general problem (of
which BCGIb is a special case). In [Lu86] the actual parallel time taken by
the algorithm is not specified. But we can notice that the NC algorithm
runs in O(log n) stages and in each stage it uses Luby’s NC2 algorithm for
the maximal independent set problem. Thus the running time of the parallel
algorithm appears to be at least log3 n.

In a different line of research, Torán in [Tor04] developed a nice graph
gadget that enables the simulation of addition modulo k using automor-
phisms of the graph gadget. As a consequence, in [Tor04] several hardness
results for Graph Isomorphism are shown. In particular, it is shown that
BCGIb is AC0-many one hard for the logspace counting class ModkL for
each constant k. The construction in [Tor04] requires b to be k2.

In a related paper [JKMT04], the BCGI problem is examined for color
classes of sizes 2 and 3, and show that in these cases it is in SL (which puts
it in L as SL = L [Re04]).

2

1.2 The results of this paper

The question that naturally arises is whether the gap between the NC upper
bound result of [Lu86] and the lower bound result of [Tor04] for BCGIb can
be closed. In this paper, we examine Luks’ NC algorithm carefully using
logspace complexity classes. As our main result we show that BCGIb is in
ModkL hierarchy, where the constant k and the level of the hierarchy in
which BCGI sits depends on b.

It turns out that the we can decompose the problem into a constant num-
ber of stages. Each stage corresponds to either handling an abelian simple
group or a nonabelian simple group. We are able to show that the stages
involving abelian groups can be solved in the complexity class ModkL for a
suitable constant k. Surprisingly for handling nonabelian groups, although
the group theory is more involved, the actual computation can be done in
deterministic logspace L. This is because in the nonabelian stages we can do
away with finding maximal independent sets and show that the computa-
tions involved are actually reducible to undirected graph connectivity (which
is recently shown to be in L [Re04]).

Since the ModkL hierarchy is contained in the #L hierarchy which, in
turn, is contained in NC2 (even in TC1) [ABO99], our result puts BCGIb in
NC2 (indeed in TC1).

Below we depict a chain known inclusions of the relevant complexity
classes inside NC2.

BCGIb ∈ ModkL
ModkL

··
·

⊆ #L#L
··
·

⊆ TC1 ⊆ NC2.

While the ideas and the underlying group-theoretic machinery in our
result is based on Luks [Lu86] and [LM88], to prove the ModkL hierarchy
upper bound we had to make several crucial changes in the NC algorithm
of [Lu86].

Remark. How well does our ModkL hierarchy upper bound classify the prob-
lem BCGIb?

We can apply Torán’s result [Tor04, Lemma 4.7] to show that for every
k if A is a set in the jth level of the ModkL hierarchy, then A is logspace
many-one reducible to BCGIb, where b depends only on k and j. Thus,
BCGIb is intimately related to the ModkL hierarchy. The question whether
the ModkL hierarchy collapses for composite k is open (for prime k it is
known to collapse to ModkL).

3

2 Preliminaries and Notation

We assume some familiarity with basic complexity theory and basic notions
in group theory and linear algebra. For details on the complexity classes
discussed here we refer the reader to [ABO99] and for group-theoretic defi-
nitions we refer the reader to [Ha, Wie64].

2.1 Complexity Classes

We write L and FL for the class of languages (respectively, functions) com-
putable by deterministic logspace-bounded Turing machines. The class of
languages accepted by nondeterministic logspace machines is denoted by
NL, and the class of languages accepted by symmetric logspace machines is
denoted by SL (equal to L in [Re04]). The class NL is known to be closed
under complement.

We now recall the definitions for the complexity classes GapL and ModkL
with k ≥ 2. For a nondeterministic Turing machine M we denote by accM (x)
and rejM (x) the number of accepting and rejecting computation paths of M
on input x, respectively. We define gapM (x) as the difference accM (x) −
rejM (x).

Definition 2.1. The class GapL is defined as the class of functions f :
Σ∗ −→ Z such that for some nondeterministic logspace-bounded Turing ma-
chine M , f(x) = gapM (x) for every x ∈ Σ∗.

GapL can also be defined equivalently as the closure of #L under subtrac-
tion, where #L denote the set of all functions accM (x) for nondeterministic
logspace-bounded Turing machines M .

Definition 2.2. Let k ≥ 2 be an integer. ModkL is the class of sets L such
that there is an f ∈ #L with x ∈ L⇔ f(x) 6≡ 0(mod k).

We now define the reductions that are discussed in this paper: for lan-
guages L and L′, we say that L is logspace many-one reducible to L′ if there
is an f ∈ FL such that x ∈ L if and only if f(x) ∈ L′. We say that L
is logspace Turing reducible to L′ if there is a deterministic logspace oracle
Turing machine M such that M with oracle L′ accepts L.

Nondeterministic logspace oracle Turing machines are defined using the
“Ruzzo-Simon-Tompa”” oracle access [RST84] (also see [AO96, ABO99])
which restricts the machine to write the oracle queries deterministically.
We define the relativized classes #LA and ModkL

A in this model. We can
now inductively define the ModkL hierarchy: A language L is in the jth

4

level of the ModkL hierarchy if there is an oracle set A in the j − 1th level
such that L ∈ ModkL

A.
For languages L and L′, we say that L is NC1-Turing reducible to L′ if

there is a logspace uniform circuit family of polynomial size and logarithmic
depth with bounded fanin gates that computes L with oracle gates for L′.
AC0-Turing reductions are similarly defined using logspace uniform AC0

circuit families. It is known that the #L hierarchy equals AC0(#L) [AO96].

2.2 Permutation Groups

We recall useful definitions and basic facts about permutation groups. For
details we refer the reader to the book by Wielandt [Wie64].

A permutation group G is a subgroup of Sym (Ω), where Sym (Ω) is the
group of all permutations on Ω, and Ω is an n-element set. We write H ≤ G
when H is a subgroup of G. The subgroup H of G is normal, denoted HCG,
if gHg−1 = H for all g ∈ G.

The image of a point α ∈ Ω under g ∈ G is denoted αg, and we apply
permutations from left to right so that αgh = (αg)h. The set αG = {αg |
g ∈ G} is the G-orbit of α, and G is transitive on Ω if αG = Ω. The group
generated by a set of permutations S ⊆ Sym (Ω) is the smallest subgroup of
Sym (Ω) containing S, denoted 〈S〉. For a group G and S ⊆ G, the normal
closure of S in G is the smallest normal subgroup of G containing S and is
denoted by NCLG(S).

A group G is cyclic if G = 〈g〉 for some g, G is abelian if gh = hg for all
g, h ∈ G.

Let G ≤ Sym (Ω) be transitive on Ω. A subset ∆ ⊆ Ω is called a G-block
if for every g ∈ G either ∆g = ∆ or ∆g ∩∆ = ∅. For any transitive group
G, the set Ω and the singleton sets {ω}, ω ∈ Ω are called trivial blocks.
A transitive group G is called primitive if it does not have any nontrivial
blocks otherwise it is called imprimitive.

Consider a permutation group G that is transitive on Ω. If ∆ is a G-
block, then for every g ∈ G ∆g is also a G-block. The collection of blocks
{∆g : g ∈ G} forms a partition of Ω and is called the ∆ block system. Notice
that the permutation group G acts transitively on the ∆ block system (since
every element of G in its natural action maps blocks to blocks). We call
∆ ⊂ Ω a maximal block if there is no other block Σ such that ∆ ⊂ Σ ⊂ Ω.
In this case, we call {∆g : g ∈ G} a maximal block system.

If G’s action is imprimitive on a maximal block system, then we can
again find a maximal block system here and continue further, resulting in a
hierarchy of block systems. We formalize this process below.

