
On the Complexity of Computing Units in a

Number Field

V. Arvind and Piyush P Kurur
Institute of Mathematical Sciences

C.I.T Campus,Chennai, India 600 113
{arvind,ppk}@imsc.res.in

April 4, 2017

Abstract

Given an algebraic number field K, such that [K : Q] is constant, we
show that the problem of computing the units group O∗K is in the complex-
ity class SPP. As a consequence, we show that principal ideal testing for an
ideal in OK is in SPP. Furthermore, assuming the GRH, the class number
of K, and a presentation for the class group of K can also be computed
in SPP. A corollary of our result is that solving PELL′S EQUATION,
recently shown by Hallgren [12] to have a quantum polynomial-time algo-
rithm, is also in SPP.

1 Introduction

The computation of units in a number field is a fundamental problem in compu-
tational number theory and is considered an important algorithmic task in the
area. It has been the subject of considerable research in the last two decades and
several algorithmic results as well some complexity-theoretic results have been
pioneered. Much of this research (e.g. [17, 7, 6]) is based on ideas developed by
Buchmann in [3, 4].

In the present paper we are interested in the following problems in compu-
tational number theory, from a structural complexity perspective. Let K be a
number field given by its minimal polynomial.

1. Computing a fundamental system of units that generates the units group
O∗K in OK .

2. Computing a presentation (i.e. a set of generators and relators) for the
class group Cl(K) of K and the class number h(K).

3. Testing if a given ideal A of OK is a principal ideal.

1

From a purely complexity theory perspective, earlier research on these prob-
lems was by McCurley [16], and Buchmann and Williams [7]. This was followed
by the Thiel’s work [17] where it is shown that the problem of principal ideal
testing is in NP. Furthermore, assuming the Generalized Riemann Hypothesis,
it is shown in [17] that principal ideal testing and verifying the class number are
in NP ∩ coNP.

Our interest to further investigate the computational complexity of these
problems is motivated by the recent exciting work of Hallgren [12] where it
is shown that computing a solution to PELL′S EQUATION is in BQP (the
class of problems that have polynomial-time quantum algorithms). Hallgren’s
main result is that given a quadratic number field K, its regulator RK can
be computed by a polynomial-time quantum algorithm. The regulator is the
solution to PELL′S EQUATION. For quadratic fields, Hallgren also indicates
how principal ideal testing and computing the class group are problems in BQP.
Hallgren’s results, however, do not appear to generalize to number fields of
larger degree. Thus, it remains an open problem if these problems are in BQP
for number fields of degree more than two.

How does the class BQP relate to standard complexity classes defined using
classical Turing machines? Fortnow and Rogers [11] show that BQP is contained
in the counting complexity class AWPP (definitions in Section 1.1). Thus, in
a sense, we can think of BQP as a counting class. Counting classes is an area
of research in structural complexity theory motivated by Valiant’s class #P
(see e.g. [10]). Intuitively, counting complexity classes are defined by suitable
restrictions on the number of accepting and rejecting paths in nondeterministic
Turing machines. In the rest of this section we give formal definitions followed
by a summary of our results.

1.1 SPP and other Counting Complexity Classes

Let Σ = {0, 1} be the finite alphabet. Let lg denote logarithm to base 2. Let
FP denote the class of polynomial-time computable functions and NP denotes
all languages accepted by polynomial-time nondeterministic Turing machines.
Let Z denote integers. A function f : Σ∗ → Z is said to be gap-definable if there
is an NP machine M (i.e. a nondeterministic polynomial time Turing machine
M) such that, for each x ∈ Σ∗, f(x) is the difference between the number of
accepting paths and the number of rejecting paths of M on input x. Let GapP
denote the class of gap-definable functions [10]. For each NP machine M let
gapM denote the GapP function defined by it.

A language L is in UP if there is an NP machine M accepting L such that
M has at most one accepting path on any input. The class UP was defined by
Valiant and it captures the complexity of 1-way functions. The complexity class
SPP is defined as follows. A language L is in SPP if there is an NP machine M
such that x ∈ L implies gapM (x) = 1 and x 6∈ L implies gapM (x) = 0. In this
case we say that L is accepted by the machine M . Note that the class SPP is
essentially a GapP analogue of the class UP and UP ⊆ SPP.

We say that f is in GapPA, for oracle A ∈ Σ∗, if there is an NPA machine

2

MA such that, for each x ∈ Σ∗, f(x) is the difference between the number of
accepting paths and the number of rejecting paths of MA on input x. For an
oracle A, we can now define the class SPPA.