5

Let ∆ and Σ be two G-blocks in Ω, such that ∆ ⊆ Σ. Notice that the
collection of blocks {∆g : g ∈ G and ∆g ⊆ Σ} forms a partition of Σ which
we call the ∆ block system of Σ.

We now define a structure tree of the transitive group G. Structure trees
play an important role in algorithms for permutation groups [Luk93]. The
structure tree of G is a rooted tree nodes of which are labeled by G-blocks
satisfying the following conditions:

1. The root is labeled Ω.

2. The leaves are labeled with singleton sets {α}, α ∈ Ω.

3. For each internal node labeled by Σ, the labels of its children constitute
a ∆ block system of Σ, where ∆ is a maximal block properly contained
in Σ.

Note that there is a natural action of G on nodes at each level: g ∈ G
maps node u to v iff there is a G-block ∆ such that the labels of u and v
are ∆ and ∆g respectively. Notice that G acts primitively on the children
of the root.

Let G be a permutation group on Ω with orbits Ω1, . . . ,Ωr. The structure
forest is a collection of structure trees T1, . . . , T−r, where Ti is the structure
tree of the transitive action of G restricted to Ωi.

3 Overview of the algorithm

Let Ω = {1, 2, . . . , n} and G ≤ Sym(∆) be a group. The group G{∆} is
the pointwise stabilizer of ∆, that is the subgroup of elements in G that fix
each point in ∆.

We now define BCGI and a closely related problem POINTSETb.

Definition 3.1. • The problem BCGIb has input instances as pairs of
graphs (G1, G2) where the two graphs G1 and G2 are vertex colored
such that each color class is of size at most b. The problem is to test
if there is a color-preserving isomorphism between G1 and G2. We
sometimes write BCGI to stand for the problem when the constant b
is not specified.

• The problem POINTSETb has input instances consisting of a subset
∆ ⊆ Ω along with a permutation group G ≤ Sym(Ω) given by its
generator set, such that G has orbits of size bounded by a constant b.
The problem is to find the pointwise stabilizer subgroup G{∆} of G.

6

It is well known that for each constant b there is a constant c such
that BCGIb reducible to POINTSETc [LM88, Lu86]. If we examine the
reduction it is easy to see that it is indeed a logspace many-one reduction.
Thus we have the following proposition.

Proposition 3.2. BCGIb is logspace many-one reducible to POINTSETc,
where the constant c depends on the size of the color classes b.

Thus, in order to prove the upper bound result for BCGI, it suffice to
show that the problem POINTSETb is in the ModkL hierarchy for some
constant k. The rest the paper is devoted to this. We first give an overview
of the algorithm, breaking it up into different tasks. In the subsequent
sections we describe algorithms for these tasks in detail.

Let Ω = ∪mi=1Ωi be the partition of Ω into G-orbits, where |Ωi| ≤ b for
each i. Let Gi be the permutation group obtained by projecting G onto Ωi

for each i. Since |Gi| ≤ b! for each i, the following proposition is immediate.

Proposition 3.3. Given an instance G ≤ Sym(Ω) of POINTSETb, the
orbits Ωi and the groups Gi obtained by projecting G on Ωi can be computed
in deterministic logspace.

Furthermore, for each Gi(acting transitively on Ωi) we can compute a
structure tree of Gi in deterministic logspace: we can simply search for a
minimal block B1 and find the corresponding block system by letting Gi
act on it. Thus we obtain Ωi = B1 ∪ · · · ∪ Bl, where {Bi} is the block
system. Either Gi acts primitively on {B1, . . . , Bl} or we can again find
a minimal block and a corresponding block system. Continuing thus, we
finally get a list of blocks on which Gi acts primitively. We get a rooted tree
corresponding to the above algorithm: the leaves are elements of Ωi, the
next level has l nodes corresponding to each of B1, . . . , Bl and, the children
of Bj are the elements of Ωi it contains and so on. At the kth level of the
tree are the nodes corresponding to a minimal block system for Gi’s action
on the block system at level k − 1.

Proposition 3.4. For each orbit of G, an instance of POINTSETb a struc-
ture tree can be computed in deterministic logspace.

Since the orbit sizes are constant, the above proposition is immediate.
Let T1, . . . , Tm be the computed structure trees for the respective orbits

Ω1, . . . ,Ωm of G. Every Ti has constant height (bounded by log b). Notice
that G{∆}, the subgroup we need to compute, fixes every ancestor of points
in ∆ of a structure tree Ti, (1 ≤ i ≤ m). This property will allow us to
reduce the problem further as follows:

7

Consider G’s action on the set Ω
′

= ∪mi=1Ω
′
i, where Ω

′
i is the set of

children of the root of Ti, (1 ≤ i ≤ m). By definition G acts primitively on
each Ω

′
i.

Let ∆
′ ⊆ Ω

′
be the ancestors of ∆ in all the structure trees Ti. Then

(G, ∆
′
, Ω

′
) is an instance of POINTSETb with the further restriction

that G is primitive on its orbits. We refer to this restricted problem as
primitive-POINTSETb. Suppose we have an algorithm for primitive-POINTSETb

in the ModkL hierarchy for some constant k. This algorithm will compute
G{∆′} = H. We will assume that the algorithm will actually compute a
generating set {h1, . . . , hs} for H, where it keeps track of hi’s action on the
entire set Ω.

Notice that the group G{∆} is a subgroup of H. Now consider the struc-
ture forest of H. For δ ∈ ∆ let Tδ be the tree with δ as a leaf in the structure
forest for H. It is easy to see that the height of Tδ is 1 less than the height
of the corresponding tree in the structure forest for G.

Thus, in computing H we have made progress. We can replace G by
H, and recompute the structure forest for H and repeat the above. If
we invoke the ModkL hierarchy upper bound for primitive-POINTSETb a
constant number of nested oracle levels, where the constant is bounded by
log b, then we would have computed G{∆}.

Putting it together, we have shown the following reduction.

Theorem 3.5. If primitive-POINTSETb is in the ModkL hierarchy then
POINTSETb is also in the ModkL hierarchy.

Remark. Both the level of the hierarchy and k are constants that depend
on the orbit bound b. We do not make it explicit here.

Thus the problem that we need to upper bound is primitive-POINTSETb.
In the remaining sections we will show that this problem is in the ModkL
hierarchy for a constant k.

4 Basic group theoretic lemmas

For proving our upper bound on primitive-POINTSETb we need to recall
some group-theoretic machinery from [Lu86]. We shall also need to assemble
specific properties of permutation groups with bounded size orbits.

Let G ≤ Sym (Ω) and let Ωi, 1 ≤ i ≤ m be its orbits such that |Ωi| ≤ b
for all i. Let Gi be the projection of G onto Ωi. Clearly, G ≤ G1× . . .×Gm.
For any h ∈ G1 × . . .×Gm let pri (h) mean the action of h restricted to Ωi.

8

For a subgroup H of G1× . . .×Gm, we will use pri (H) to denote projection
of the subgroup H on Ωi.

We have Gi ≤ Sym (Ωi) and |Ωi| ≤ b for each i, the set of possible
simple subgroups that can occur as quotients of consecutive groups in any
composition series of G1 × . . . × Gm is a constant sized collection T =
{T1, . . . , Tc} where c ≤ 2b!. A deterministic logspace machine can explicitly
compute and keep T as a table.

Definition 4.1 (T-semisimple groups). A finite group G is T -semisimple,
for a simple group T , if G = G1 × . . .×Gr where each Gi is isomorphic to
T .