The class PP is defined as follows: a language L is in PP if there is an
f ∈ GapP such that x ∈ L if and only if f(x) > 0. PP is a hard counting class:
by Toda’s theorem we know that PH ⊆ PPP. We say that a language A ∈ Σ∗

is low for PP if PPA = PP. Characterizing the class of languages low for PP is
an intriguing open question in structural complexity.

In [10] it is shown that every language in SPP is low for PP. Additionally,
SPP has nice closure properties [10]: PSPP = SPPSPP = SPP. Another class
that is low for PP [14] is BPP (the class of languages with polynomial-time ran-
domized algorithms with error probability bounded by, say, 1/3.) Subsequently,
the complexity class AWPP was introduced1 in [9]. The class AWPP generalizes
both BPP and SPP, and it is shown that every language in AWPP is low for
PP. To complete the picture relating these classes, Fortnow and Rogers in [11]
show that BQP is contained in AWPP. It is interesting to note that NP∩ coNP
is not known to be low for PP. Here is a diagram that shows the containments
between the complexity classes discussed here.

AWPP

SPP BQP

UP BPP

P

.

Although no containment is known between BQP and SPP, it is interesting
to compare these classes in terms of natural problems they contain. Important
problems known to be in SPP are Graph Isomorphism and the hidden subgroup
problem for permutation groups [1]. These problems have resisted efficient de-
terministic or randomized algorithms, but are considered potential candidates
for quantum algorithms. On the other hand, FPSPP contains Integer Factoring
and Discrete Log that have polynomial-time quantum algorithms.2

1.2 The New Results and the Methods

We now state the main results of the paper.

1For the definition see [9].
2In fact, these problems are even in FPUP. Also, as PSPP = SPP, notice that the class

FPSPP is essentially SPP: for f ∈ FPSPP and input x, the bits of f(x) can be computed in
SPP. A similar closure property holds for BQP.

3

(a) Given a number field K (by its minimal polynomial as input), the problem
of computing a fundamental system of units is in FPSPP, assuming that K
is a constant degree extension of Q. As a consequence finding the regulator
of K upto polynomially many bits of approximation is also in FPSPP. As
a corollary the PELL′S EQUATION problem is in FPSPP.

(b) Given a constant-degree number field K and an ideal A of the ring OK ,
testing if A is a principal ideal is in SPP.

(c) Given a constant-degree number field K (by its minimal polynomial as
input), the problem of computing the class group of K (by finding a
generator-relator presentation for it) and finding the class number of K is
in FPSPP, assuming GRH.

In particular, PELL′S EQUATION is also in FPSPP. Thus, we add to the
list of natural problems that are in both SPP and BQP. A brief outline of the
methods used to show the above results is given below.

Let M be an oracle Turing machine. For a language A in NP, we say that
MA makes UP-like queries to A if there is an NP machine N accepting A such
that on all inputs x, MA(x) makes only such queries y for which N(y) has at
most one accepting path. Effectively, it is like M having access to a UP oracle.
We state a useful variant of a result from [15].

Theorem 1.1 ([15]). Let M be a nondeterministic polynomial-time oracle ma-
chine with oracle A ∈ NP such that MA makes UP-like queries to A then the
function h(x) = gapMA(x) is in GapP.

Next, we recall an important property of the class SPP shown in [10].

Theorem 1.2 ([10]). If L is in SPPA for some oracle A ∈ SPP then L ∈ SPP.
I.e. SPPSPP = SPP.

The following lemma, which is a straightforward consequence of Theorem 1.1
and of Theorem 1.2, is in a form useful for this paper.

Lemma 1.3.

• Suppose L is in SPPA accepted by the nondeterministic polynomial-time
oracle machine MA with oracle A ∈ NP (i.e. x ∈ L implies that gapMA(x) =
1, and x 6∈ L implies that gapMA(x) = 0), such that the machine MA

makes UP-like queries to A, then L is in SPP.

• Suppose a function f : Σ∗ → Σ∗ is in FPA (i.e. f is computed by a
polynomial-time oracle transducer MA) where A ∈ NP, such that the ma-
chine MA makes UP-like queries to A, then f is in FPSPP.

Lemma 1.3 is a crucial tool in obtaining the FPSPP upper bounds. For
computing a fundamental system of units in FPSPP we first show that a bound
B ∈ Q can be computed in FPSPP such that the regulator RK of K lies between
B and 2B. Once such a bound is computed, we again apply an algorithm based

4

on Lemma 1.3 to compute a canonical fundamental system of units in FPSPP.
This notion of canonical fundamental system of units is developed and explained
in Sections 2 and 3, where we show how to transform an arbitrary fundamental
system of units to the canonical set.

Once we have the FPSPP upper bound for computing fundamental units,
we can design an SPP algorithm for principal ideal testing. If we assume the
generalized Riemann hypothesis then, by a result of Bach [2], we can apply
our SPP algorithm for principal ideal testing and give an FPSPP algorithm for
computing the class group Cl(K).

1.3 Comparison with previous results

As mentioned, Thiel [17] has shown that principal ideal testing is in NP. Thiel
also shows, assuming the GRH, that principal ideal testing and verifying class
number are in NP ∩ coNP. On the other hand, our results on principal ideal
testing and computing a fundamental system of units are unconditional, but
applicable to only number fields of constant degree. The FPSPP upper bound
for the class group problem depends on the GRH.

No containment relation is known between SPP and NP∩coNP or BQP and
NP ∩ coNP. Furthermore, we remark here that NP ∩ coNP is not known to be
low for PP. Thus, the results of Thiel [17] are incomparable to our results.

An important computational aspect in all our results is the notion of compact
representation as explained by Thiel [17], based on Buchmann’s earlier papers
[3, 4]. We need compact representations to succinctly express units as well as
the generating element of a principal ideal in OK .

2 Compact representation

Let K be a number field of degree n and let O be the ring of integer of K. Let
D be the discriminant of K. For an element α ∈ K by N (α) we mean the norm
NK

Q (α). Without loss of generality we assume that the input to the algorithm
is O presented as a Z-module with basis ω1, . . . ωn and constants cijk such that
ωiωj =

∑
k cijkωk. For, computing the maximal order from a given order is

reducible to the problem of finding the square free part of an integer which can
be done in FPSPP, as factoring integers is in FPSPP. By size of O we mean∑
size(cijk). The constants cijk will be the called the explicit data for K.
Fractional ideals a of O will be presented by giving a Z-basis for a. Let

αi =
∑
j aijωj , 1 ≤ i ≤ n, be a basis of a then by HNF(a) we mean the Hermite

normal form of the matrix (aij). Once ωi’s are fixed, for every ideal a, HNF(a)
is unique. Since the Hermite normal form of a matrix can be computed in
polynomial time this gives a polynomial time algorithm for testing whether two
ideals are equal.

Let σ1, . . . , σr be all the r real embeddings and σr+1, σr+1, . . . , σr+s, σr+s
be all the 2s complex embeddings of K. Define the r + s absolute values on K

5

as follows.

|α|i =

{
|σi(α)| if 1 ≤ i ≤ r
|σi(α)|2 if r + 1 ≤ i ≤ r + s

For α ∈ K, by height of α, denoted by H(α), we mean max{|α|i : 1 ≤ i ≤
r + s}.

Lemma 2.1. Given O, we have H(ωi) ≤ n2size(O), and lgD ≤ n(2 lg n +
size(O)).

Proof. Let l be such that for 1 ≤ i ≤ n H(ωl) ≥ H(ωi). Then we have

H(ωlωl) ≤
∑
k

|cllk|H(ωk) ≤ n2size(O)H(ωl).

Hence H(ωl) ≤ n2size(O). Also since D =
∑
g∈Sn

∏n
i=1 σg(i)(ωi) we have D ≤

n!.H(ωl)
n.

Fix a basis for O. For any α ∈ O there is a unique set of integers a1, . . . , an
such that α =

∑
aiωi. By giving the vector of integers ai’s the algebraic integer

α is completely specified. Following [17] this is the standard representation of α
which is unique for a fixed Z-basis forO. The size of α in standard representation
is sizes(α) =

∑
size(ai).

The following result from [17] describes a compact representation of algebraic
integers.

Theorem 2.2. For α ∈ O there exists k ≤ lg(lg(D) + (n− 1) lg H (α)) + 2 and

γ, αi ∈ O and di ∈ Z, 1 ≤ i ≤ k, with H (γ) ≤ N (α)
2/n

, H (αi) ≤ D
3
4 (m+2) and

0 < di ≤
√
D such that

α = γ

k∏
i=1

(
αi
di

)2k−i

.

Moreover, for 1 ≤ j ≤ k the ideal
∏j
i=1

(
αi

di

)2k−i

O is a reduced ideal.

A product of this form can be presented as a tuple 〈k, γ, 〈αi, di〉ki=1〉. For a
given compact representation of α the size of the representation is the sum of
the sizes of the integers di and the sizes of algebraic integers γ and αi’s in their
standard representation. Compact representations are not unique for a given
α even for a given Z-basis. Let sizec(α) denotes the maximum of sizes of all
compact representation of α. Using Lemma 2.1 and [17, Corollary 15] we have
the following theorem on compact representations.