Lemma 4.2. [Lu86] For any simple group T and any finite group G, there
is a unique minimal normal subgroup N such that G/N is T -semisimple.

We callN as the T -residue ofG and denote it by ResT (G). By Lemma 4.2,
notice that ResT (G) is invariant under any automorphism of G.

Definition 4.3. A subgroup H of a finite group G is a characteristic sub-
group if H is invariant under all automorphisms of G.

We recall two useful properties.

Proposition 4.4. 1. If H is a characteristic subgroup of G then H is a
normal subgroup of G.

2. If K is a characteristic subgroup of H and H is a characteristic sub-
group of G then K is a characteristic subgroup of G.

For any simple group T , notice that ResT (G) is a characteristic subgroup
of G.

Definition 4.5. A residual tower of G is a normal series G = R0BR1 . . .B
Rl = 1 where for all 1 ≤ i ≤ l, Ri = ResTi (Ri−1) for some simple group T .

Using Proposition 4.4 each Ri is a characteristic subgroup of G and hence
is normal.

Definition 4.6. The socle Soc (G) of a finite group G is the subgroup gen-
erated by the minimal normal subgroups of G.

Proposition 4.7. The socle Soc (G) is a characteristic subgroup of G.

The following lemma is a crucial property of residual towers for primitive
groups.

9

Lemma 4.8. [Lu86] If H is a primitive permutation group acting on Ω then
the smallest nontrivial group in any residual tower is always Soc (H).

Now we consider an instance (G,∆,Ω) of primitive-POINTSETb. As the
orbits Ωi are of constant size, we can in deterministic logspace compute a
residual tower {Ri,j}lj=1 for each Gi. We assume, without loss of generality,
that the length l of residue sequences of Gi’s are all same. Notice that l is
a constant bounded by log b.

We describe a series of groups for G obtained from these residual towers.1

First consider the groups Sj = R1,j × . . . × Rm,j . Notice that S0 =
G1 × . . . × Gm. Furthermore, since Ri,j C Gi for 1 ≤ i ≤ m and 1 ≤ j ≤ l,
it follows easily that we have a normal series

1 = Sl C Sl−1 C . . .C S1 C S0 = G1 × . . .×Gm.

We refine this normal series further as follows. Consider the list of simple
groups {T1, . . . , Tc} as an ordered list, we insert a series of length at most c
between Sj and Sj+1 for each j.

Sj = Q0 BQ1 BQ2 . . . Qc = Sj+1.

where, for 1 ≤ k ≤ c, the Qk = R
(k)
1,j × . . .×R

(k)
m,j is given by

R
(k)
i,j =

{
Ri,j+1 if Ri,j/Ri,j+1

∼= Tk

R
(k−1)
i,j otherwise

Notice that each Qk is a normal subgroup of S0. Furthermore Qk/Qk+1

is either trivial or is Tk-semisimple. As a result we have a normal series of
length at most cl (a constant) of the following form

G1 × . . .×Gm = R0(G) BR1(G) B . . .BRk(G) = 1, (1)

where Ri(G)/Ri+1(G) is T -semisimple for some T ∈ {T1, . . . Tc}.
Taking Ni = G ∩Ri(G) we have the following residue series

G = N0 B . . .BNk = 1, (2)

where Ni/Ni+1 can be embedded Ri(G)/Ri+1(G). It follows that Ni/Ni+1

is also T -semisimple for some T ∈ T . Furthermore, Ni CG for all i.
We need the following properties of this series (as in [Lu86]).

1This is different from the series used in [Lu86], and is more convenient for proving the
results of this paper.

10

Lemma 4.9. [Lu86] Let N be a group in the normal series of Equation 2.
Then for any subgroup H ≤ G the projection pri (H) = Gi if and only if
pri (H ∩N) = pri (N).

The following characterization of the socles of primitive permutation
groups is also needed.

Theorem 4.10 (O’Nan-Scott theorem). Let G ≤ Sym (Ω) be a primitive
permutation group with socle Soc (G) = K. Let ω ∈ Ω. Then K is T -
semisimple for some simple group G and one of the following holds:

(i) K is abelian in which case K is elementary abelian, regular on Ω, and
is the unique minimal normal subgroup of G. Furthermore K{ω} = 1.

(ii) K is nonabelian, transitive on Ω, and is the unique minimal normal
subgroup of G.

(iii) K is nonabelian and is a product K = K1 × K2, where K1 and K2

are isomorphic. K1 and K2 are the only minimal normal subgroup
of G, and each Ki acts regularly on Ω. For each ω ∈ Ω, K{ω} =
Diag (K1 ×K2).

Another crucial result is Scott’s lemma as stated in [Lu86]. We state a
version useful for us. Let G and H be finite isomorphic groups. Then for an
isomorphism ϕ from G to H, the diagonal subgroup Diag (G×H) of G×H
defined as follows

Diag (G×H) = {(x, ϕ(x)) | x ∈ G}.

Clearly, Diag (G×H) is isomorphic to each of G and H. If {Hi | 1 ≤
i ≤ r} is a set of mutually isomorphic finite groups, we can similarly define
Diag (×ri=1Hi) as a subgroup of

∏r
i=1Hi, given isomorphisms from H1 to

each of the Hi, i 6= 1.

Lemma 4.11 (Scott’s Lemma). Let T be a finite simple group and let G be
any subgroup of

∏r
i=1 Ti such that each Ti is isomorphic to T . Then G is

a direct product of diagonal subgroups. More precisely, there is a partition
∪sj=1Is of {1, . . . , r} such that

G =

s∏
j=1

Diag
(
×i∈IjTi

)
.

11

We now give a brief overview of the algorithm for primitive-POINTSETb.
Let (G,∆) be an instance of primitive-POINTSETb and let G = N0 B
. . . B Nl be the residue series for G as defined in Equation 2. The algo-
rithm claimed in the following theorem is the key subroutine for solving
primitive-POINTSETb.

Theorem 4.12. Given a instance (G,∆) of primitive-POINTSETb and a
residue series G = N0 B . . .BNl = {1} for the group G, there is a sequence
of subgroups G = H0, H1, . . . ,Hl of G such that each Hs in the sequence
contains G{∆}, and |pri (Hs) | ≤ |Gi|/2 for all indices i such that pri (Ns) =
{1} and Ωi contains a point of ∆. Furthermore, for each s ≥ 0, given the
subgroup Hs of this sequence by a generating set the subgroup Hs+1 can be
computed by an LModtL algorithm.

For an instance (G,∆) of primitive-POINTSETb, call an orbit Ωi a target
orbit if Ωi contains a point of ∆.

We compute the sequence of subgroups H0, . . . ,Hl as follows: To begin
with H0 = G. Then, Hi+1 is computed from Hi by applying the LModtL

algorithm of Theorem 4.12.
As a consequence of this theorem, the subgroup Hl is such that for all

target orbits Ωi, |pri (Hl) | ≤ |Gi|/2. Thus, if we consider the group H = Hl,
then notice that G{∆} ≤ H, and H has been cut down on all target orbits.
We now recompute the residue series with G replaced by H = Hl and repeat
the above process. Since in every such iteration the group is cut down in size
on each target orbit, in a constant number of rounds the algorithm will have
converged to G{∆}. This requires only a constant number of iterations as
each Gi is a constant-sized group. We will prove Theorem 4.12 in Section 6.

For putting primitive-POINTSETb in the ModkL hierarchy we first need
to compute the residue series ofG for an instance (G,∆) of primitive-POINTSETb.
In the next section we explain how to compute it in the ModkL hierar-
chy using a general notion of strong generating sets as in [LM88]. Com-
bined with the algorithm sketched above this will prove the upper bound
for primitive-POINTSETb.

5 The Strong Generating Set problem

Let G ≤ Sym (Ω), where G has orbits Ωi, 1 ≤ i ≤ m of size bounded by a
constant b. Consider the residue series for G defined by Equation 2. In this
section we show that computing a generating set for each subgroup in the
residue series is in the ModkL hierarchy. The method we use is via strong

12

generating sets and sifts, as invented by Luks and McKenzie [LM88, Lu86].
We begin with a general definition.

Definition 5.1 (Strong generator set). Let G be a permutation group and let
H be a subgroup of G. For a tower of subgroup G = G0 ≥ . . . ≥ Gr = H let
Bi, 0 ≤ i < r, be the set of all left coset representatives of Gi+1 in Gi. Every
element g ∈ G can be uniquely expressed as a product g = g0g2 . . . gr−1h
where gi ∈ Bi and h ∈ H. The collection of sets Bi, 0 ≤ i < r is called a
strong generating set of G relative to H (hereafter abbreviated as SGS for G
rel H). If H = 1 then ∪Bi is a generating set for G which is called a strong
generating set for G.

Given an element g ∈ G and an SGS (say, ∪Bi) of G rel H, there is a
unique h ∈ H such that g can be written as a product g = g0g1 . . . gr−1h
where gi ∈ Bi. By the sift of g, denoted by Sift(g), we mean this ele-
ment h. Note that the sift of an element depended on the choice of coset
representatives Bi in the SGS of G.

We are interested in the special case when H CG. For an SGS of G rel
H arising from a normal series between G and H, we have the following
lemma.

Lemma 5.2. Let G be a permutation group and H be any normal subgroup
of G. Let G = G0 BG1 B . . . BGk = H be a normal series between G and
H and let Bi’s be the left (right) coset representatives of Gi+1 in Gi. Let
A = {g1, g2, . . . , gl} be a set of generators for G Let S be the set consisting
of the following elements

1. Sift(g) for all g ∈ A.

2. Sift(x−1yx) for all x ∈ Bi and y ∈ Bj, i ≤ j.

3. Sift(xy) for all x, y ∈ Bi for all i.

Then NCLG(S) = H.

Proof. Since H is a normal subgroup of G and since all elements of S
are contained in H it is clear that NCLG(S) ≤ H. To prove the converse
consider any element h ∈ H. There exists elements y1, y2, . . . , ym in A such
that h = y1y2 . . . yl. Now since S contains the sifts of all y’s we have

h =

m∏
i=1

xi,1xi,2 . . . xi,rsi.

13

where xi,j ∈ Bj and si in NCLG(S). Using the fact that NCLG(S) is a
normal subgroup and using properties 2 and 3 repeatedly we can rewrite
the above product as h = x1x2 . . . xrs where xi ∈ Bi and s ∈ NCLG(S).
Now since h ∈ H we have x1x2 . . . xr = 1 and hence h = s.

5.1 Computing the Residue series

Let G ≤ Sym (Ω) with bounded orbits, given by a set of generators A. Let
Ω1, . . . ,Ωm be its orbits of size at most b. Consider the residue series

G = N0 BN1 B · · ·BNk = {1}.

Recall that k is a constant depending on b, and each quotient Ni/Ni+1 is
T -semisimple for some simple group T ∈ {T1, . . . , Tc}, where c is another
constant depending on b.

The algorithm proceeds in stages: at the ith stage, we assume that an
SGS for G rel Ni is already computed, and the task at this stage is to extend
it to an SGS for G rel Ni+1. To do this, following the approach of [LM88],
we will compute an SGS for Ni rel Ni+1 and append it to the SGS for G rel
Ni. If we can show that this step can be carried out in LModtL for a suitable
constant t, the claimed ModkL hierarchy upper bound will follow (where the
level of the hierarchy is the number of stages).

In order to compute an SGS for Ni rel Ni+1, notice that it suffices to solve
the problem defined in the theorem below (we can choose, in the theorem
statement below, L = Ri(G) and M = Ri+1(G) as defined in Equation 1).

Theorem 5.3. Let G ≤ Sym(Ω) with orbits Ωi, 1 ≤ i ≤ m given by gen-
erator set A. Let L = L1 × . . . × Lr and M = M1 × . . . × Mr be such
that Sym (Ωi) ≥ Li ≥ Mi and G normalizes both L and M and Li/Mi is
T -semisimple for some simple group T . Given a set S of elements of G such
that NCLG(S) = G∩L there is an LModtL algorithm to compute an SGS for
G ∩ L rel G ∩M , for some constant t.

Furthermore, for any x ∈ G∩L there is an LModtL algorithm to compute
the Sift(x) w.r.t. the SGS for G ∩ L rel G ∩M computed above.

Proof. The group L/M is T -semisimple as each Li/Mi is T -semisimple.
Consequently, L/M is of the form T1 × T2 × . . . Ts where Ti ∼= T for all
1 ≤ i ≤ s, for some s = O(m), where the constant factor depends on b.
Moreover, G ∩ L/G ∩M can be faithfully embedded into

∏m
i=1 Li/Mi.

We handle the proof of the theorem in two cases:

14

T is nonabelian.

By Scott’s Lemma 4.11 we know that G∩L/G∩M is a product of diagonal
groups, each isomorphic to T . Let φi : L 7→ Ti be the map obtained by
composing the quotient map from L to L/M and the projection map to
Ti. We say that Ti and Tj are linked if G ∩ L/G ∩M restricted to Ti × Tj
is the diagonal group. Consider an undirected graph G with vertex set
V = {Ti : 1 ≤ i ≤ t} and edge set {(Ti, Tj) : Ti and Tj are linked}. The
groups Ti and Tj are of bounded size hence we can check whether Ti and Tj
are linked in deterministic logspace as follows:

Find G ∩ L/G ∩M restricted to Ti × Tj . Since this is a constant size
group one can easily determine whether the group is Ti×Tj or diag(Ti×Tj)
(by checking the order for example). To find G∩L/G∩M we first compute
the set φij(S) = {〈φi(s), φj(s)〉 : s ∈ S}. We keep on adding new elements
by taking the G conjugates of elements of S and restricting it to the Ti and
Tj until no more elements can be added. This will require only a constant
number of such additions, and hence can be done in logspace.

Now in the graph G we find the connected components (in LSL = L). Let
the connected components be Ck, 1 ≤ k ≤ l. For each connected component
Ck of G we pick a vertex, say Tik .

The main algorithmic step is the computation of elements gk ∈ G ∩ L,
1 ≤ k ≤ l such that φij (gk) ∈ Tij is identity for all j except j = k. Assuming
that we have these elements, consider the normal subgroup NCLG(gk) of
G∩L. Since φik is an onto homomorphism and Tik is simple, it follows that
φik(NCLG(gk)), being a nontrivial normal subgroup of Tik , must in fact be
Tik . We compute a set Bk of distinct inverse images of φik(NCLG(gk)),
1 ≤ k ≤ l. It is easy to see that ∪lk=1Bk is an SGS of G ∩ L rel G ∩M .

In the sequel, we explain how to compute the gk’s. It suffices to explain
how to compute g1.

To begin with we define iterated commutators. Let [h1, . . . , hk] be defined
as

[h1, h2] = h−1
1 h−1

2 h1h2,

[h1, . . . , hi, hi+1] = [[h1, . . . , hi] , hi+1] .

We will compute a sequence of elements h1, h2, . . . , hl satisfying the fol-
lowing property.

1. φi1(h1) 6= 1,

2. φi1([h1, h2, . . . , hk]) 6= 1 for all k and

15

3. φik(hk) = 1.