Theorem 2.3. [17] For nonzero α ∈ O

sizes(α) ≤ (n lg H (α) · size(O))
O(1)

.

sizec(α) ≤
(
n2 lg 2(n) · size(O). lg (size(O)) ·N (α) · lg lg H(α)

)O(1)

6

Furthermore, given the compact representation 〈k, γ, 〈αi, di〉ki=1〉 of α, there is
a polynomial time algorithm that computes the Hermite Normal Form for the
ideal αO.

Conversely the following proposition from [17] gives a bound on the height
of the algebraic number based on the size of their representation.

Proposition 2.4. Let α be any algebraic integer of K, a number field of dis-
criminant D. Then we have:

1. For all j, H (α) ≤ n22sizes(α)+size(O).

2. For all j, ln H (α) ≤ ln N (α) + n3 lg n · sizec(α) · size(O) · 2sizecα.

3 Minimal bases for lattices

For a set of linearly independent vectors a1,a2, . . .an let a∗1,a
∗
2, . . . ,a

∗
n denote

the corresponding GSO (Gram-Schmidt) basis. Given a lattice Λ =
∑n
i=1 Zbi

in Rn with basis bi =
∑n
j=1 bijei. Let M = (µij) be the matrix that transforms

the GSO basis given by b∗i ’s to the basis given by the bi’s. We say that the
basis is proper if for every i < j ≤ n we have − 1

2 ≤ µij <
1
2 . The following

holds for any lattice.

Lemma 3.1. Given a lattice Λ with basis a1,a2, . . . ,an, a new basis b1,b2, . . .bn
can be computed in polynomial time such that bi’s form a proper basis and
b∗i = a∗i (i.e. the GSO basis of both vectors are the same).

Proof. Here is the algorithm.
b1 := a1;

1 for i = 2 to n do

Let ai = a∗i +
∑i−1
j=1 µija

∗
j ;

bi := ai;
2 for j = i− 1 downto 1 do

if µij ≥ 1
2 ∨ µij < −

1
2 then

Let n be the nearest integer to µij ;
3 bi := bi − nbj ;

end

end

end

The invariant for the loop in step 1 is − 1
2 ≤ µkj <

1
2 for all 1 ≤ j < k ≤ i−1.

If the invariant is violated at i for some j then the loop in step 2 fixes it. For a
given k note that step 3 does not affect any of the µij for j > k. It is also clear
that step 3 does not affect the GSO of the basis.

Given the vector space W = U ⊕ V such that U and V are orthogonal, for
w ∈ W , if w = u + v, u ∈ U and v ∈ V , then w/U denotes the vector v (i.e.

7

the component of w orthogonal to the space U). For a lattice Λ, Λ/V is the
lattice {v/V : v ∈ Λ}. If b1,b2 . . .bn forms a basis for Λ then any vector of
Λ/V can be expressed as an integer linear combination of bi/V ’s.

Given a lattice Λ, a basis b1,b2, . . . ,bn is called a minimal basis if it is
proper and it satisfies the following conditions:

1. b1 is a `1-shortest vector in Λ.

2. For all i, if Vi−1 is the span of the vectors b1,b2, . . . ,bi−1 then bi/Vi−1
is the vector of least `1 norm in the lattice Λ/Vi−1.

To find a canonical basis for the lattice Λ one can define a total order on the
set of all minimal basis of Λ and choose the least basis under that order. For two
vectors u =

∑
uiei and v =

∑
viei, u ≺ v if ‖u ‖1 < ‖v ‖1 or if ‖u ‖1 = ‖v ‖1

then there is an 1 ≤ i ≤ n such that uj = vj for all 1 ≤ j < i and ui < vi.
Consider two minimal basis A = {ai}ni=1 and B = {bi}ni=1 for the lattice Λ.

Let A∗ = {a∗i }ni=1 and B∗ = {b∗i }ni=1 be their GSO basis respectively. For two
such minimal basis A ≺ B if there is an i such that for all j < i, aj = bj and
a∗i ≺ b∗i .

Theorem 3.2. On the set of minimal bases, the relation ≺ forms a total order.

Proof. Suppose ≺ does not form a total order then we have two minimal basis
A and B and an index i such that aj = bj for all j < i and a∗i = b∗i yet ai 6= bi.
Expressing ai and bi in the respective GSO basis we have

ai =

i∑
j=1

αja
∗
j bi =

i∑
j=1

βjb
∗
j .

Let k be the index such that for all j > k, αj = βj and αk 6= βk . Clearly
k < i. Since the basis A and B are proper we have αj and βj lie in the interval[
− 1

2 ,
1
2

)
. Consider the vector u = ai − bi. Since a∗j = b∗j for all 1 ≤ j ≤ i we

have u = (αk−βk)a∗k+u′ where u′ lies in the vector space Vk−1 that is spanned
by {aj}k−1j=1 . But then ‖u/Vk−1 ‖1 = |αk − βk| ‖ak∗ ‖1 < ‖ak/Vk−1 ‖1 which
contradicts the fact that A and B are minimal.