It is easy to see that given h1, h2, . . . , hl as above, g1 = [h1, h2, . . . , hl]
has the required properties: φi1(g1) 6= 1, and φik(g1) = 1 for 2 ≤ k ≤ l.

We now give a logspace algorithm to actually find such a sequence
h1, h2, . . . , hl.

x := h1 such that φi1(h1) 6= 1 ;
α := φi1(h1);
for k = 2 to l do

compute hi such that φi1(hk) does not commute with α and
φik(hk) = 1;
β := φi1(h1) ;
α := [α, β] ;
output hk;

end

Having got the sequence h1, . . . , hl we now need to compute the iter-
ated commutator [h1, . . . , hl] in logspace. Then, combining the two logspace
computations we get a logspace algorithm for computing g1.

Claim. Let G be a permutation group with bounded-size orbits. Given
h1, . . . , hn ∈ G, the iterated commutator [h1, . . . , hn] can be computed in
deterministic logspace.

It suffices to compute [h1, . . . , hn] restricted to each G-orbit Ω sepa-
rately. Since G has bounded-size orbits, and since the iterated commutator
[h1, . . . , hn] is a formula over the hi’s, we can evaluate [h1, . . . , hn] restricted
to each orbit Ωi in NC1 (and hence deterministic logspace). The claim
follows.

Finally, we claim that Bk can be computed in deterministic logspace
from gk. This is possible because it suffices to carry out the normal closure
restricted to one of orbits on which gk is nontrivial. However, notice that the
computation will obtain the elements of Bk as permutations on the whole
set Ω. There will be only a constant number of elements to be included in
each Bk. Thus, we have computed ∪lk=1Bk which is an SGS of G ∩ L rel
G ∩M .

We now explain how to compute Sift(x) for any x ∈ G ∩ L w.r.t. this
SGS:

Let x ∈ G ∩ L to be sifted. We apply φik(x) which is in Tik for each k,
corresponding to the vertices Tik picked from each connected component Ck

16

of G, 1 ≤ k ≤ l. Since φik(Bk) = Tik , for each k, in logspace we can find
an xk in the SGS such that φik(xk) = (φik(x))−1. It is now easy to see that

Sift(x) = x
∏l
k=1 xk.

This completes the proof for the nonabelian T .

T is abelian.

As T is abelian and simple, for some prime p ≤ b, T is isomorphic to the
additive group Zp. Since L/M to be T -semisimple, we have L/M = T1 ×
T2×. . . Ts where Ti ∼= Zp for each i, and s = O(m). Thus, L/M is essentially∏m
i=1 Zp. But

∏m
i=1 Zp has more structure because it is an m-dimensional

vector space over the finite field Fp. Furthermore, since G∩L/G∩M can be
faithfully embedded in

∏m
i=1 Li/Mi, we know that G∩L/G∩M is essentially

a subspace of
∏m
i=1 Zp.

Notice that the vector space structure of L/M =
∏m
i=1 Zp is effectively

obtained: we have the generating set of L/M =
∏
Li/Mi, say {s1M, . . . , srM},

in terms of the generating sets for Li/Mi, where we know the permutations
si on the entire set Ω. Thus, in deterministic logspace we can convert an
element sM of L/M into the corresponding vector vs ∈

∏m
i=1 Zp. Although

the computation of SGS for G ∩ L rel G ∩M and the Sift operation will be
solved as a linear algebra problem modulo p, alongside we need to compute
the SGS for G∩L rel G∩M in as elements of Sym (Ω). Similarly, we need to
do the Sift operation on elements of Sym (Ω). Thus, it is important for the
algorithm to keep track of the permutation π corresponding to each vector
vπ that is computed. However, notice that this is easy to do because for vπ
expressed as an Fp linear combination of the vsi ’s. More precisely, we know
that if s and s′ correspond to vs and vs′ , then ss′ corresponds to vs + vs′

and sk corresponds to kvs for k ∈ Zp.
Now, given S ⊂ G such that NCLG(S) = G ∩ L, we will show how to

compute an SGS for G ∩ L rel G ∩M in FLModpL. We need the following
observation from [LM88] about the normal closure that will convert the
problem to a simple linear algebra problem over Fp that can be solved in
FLModpL [ABO99, BDHM92].

Define τg : L/M → L/M as τg(h) = g−1hg where g is a generator of G
and h ∈ L/M . The mapping τg is clearly an automorphism of the group
L/M . Since L/M is the vector space

∏m
i=1 Zp, τg is an invertible linear

transformation for each g ∈ G. Furthermore, given g ∈ G in deterministic
logspace we can write down the m×m matrix tg corresponding to τg. It is
easy to see that the matrix tg will actually be a block diagonal matrix, with
one block for each Li/Mi, 1 ≤ i ≤ s. The logspace algorithm just needs

17

to figure out the block corresponding to Li/Mi for each i. Since Li/Mi are
constant sized, this can be easily done by exhaustive search.

Thus, if G = 〈g1, . . . , gq〉, then in logspace we can compute the list of
matrices tg1 , . . . , tgq . Each matrix tgi here is block diagonal, with each block
being a square matrix of size at most c (where c is a constant depending on
b). The following claim is from [LM88].2

Claim. NCLG(S)/G∩M is the smallest subspace of L/M that contains the
set of vectors S and is closed under the linear transformations τg1 , . . . , τgq .

Thus, the problem of computing the SGS for G ∩ L rel G ∩ M boils
down to finding the smallest subspace of

∏m
i=1 Zp containing the vectors

{vs | s ∈ S} and closed under the linear maps defined by tg1 , . . . , tgq . Since
each matrix tgi is block diagonal with each block of size bounded by the
constant c, the matrix algebra A that is generated by tg1 , . . . , tgq can be
characterized by the following claim.

Claim. Let M consist of the set of products of all choices of j matrices
from {tg1 , . . . , tgq}, for each j such that 1 ≤ j ≤ c2. Then the matrix algebra
A is the Fp linear span of the set M.

The above claim follows easily from the fact that the subalgebra gen-
erated by each block can have dimension at most c2. Thus, it suffices to
consider at most c2 many matrix products for all the blocks to obtain an Fp
linear basis for A.

With the above claim the FLModpL algorithm is now easy to describe.
First, a deterministic logspace algorithm can output the set M, since mul-
tiplying a constant number of matrices can be done in logspace. For each
matrix t ∈M, notice that the logspace algorithm can also keep track of the
corresponding element g ∈ G, by carrying out the corresponding multipli-
cation.

Next, a deterministic logspace algorithm can list out the vectors t(vs) |
s ∈ S, t ∈ M}. The corresponding elements as permutations of the form
g−1sg can be kept track of again. To obtain the SGS from this set of
vectors, we need to pick a maximal linearly independent subset. Since testing
feasibility of linear equations over Fp can be done in ModpL [ABO99], it
follows that a basis (and hence an SGS) can be computed in FLModpL. The

2In [LM88] this is used for showing that the membership testing problem over permu-
tation groups is in NC. We have adapted this to the BCGI setting where we crucially use
the fact that the matrices are block diagonal with constant-size blocks to derive our upper
bound.

18

corresponding permutations are also available. Thus, we have the SGS both
as permutations and in vector form. Let the SGS as permutations be denoted
by the list {π1, . . . , πt}.

Finally, we need to describe Sift(g) for any g ∈ G using this SGS. We
first write g as a vector vg in L/M in logspace (by examining the action of
g on each orbit). We write down a system of linear equations AX = vg,
where the ith column Ai of A is vπi for 1 ≤ i ≤ t, and πi are the elements
of the SGS. We compute the unique solution x1, . . . , xr to this in FLModpL.
Notice that Sift(g) = g

∏r
i=1 g

−xi
i .

Now we are ready to give the overall algorithm for computing the SGS
of a permutation group with bounded orbits via its residue series.

Theorem 5.4. Let G ≤ Sym (Ω) be a permutation group with orbits Ωi of
size bounded by a constant such that pri (G) is primitive on Ωi for each i.
Then an SGS (strong generating set) for G w.r.t. its residue series can be
computed in the ModkL hierarchy.

Proof.
Let Gi be the projection pri (G) of G onto the ith orbit Ωi. Recall from

Equation 2 that the residue series of G is

G = N0 B . . .BNk = 1,

which the groups Ni are defined w.r.t. the other series given by Equation 1:

G1 × . . .×Gm = R0(G) BR1(G) B . . .BRk(G) = 1.

Here, Ni = G ∩Ri(G) for each i.
We assume as inductive hypothesis that we already have the strong gen-

erating set of G relative to Ni, and we have a sifting procedure for elements
of G with respect to this strong generating set. Furthermore, we assume
inductively that computing this SGS and the sifting procedure can be car-
ried out in the ModkL hierarchy of some level j. Here k is suitably chosen
constant depending only on the orbit bound b.

We show using the above inductive assumption and Theorem 5.3 that
the SGS of G rel Ni+1 and can be computed in the j+1st level of the ModkL
hierarchy, and the corresponding sifting procedure can be carried out in the
j + 1st level of the ModkL hierarchy.

Using the already computed the SGS of G relative to Ni and the corre-
sponding sifting procedure, we can compute (in the jth level of the ModkL

19

hierarchy) a subset S ⊆ G such that NCLG(S) = Ni (Lemma 5.2). Now, us-
ing this set S, notice thatNi = G∩Ri(G) andNi+1 = G∩Ri+1(G) are groups
to which we can apply Theorem 5.3, with L = Ri(G) and M = Ri+1(G),
to find both the SGS of Ni rel Ni+1 and be able to sift w.r.t. this SGS in
FLModkL. The union of the SGS of G rel Ni with the SGS of Ni rel Ni+1

will give the SGS of G rel Ni+1. Clearly, the computation can be done in
the j + 1st level of the ModkL hierarchy.

We next need to show how to sift w.r.t. this SGS of G rel Ni+1. Given
an element g ∈ G we first compute its sift g′ w.r.t the SGS of G rel Ni.
By induction hypothesis, this computation can be done in jth level of the
ModkL hierarchy. Next, since the element g′ ∈ G ∩ Ni, we can apply the
FLModkL sift procedure of Theorem 5.3 w.r.t. to the SGS of Ni rel Ni+1 to
finally obtain the sift of g w.r.t. the SGS of G rel Ni+1. Again, the overall
complexity lies in the j + 1st level of the ModkL hierarchy.

Continuing this for the l levels of the residue series, we obtain the re-
quired SGS for G. The computation can be carried out in the lth level of
the ModkL hierarchy. It is easy to see that the constant k can be chosen
as the product of all distinct primes p such that Ni/Ni+1 is Zp-semisimple.
This completes the proof.

6 The Pointwise Stabilizer problem

The goal of this section is to prove Theorem 4.12 which would complete the
upper bound proof for primitive-POINTSETb, and hence for BCGI.

Let (G,∆) be an instance of primitive-POINTSETb. For each orbit Ωi

consider the projection of the residual tower given by Equation 1 to the orbit
Ωi resulting in the following series for Gi:

Gi = pri (R0(G)) B pri (R1(G)) B . . .B pri (Rk(G)) = 1.

Now, since each Gi is primitive, from Lemma 4.8, it follows that the
smallest nontrivial group in the above series is Soc (Gi), for each i. Conse-
quently, in the residue series G = N0B. . .BNl of G, for each Ωi there is some
Ns such that pri (Ns) = Soc (Gi) and pri (Ns+1) = {1}. Given an index s,
let X be the set of target orbit indices i such that pri (Ns) = Soc (Gi) and
pri (Ns+1) = {1}.

Assume, as inductive hypothesis, that we have computed a generat-
ing set for the group Hs in the sequence of groups G = H0, H1, . . . ,Hl

claimed in Theorem 4.12 with the desired properties. Namely, Hs contains

20

G{∆} as subgroup and |pri (Hs) | ≤ |Gi|/2 for all target orbit indices i such
that pri (Ns) = {1}. We will find Hs+1 as a subgroup of HsNs such that
|pri (Hs) | ≤ |Gi|/2 for all i ∈ X. Clearly, Hs+1 will satisfy Theorem 4.12.

We first give a broad outline of the FLModtL algorithm for finding Hs+1.
The actual details of the algorithm varies depends upon whether the socle is
abelian or not. It will be taken up in the two subsections after the outline.

The algorithm will pick a critical subset Y of X and compute the follow-
ing: For each generator x of Hs, it computes an element x′ ∈ G obtained as
xy ∈ HsNs for a suitably chosen y ∈ Ns such that x′ fixes ∆ ∩ Ωi for each
i ∈ Y . Next, the algorithm computes the subgroup N of Ns which point-
wise fixes ∆ ∩ Ωi for each i ∈ Y . Let H = 〈{x′ | x generator of Hs}〉. By
construction, HN will pointwise fix ∆∩Ωi for each i ∈ Y . Furthermore, the
algorithm will choose Y suitably (which will be explained in the details) so
that |pri (HN) | ≤ |pri (G) |/2 for all i ∈ X. The subgroup Hs+1 is defined
to be HN .

Since the residue series for G has the property that for each i there is an
s such that pri (Ns) is the socle of Gi, it follows that |pri (Hl) | ≤ |Gi|/2 for
all the target orbits Ωi.

When the socle is nonabelian

Suppose Ns/Ns+1 is T -semisimple for a nonabelian simple group T . Based
on the O’Nan Scott Theorem 4.10, we can partition X into X1 ∪X2, where
for each i ∈ X1, Soc (Gi) is of type (ii), and for each i ∈ X2, Soc (Gi) is of
type (iii). For i ∈ X1, Soc (Gi) is the unique minimal normal subgroup of
Gi. For i ∈ X2, Soc (Gi) is of the form K1 ×K2, where the two socle parts
K1 and K2 are the only two minimal normal subgroups of Gi.

Furthermore, if K is a socle for some i ∈ X1, or K is a socle part for
for some i ∈ X2, then K is T -semisimple. More precisely, it is of the form
T1 × . . .× Td for a constant d with each Tj ∼= T , and G acts transitively by
conjugation on {T1, . . . , Td}.

In the following lemma we summarize observations from [Lu86] (that
follow from the O’Nan Scott Theorem 4.10 and Scott’s Lemma 4.11). This
lemma identifies the group Ns projected on orbits in X using the socle parts
of Soc (Gi) for i ∈ X. More precisely, if K and K ′ are two socle parts
corresponding to any two indices i, j ∈ X, then Ns projected on Ωi ∪ Ωj

either induces the group Diag (K ×K ′) or K ×K ′. In the former case we
say that the socle parts K and K ′ are linked in Ns.

Lemma 6.1. Let G = N0 B . . .BNl be a residue series for the permutation
group G, where (G,∆) is an instance of primitive-POINTSETb. Let X be

21

the set of indices i such that pri (Ns) = Soc (Gi) and pri (Ns+1) = {1} where
Ns/Ns+1 is T -semisimple for a nonabelian simple group T . For any pair of
indices i, j ∈ X exactly one of the following holds:

(a) Ns projected on Ωi ∪ Ωj is of the form Soc (Gi)× Soc (Gj).