Given an algorithm for finding the ≺-least vector of a lattice, Theorem 3.2
suggests the following algorithm for finding ≺-minimum basis for a lattice Λ.

To complete this section we give an algorithm for finding the ≺-minimum
element of a lattice Λ. We apply Lenstra’s algorithm for integer linear program-
ming [13] that runs in polynomial time if the number of variables is constant.

Lemma 3.3. If Λ ⊂ Rn is a lattice of rank r then assuming n is a constant
there is a polynomial time algorithm for finding the ≺-minimum element of Λ.

Proof. Let Λ = Z[b1,b2, . . . ,br] where the basis bi’s are given by bi =
∑
bijej .

The algorithm goes in two steps. The first step is to find a vector with least
`1 norm. In the subsequent steps this solution is refined further till we get the
≺-minimum vector.

8

Input: A set of linearly independent vectors b1,b2, . . . ,bn.
Output: The ≺-minimum basis for Λ.
Let Λ be the lattice Z[b1,b2, . . . ,bn];
Find the ≺-least element u of the lattice Λ;
Let {uk}nk=1 be a basis for Λ such that u1 = u;

Let u∗k = uk − 〈u,uk〉
〈u,u〉 u 1 < k ≤ n;

Find the ≺-minimum basis for the lattice Λ∗ generated by {u∗k}nk=2

recursively;
Let this basis be {b′i =

∑n
j=2 xiju

∗
j}ni=2;

Consider the basis {ai}ni=1 defined by a1 = u and ai =
∑n
j=2 xijuj ,

2 ≤ i ≤ n;
Converting this basis to a proper basis using Lemma 3.1 completes that
algorithm;

Algorithm 1: Computing ≺-minimal basis

To find a vector with least `1 norm we have the following integer program-
ming problem in r variables x1, x2, . . . , xr: Minimize the expression f(x) =∑n
i=1 |

∑r
j=1 bjixj | given f(x) > 0. Although this is not an integer linear pro-

gramming problem one can use the algorithm of Lenstra here as follows: For the
2n different vector c ∈ {−1, 1}n, solve the following integer linear programming
problem and pick the best among those 2n different solutions.

Minimize

r∑
i=1

(n∑
j=1

bijcj

)
xi,

under the constraints
r∑
i=1

(n∑
j=1

bijcj

)
xi > 0 (1)

0 ≤ cj
r∑
i=1

bijxi ≤ B, 1 ≤ j ≤ n. (2)

The first constraints expresses the fact that the solution should be nonzero.
The second set of constraints express the fact that we are choosing the right
ci’s.

The B in the equation is an upper bound on the `∞ of the shortest vector.
The `1 norm of any particular vector in the basis will be a suitable value for B.

Having obtained a solution for the `1-shortest vector say u one has to refine
the solution to get a ≺-minimum solution. Let uj denote a `1-shortest vector
which agrees with the ≺-minimum vector on all coordinates less than or equal
to j, then un is the desired solution. Let u0 = u. Having got the vector uj to
compute uj+1 we minimize

∑r
i=1 xibij+1 under the constraints ‖

∑r
i=1 xibi ‖1 =

‖uj ‖1 and
∑r
i=1 xibik = ujk for 1 ≤ k ≤ j. Here ujk denotes the component of

uj in the direction ek. One can use the same trick as before to convert this to
an integer linear programming problem and use Lenstra’s algorithm. Since the
dimension n is bounded, the running time is polynomial.

9

Combining Lemma 3.3 and algorithm 1 we have the following result.

Theorem 3.4. Given a lattice a basis {bi}ri=1 of a rank r lattice Λ ⊆ Rn there
is a polynomial time algorithm to compute the ≺-minimal basis of Λ assuming
n to be a constant

4 Units of a number field

Let K be a number field of degree n and let O be the set of algebraic integers of
K. If K has r real embeddings and 2s complex embeddings then by Dirichlet’s
theorem (see, e.g. [8]) there exists a set of m = r + s − 1 units {εi}mi=1, called
a fundamental system of units, such that every unit of O can be expressed
as ζεx1

1 . . . εxm
m , xi ∈ Z, where ζ is a root of unity in K. Consider the map

Log : K 7→ Rm defines as follows:

Log (α) = 〈ln |α|1, ln |α|2, . . . , ln |α|m〉

From Dirichlet’s theorem it follows that the set Log (O∗) is a lattice in Rm
with basis Log (εi)

m
i=1. Often it is necessary to work with vectors in this lattice

whose coordinates are in general irrationals. We will use rational approximations
of these vectors instead.

An important algorithmic task that will be useful in the FPSPP algorithm is
to compute a canonical fundamental system of units from a given fundamental
system of units U = {εi}mi=1. In this section we give a polynomial time algorithm
for the above task assuming that the degree [K : Q] is constant. The next
theorem is a re-statement of [17, Lemma 16] using the bound in Lemma 2.1.

Theorem 4.1. [17] There exists a fundamental system of units {εi}mi=1 for O
such that sizec(εi) = (n.size(O))O(1) for all 1 ≤ i ≤ m.

Consider the fundamental system of units {ηi}mi=1 that corresponds to ≺-
minimal basis of the lattice Log (O∗). We have the following observation.

Lemma 4.2. For all 1 ≤ i ≤ m, sizec(ηi) = (n.size(O))O(1).

Proof. The basis bi = Log (ηi) is the ≺-minimal basis of Λ = Log (O∗). Let b∗i
denote the corresponding GSO basis and let Vi = Span{bi}mi=1. Let {εi}mi=1 be
any fundamental system of units satisfying the condition in Theorem 4.1 then
ai = Log (εi) spans the lattice Λ. Without loss of generality we may assume that
ai 6∈ Vi. Since bi’s form the ≺-minimal basis of Λ we have ‖b∗i ‖∞ ≤ ‖b∗i ‖1 ≤
‖ai/Vi−1 ‖1 ≤ m ‖ai ‖∞. Hence we have ‖bi ‖∞ ≤ ‖b∗i ‖∞ + 1

2

∑i−1
j=1

∥∥b∗j ∥∥ ≤
m.A.(i − 1)/2, where A is an upper bound on ‖ai ‖∞. From Theorem 4.1
and Proposition 2.4 we have A ≤ (n · size(O) + 2sizec(εi))O(1) where i is such
that Log (εi) has the largest `∞ norm. Hence for every i we have ln H (ηi) ≤
(n ·size(O)+2sizec(εi))O(1). Together with Theorem 2.3 we have the result.

We now describe how a canonical fundamental system of units can be com-
puted given an arbitrary fundamental system of units. The following theorem,
based on a remark in [17], will be useful.

10

Theorem 4.3. [17] Assuming that [K : Q] is constant, there is a polynomial
time algorithm that takes as input a principal ideal a = αO by its Hermite
Normal Form and a good rational approximation for Log (α), and outputs a
compact representation for ζα where ζ is a root of unity in K.

Remark 4.4. The point to note in the above theorem is that only Log (α) is
given (as a rational approximation) and not the compact representation of α.
Also notice that Log (α) is unique only upto multiplication by roots of unity in
K. The theorem promises that one such element ζα, which depends only on
HNF(a) and Log (α), is computable in polynomial time.

Theorem 4.5. Assuming [K : Q] is a constant, there is a polynomial time de-
terministic algorithm that takes as input a fundamental system of units (as com-
pact representations) and outputs another fundamental system of units {ηi}mi=1

(as compact representations) corresponding to the ≺-minimal basis for Log (O∗).
Furthermore, {ηi}mi=1 is canonical in the sense that it does not depend on the
input fundamental system of units.

Proof. Given a fundamental system of units {εi}mi=1 compute {Log (εi)}mi=1 to
the desired approximation. Compute the ≺-minimal basis for the lattice gener-
ated by {Log (εi)}mi=1 using algorithm in Theorem 3.4. Let it be {bi}mi=1. Use
algorithm in Theorem 4.3 to compute compact representations of units {ηi}mi=1

corresponding to the vectors {bi}mi=1. Since the basis {bi}mi=1 is unique (upto
approximation) and since all the algorithms involved are polynomial time de-
terministic algorithm the output generated is independent of the fundamental
system of units that was given as input.

Given any set of units {εi}, we now analyze the approximation of Log (εi)
required in order to accurately compute the canonical fundamental system of
units.

Let {ηi} the canonical fundamental system of units and let ai = Log (ηi).
Let bi = Log (εi). Consider the matrices A = (aij) and B = (bij) (recall that
for a vector v, vi denotes its ith component). Since ai’s and bi’s span the same
lattice Λ = Log (O∗), there is a unimodular transformation U ∈ SLm(Z) such
that A = UB. Note that the determinant of B is the regulator which is at
least 0.2 and hence it can be shown that each entries of U is of size bounded
by a polynomial in the sized of entries in A and B. Let Bq denote the q bit
approximations of B and let Aq = UBq. We have

‖Aq −A ‖∞ = ‖U(Bq −B) ‖∞ ≤ m ‖U ‖∞ 2−q.

If we take q large enough so that ‖Aq −A ‖∞ is small enough for us to recover
back the compact representation of ηi’s we are through. It is easy to see that a
q that is bounded by a polynomial in the sizes of entries of A and B is sufficient
for this purpose.