(b) If i, j ∈ X1 and Ns projected on Ωi ∪Ωj is of the form Diag (K ×K ′),
where K = Soc (Gi) and K ′ = Soc (Gj).

(c) If i, j ∈ X2, and Soc (Gi) = K1 × K2 and Soc (Gj) = K ′1 × K ′2
then Ns projected on Ωi ∪ Ωj is either of the form Diag (K1 ×K ′1) ×
Diag (K2 ×K ′2) or of the form Diag (K1 ×K ′1)×K2 ×K ′2.

(d) If i ∈ X1 and j ∈ X2, Soc (Gi) = K and Soc (Gi) = K1×K2, then Ns

projected on Ωi ∪ Ωj is of the form Diag (K ×K1)×K2.

Furthermore, observe that if K = T1 × . . . × Td and K ′ = T ′1 × . . . × T ′e
are two linked socle parts, then e = d and in Diag (K ×K ′), Tj is linked to
T ′π(j) for some permutation π of the indices.

In deterministic logspace we first construct an undirected graph G with
vertex set V = {K | K is a socle part of Soc (Gi) , i ∈ X}. The edge set E is
partitioned into RED and BLUE edges defined as follows: RED = {(K,K ′) |
K and K ′ are linked} and BLUE = {(K,K ′) | ∃i ∈ X : Soc (Gi) = K ×
K ′}.

Next, in deterministic logspace the algorithm will find the connected
components in the red subgraph (V,RED). Notice that by Scott’s Lemma 4.11
the red subgraph is transitive. Thus, the connected components are just
cliques and can be easily determined in deterministic logspace.

Finding Y We partition the cliques of the red subgraph of G into two
sets T1 and T2, where a red clique C is put in T1 if C contains an element
K = Soc (Gi) for some i ∈ X. The remaining cliques are put in T2.

We will find the critical subset Y of X in two stages. In the first stage we
pick Y1 defined as follows: for every clique C ∈ T1 pick a K = Soc (Gi) ∈ C
and include the index i in Y1.

We now take the graph G and delete all the cliques in T1 (and the incident
edges). Call the new graph G′. In G′, considering the red cliques as vertices,

we compute the lexicographically first spanning forest of blue edges in LSL =
L.3

3Alternatively, we can shrink the cliques in G′ into vertices and find a spanning forest
of blue edges.

22

Let E′ be the blue edges in the spanning forest. Recall that each
e = (K,K ′) ∈ E′ corresponds to the orbit Ωi where Soc (Gi) = K × K ′.
The remaining part Y2 of the critical subset Y consist of such indices i
corresponding to edges in E′.

Thus, we have determined Y in LSL = L.

Finding N and H The subgroup N of Ns pointwise fixes ∆∩Ωi for each
i ∈ Y . I.e. N = {g ∈ Ns | δg = δ ,∀ δ ∈ ∪i∈Y (∆ ∩ Ωi)}. Notice that, since
Ns+1 fixes ∆ ∩ Ωi for each i ∈ X, we have Ns ≥ N ≥ Ns+1.

We find N in two stages corresponding to Y1 and Y2.
Let N ′ = {g ∈ Ns | δg = δ, ∀ δ ∈ ∪i∈Y1(∆ ∩ Ωi)}.
Let the set S denote the SGS for Ns rel Ns+1. By the construction of

the SGS described in Theorem 5.3 for the nonabelian case, it is easy to see
that for every clique C ∈ T1, there is a subset SC of the SGS S with the
following property:
For a K ∈ C let the corresponding orbit index be i (note that i ∈ Y1).
Either Soc (Gi) = K or Soc (Gi) = K×K ′, and we have pri (SC) = K (note
that K ′ has to be in a different clique). Furthermore, for each index j 6= i
we have prj (SC) = {1}.

Now, from the elements of SC for each C ∈ T1, we can compute the
subgroup N ′ of Ns in deterministic logspace. Let S′C ⊂ SC be those elements
that fix ∆ ∩ Ωi for each i ∈ Y1 corresponding to some K ∈ C. Then N ′ is
generated by the union of the subsets S′C of SC for different C ∈ T1.

Furthermore, for each generator x of Hs, we can also compute an element
y ∈ S such that xy = x′ pointwise fixes ∪i∈Y1(∆ ∩ Ωi). More specifically,
y can be chosen by picking appropriate elements from different SC , C ∈ T1

and multiplying them. Denote by H ′ the group generated by these x′’s
computed as above.

Next we explain how to handle the critical orbit indices in Y2. Consider
the spanning forest with vertex set V ′ = V (G′) and edges E′ (already de-
fined, consisting of blue edges). Each tree in this forest can be considered
as a rooted tree, with its root at the lexicographically least vertex. Thus,
each edge in the forest is directed blue edge.

Consider any x ∈ G. We explain an FLSL = L algorithm for computing
an element y ∈ N ′ such that xy fixes all the elements in ∪i∈Y2(∆ ∩ Ωi). In

order to do this we define an FLSL = L subroutine that does the following:

Step 1. It takes as input an edge {u, v} in the spanning forest (V ′, E′). Using
an SL oracle it determines the the unique path s = u0, u1, . . . , ur−1 =

23

u, v = ur in the forest from a root s, this gives the edge (u, v) an
orientation (in the direction of the path from s).

Step 2. Let the actual socle parts determining the edges in this path be
(Ki, Li) for each edge (ui, ui+1). These can be identified easily in
logspace. Now, suppose we have picked elements y0, . . . , yi−1 of the
SGS of Ns rel Ns+1 for the first i edges of this path. Let the orbit
corresponding to (Ki, Li) be Ωj and let {δ} = ∆ ∩ Ωj . If δx = µ and
µyi−1 = ν, then for the edge (ui, ui+1) pick the lexicographically least
element yi from the SGS of Ns rel Ns+1 such that νyi = δ. This is
clearly possible since Li is transitive and it is not linked to any socle
part associated to an edge at distance smaller than i+ 1.

Step 3. Output the elements yi corresponding to the edges of G in increasing
order of distance from their corresponding roots. This can also be

done in FLSL = L.

Define y as a product of the yi’s computed in the order output by the
above subroutine. It is easy to see by construction that x′ = xy will fix each
point in ∪i∈Y2(∆ ∩ Ωi).

Now, we can define the group H ′′ as the subgroup generated by these
elements x′ for each generator x of H ′.

Likewise, let N ′′ be the subgroup of N ′ obtained by computing z′ for
each generator z of N ′ using the above subroutine. It is easy to see that N ′′

is the pointwise stabilizer of ∪i∈Y (∆ ∩ Ωi).
We define Hs+1 = H ′′N ′′. The construction of Hs+1 enforces that if K

and K ′ are any two socle parts (vertices in V) that are connected by a path
in (V,RED ∪BLUE) then in Hs+1 the socle parts K and K ′ are diagonally
linked. We first argue that in Hs+1 for each i ∈ X, |pri (Hs+1) | ≤ |Gi|/2.
This is already true for each i ∈ Y by construction. Let i ∈ X \ Y .

If Soc (Gi) is of type (ii), then the corresponding socle part K is in a
red clique. Furthermore, since the red clique has a representative L in Y on
which Hs+1 is cut down, due to the linking of K and L, Hs+1 is cut down
in K (and hence Gi) as well.

If Soc (Gi) is of type (iii), let Soc (Gi) = K1 × K2. Now, pri (Hs+1) =
Diag (K1 ×K2), implying that Hs+1 is cut down on this orbit as well.

Let Σ = ∪i∈Y (∆ ∩ Ωi). By construction we have Hs ≤ Hs+1Ns. Now,
inductively assuming that G{∆} ≤ Hs, notice that

G{∆} ≤ (Hs){Σ} ≤ (Hs+1Ns){Σ} = Hs+1N
′′ = Hs+1.