Lemma 4.6. In the algorithm of Theorem 4.5, it suffices to approximate Log (εi)
to an error of 2−q where q ≤ (lg(‖A ‖∞) lg(‖B ‖∞))O(1).

11

5 Computing Units is in FPSPP

In this section we give an FPSPP algorithm for computing a fundamental system
of units for a number field K. The algorithm is in two stages. In the first stage
it computes a number B such that the regulator RK lies in the range [B, 2B).
Notice that, having computed such a bound B, we can test in deterministic
polynomial time if an arbitrary set of m algebraic numbers is a fundamental
system of units. Given this value of B, in the second stage the FPSPP algorithm
computes a fundamental system of units of K. The first stage is described in
the following lemma.

Lemma 5.1. Given a number field K, there is an FPSPP algorithm to compute
a constant B such that the regulator RK of K, lies in the interval [B, 2B).

Proof. We give a polynomial time algorithm that makes UP-like queries to an
NP oracle. Consider the following NP language:

A = {〈x,OK〉 | there is a subgroup of index y in O∗K : x ≤ yRK < 2x}.

We consider the following nondeterministic procedure that accepts A.

Input: A rational x and basis for the ring of integers, O of a number
field K

Output: “Yes” if there is a subgroup of O∗ of index y such that
x ≤ yRK < 2x; “No” otherwise.

1 Guess the polynomial sized compact representations of m units of O say
{ε}mi=1;

Compute rational approximations of {Log (εi)}mi=1 and check if they form
a linearly independent set. If not reject;

Compute the volume of the parallelepiped formed by the {Log (εi)}mi=1

and check if it lies in the interval [x, 2x). If not reject;
2 Use the algorithm in Theorem 4.5 to compute a canonical fundamental

system of units say ηi’s;
Check the whether the compact representations obtained in step 2 is
same as the guessed compact representations. If yes accept else reject;

We now explain Step 1. First guess m (polynomial sized) compact represen-
tations of m algebraic integers {αi}mi=1. Applying Theorem 2.3 it is possible to
compute αiO and check whether αiO = O in polynomial time.

In the above NP machine if x is such that x ≤ RK < 2x then there will be
only one accepting path. This is because any set of m units that was guessed in
step 1 will indeed be a fundamental system of units. For each of these accept-
ing paths, step 2 will give a unique compact representation of a fundamental
system of units— those units that in the Log map gives the ≺-minimum basis
of Log (O∗). Hence the only path that will accept is that which guessed that
unique compact representation of units corresponding to the ≺-minimal basis
of Log (O∗).

12

Input: A Z-basis for the ring of integers, O, of a number field K
Output: A rational B such that B ≤ RK < 2B
B := 0.2;
while true do

if 〈B,OK〉 ∈ A then return B ;
;
B := 2B;

end

It is known that the regulator of any number field is at least 0.2 [8]. We now
describe the procedure that computes the required bound B:

Since this procedure makes UP-like queries to the NP language A we can
convert it into a FPSPP algorithm by Lemma 1.3.

Lemma 5.2. Given a constant B such that B ≤ RK < 2B, a fundamental
system of units can be computed in FPSPP.

Proof. First, consider the following nondeterministic polynomial time machine
M . The machine M first guesses a set of m algebraic integers in their compact
representation and then verifies in polynomial time that the guessed algebraic
integers indeed form a fundamental system of units by first checking whether
they are indeed units (check if αO = O) and then calculating the volume of
the parallelepiped (in the Log map) formed by the vectors corresponding to
the guessed units, by a determinant computation. If this volume does not lie
between B and 2B, the machineM rejects on this computation path. Otherwise,
applying Theorem 4.5 along with the guessed fundamental system of units as
input, the machine M now computes a canonical fundamental system of units
and checks if it coincides with the guessed fundamental system of units. If they
do coincide the machine M accepts along this computation path. It is clear
from the above description that the nondeterministic machine M has a unique
accepting path. Applying Lemma 1.3, we can now design from M an FPSPP

algorithm that will compute a fundamental system of units, if it is additionally
given B such that B ≤ RK < 2B.

Now, combining Lemmas 5.1 and 5.2 we immediately obtain the following.

Theorem 5.3. There is a FPSPP algorithm to compute a fundamental system
of units of the ring of integers of a number field K assuming that the degree
[K : Q] is a constant.

6 Principle Ideal Testing is in SPP

Given a number field K and a Z-basis for its ring of integer O, the principal
ideal testing problem (denoted by PrI) problem is to check if an a of O is a
principal ideal. We show that this problem is in SPP.