This completes the proof for the case when the socle is nonabelian.

24

When the socle is abelian

We now turn to the case when Soc (Gi) is abelian for each i ∈ X, where
X is the set of orbit indices for which pri (Ns) is abelian. Assume that the
group Hs is already computed.

Finding Y Suppose Ns/Ns+1 is T -semisimple. Then T is Zp for some
prime p. By the O’Nan Scott Theorem 4.10, for each i Soc (Gi) is a subgroup
of Zcip , where the number of copies of Zp is a constant ci (that depends on b).
It follows that Ns projected on the set of orbits Ωi for i ∈ X is isomorphic
to a subgroup of Zrp where r =

∑
i∈X ci = O(m). Thus, Ns projected

on the set of orbits Ωi for i ∈ X is actually a subspace U of Zrp. Here,
in Zrp we assume that the coordinates corresponding each orbit i ∈ X are
adjacent and appear in the increasing order of i ∈ X. Furthermore, we can
compute a basis for this projected subspace U from the generators of Ns in
deterministic logspace. Let v1,v2, . . . , vq be the computed basis. In FLModpL

we can compute a special basis for the vector space U as follows: for each
index j, 1 ≤ j ≤ r form a column vector y(j) = (0, . . . , 0, 1, yj+1, . . . , yr)

T ,
where the 1 occurs in the jth position, the first j − 1 positions have 0, and
yj+1, . . . , yr are indeterminates. Let A denote the matrix with columns as
v1,v2, . . . ,vq. In FLModpL the feasibility of Ax = y(j) can be tested, and
if feasible then a solution y(j) to y(j) can be computed. These vectors y(j)

clearly form a basis B for U .
Define the subset of orbit indices Y ⊂ X as follows: include index i in

Y if for some index j corresponding to Ωi, there is a solution y(j) ∈ B.

Finding N and H Now, projecting the vectors in B only on the orbits of
Y , we again apply an FLModpL computation to obtain a new set of vectors
B′ such that B′ spans U projected on the orbits of Y , and for each orbit
index i ∈ Y there is a vector zi ∈ B′ such that zi is nontrivial on all orbits
of Y except Ωi. As mentioned before, notice here that the algorithm can
keep track of the corresponding entire permutation in G while working with
a vector at each stage. Thus, we also have a πi ∈ Ns which coincides with
zi on the orbits Y .

Now, let x be a generator of Hs. By the above construction we can
obtain an element y ∈ Ns as a product of the form

∏
i∈Y π

ki
i such that

x′ = xy ∈ HsNs fixes ∆ ∩ Ωi for each i ∈ Y .
Let H be the subgroup generated by the above elements x′.
Next, notice that the subgroup N ≤ Ns consisting of elements that fix

∪i∈Y ∆ ∩ Ωi is trivial on all the orbits in Y (by O’Nan Scott Theorem).

25

Furthermore, the definition of Y forces that N is trivial on all Ωi, i ∈ X.
Hence, notice that Ns+1 CN CNs. Thus, Ns/N is also Zp-semisimple.

To find a generating set for N we will apply the algorithm of sifting and
normal closure from Theorem 5.3. To sift we proceeds as follows: for each
generator x of Ns, find an element y ∈ Ns as a product of the form

∏
i∈Y π

ki
i

such that x′ = xy fixes ∆∩Ωi for each i ∈ Y . Let S′ be this set of elements
x′, which is the sift of x in Ns rel N . It remains to compute NCLNs(S

′).
This can be easily done in FLModpL by applying the algorithm described in
the abelian case of Theorem 5.3 to the set S′.

Now, consider the group Hs+1 defined as HN . Since for each i ∈ X,
pri (H ∩Ns) is trivial, by Lemma 4.9 it follows that |pri (Hs+1) | ≤ |Gi|/2
for each orbit i ∈ X.

Notice that by construction of Hs+1 we have Hs ≤ Hs+1Ns. Let Σ =
∪i∈Y (∆ ∩ Ωi). Now, inductively assuming that G{∆} ≤ Hs, notice that

G{∆} ≤ (Hs){Σ} ≤ (Hs+1Ns){Σ} = Hs+1N = HNN = HN = Hs+1.

This completes the proof of the abelian case, and hence the proof of
Theorem 4.12.

Acknowledgments. We thank Jacobo Torán for discussions with him on
applying his result [Tor04, Lemma 4.7] to derive that BCGI is hard for the
ModkL hierarchy. The first and second authors are grateful to Johannes
Köbler for hosting their visits at Humboldt Universität, Berlin under the
DST-DAAD project, and for many useful discussions on BCGI and related
questions.

References

[ABO99] Eric Allender, Robert Beals, and Mitsunori Ogihara. The com-
plexity of matrix rank and feasible systems of linear equations.
Computational Complexity, 8:99-126, 1999.

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L and the
determinant. RAIRO Theoretical Informatics and Applications,
30(1):1–21, 1996.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and
counting: Uniform and nonuniform upper bounds. Journal of
Computer and System Sciences, 59:164-181, 1999.

26

[Al04] E. Allender. Arithmetic Circuits and Counting Complexity
Classes. To appear in Quaderni di Matematica series, Edited by
Jan Krajicek, 2004.

[Bab79] L. Babai Monte Carlo algorithms in graph isomorphism testing.
Universitat de Montreal Tech. Report D.M.S, 79-10, 1979.

[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, C. Meinel. Structure
and Importance of Logspace-MOD Classes. Mathematical Systems
Theory, 25(3): 223-237 (1992).

[FHL80] M. L. Furst, J. E. Hopcroft, E. M. Luks. Polynomial-Time Algo-
rithms for Permutation Groups. In Proceedings of Foundations of
Computer Science, IEEE Computer Society, 36-41, 1980.

[Ha] M. Hall. The Theory of Groups. Macmillan, New York, 1959.

[JKMT04] B. Jenner, J. Köbler, P. McKenzie, J. Torán. Completeness re-
sults for graph isomorphism. J. Comput. Syst. Sciences, 66(3):
549-566, 2003.

[Lu86] E. M. Luks. Parallel algorithms for permutation groups and graph
isomorphism. In Proceedings of the IEEE Foundations of Com-
puter Science, IEEE Computer Society, 292-302, 1986.

[Luk93] E. M. Luks. Permutation groups and polynomial time computa-
tions. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 11:139–175, 1993.

[LM88] E. M. Luks and P. McKenzie. Parallel algorithms for solvable
permutation groups. Journal of Computer and System Sciences,
37, 1988, 39-62.

[MC87] P. McKenzie and S. C. Cook. The parallel complexity of abelian
permutation group problems. Siam Journal of Computing, 16:880-
909, 1987.

[Re04] O. Reingold. Undirected graph connectivity is in logspace. ECCC
Technical Report, TR94-04, Nov. 2004.

[RST84] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies
and probabilistic computation. Journal of Computer and System
Sciences, 28:216-230, 1984.

27

[Tod91] S. Toda. Counting problems computationally equivalent to
computing the determinant. Technical Report CSIM 91-
07, Department of Computer Science, University of Electro-
Communications, Tokyo, Japan, May 1991.

[Tor04] J. Torán. On the hardness of Graph Isomorphism. SIAM Journal
of Computing, 33(5): 1093-1108, 2004.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-
unbounded arithmetic circuits. In Structure in Complexity Theory
Conference, pages 270-284, 1991.

[Wie64] Helmut Wielandt. Finite Permutation Groups. Academic Press,
New York, 1964.

28