13

Theorem 6.1. Given a number field K with ring of integers O and the Z basis
of a ideal a, checking whether a is principal is in SPP, assuming [K : Q] is a
constant.

Proof. Without loss of generality we can assume that a is an integral ideal.
First compute a fundamental system of units {εi}mi=1 of O using the algorithm in
Theorem 5.3. Guess the compact representation of an algebraic integer α. Check
if αO = a if not reject. Check if Log (α) lies in the fundamental parallelepiped
{x ∈ Rm : x =

∑
αiLog (εi) , αi ∈ [0, 1]}. If not reject. Next, apply Theorem 4.3

to obtain a compact representation of α′ from Log (α) and a, such that Log (α) =
Log (α′). If the compact representations of α and α′ coincide we accept on that
computation path and reject otherwise. The correctness of the easily follows
from Theorem 4.3 and the fact that for every α ∈ O there is a unique associate
in the fundamental parallelepiped.

6.1 Computing the Class Number

Finally, we show that if we assume the generalized Riemann hypothesis (GRH)
then finding the class number and a presentation for the class group are in
FPSPP. It is shown by Bach [2] that if the GRH is true then the class group of
any number field K is generated by the ideal classes of all non-inert prime ideals
of norm less L = 12 ln2 |D|. Let p1, . . . , pN be the (polynomially many) ideal
classes of all non-inert prime ideals of norm less L = 12 ln2 |D|. We can compute
these ideals pi in polynomial time as explained, for example in [8, Section 6.2.5]
or [5].

Our goal is to compute the class number and a generator-relator presentation
of the class group of K. Let Gi denote the subgroup of Cl(K) generated by
{p1, . . . , pi} and let G0 = {id}. For each i let ti be the least positive integer
such that ptii ∈ Gi−1. Let sij , 1 ≤ i ≤ N and 1 ≤ j < i be integers such that

0 ≤ sij < tj and such that ptii ∼
∏i−1
j p

sij
j . The set of relators defined by

R =

ptii =

i−1∏
j=1

p
sij
j : 1 ≤ i ≤ N


together with the generator set {p1, . . . , pN} gives a generator-relator presen-
tation of Cl(K). Furthermore, notice that the sij ’s are unique in the range
0 ≤ sij < tj . Also, t1 is the order of the ideal class of p1 in Cl(K). We will

describe an FPSPP procedure for computing the set R inductively as follows.
Assume that the set of relators

Ri =

{
p
tj
j =

j−1∏
k=1

p
sjk
k : 1 ≤ j ≤ i

}

is already computed (where R0 = ∅). It suffices to give an FPSPP procedure
for computing Ri+1. To this end, we define an NPSPP language A as follows:

14

A consists of the set of tuples
〈
x, y, {aj}ij=1, {(mj , nj)}i−1j=1

〉
such that there is

a x ≤ t < y and mj ≤ sj < nj such that ati ∼
∏i−1
j=1 a

sj
j , where aj ’s are ideals

in OK given by their HNFs. It is easy to see that the language A is in NPSPP:
guess t and the sj ’s and verify the class group identity by applying the SPP
algorithm for principal ideal testing in Theorem 6.1.

The following code is a polynomial-time oracle computation (with oracle A)
that computes Ri+1 from Ri.

Let T := 1;
while true do

if 〈T, 2T, {pj}i+1
j=1, {(1, tj)}ij=1〉 ∈ A then break ;

else T := 2T ;

end
Do a binary search for ti+1 in the range [T, 2T) using A as oracle.;
Next, do a binary search to compute the sj ’s. (* These sj ’s are actually
the si+1j in the definition of R. *)

It is easy to see that in the above algorithm only UP-like queries are made to
A. More precisely, the queries will be of the form

〈
x, y, {pj}ij=1, {(mj , nj)}i−1j=1

〉
,

with parameters such that the NPSPP machine for A will have at most one ac-
cepting path. The queries are UP-like as Ri is a set of relators for Gi. Now,
using closure properties of SPP and Lemma 1.3 we can transform the above al-
gorithm to an FPSPP procedure that inductively computes the generator-relator
presentation of the class group Cl(K). Observe that the class number is given

by
∏N
i=1 ti. Hence we have the following theorem.

Theorem 6.2. Assuming the GRH, the class number and a generator-relator
presentation for the class group of a constant-degree number field can be com-
puted in FPSPP.

Acknowledgment. We thank the referees for their useful comments.

References

[1] V. Arvind and P. P. Kurur. Graph Isomorphism is in SPP. In 43rd Annual
Symposium of Foundations of Computer Science, pages 743–750. IEEE,
November 2002.

[2] E. Bach. Explicit bounds for primality testing and related problems. Math-
ematics of Computation, 55:355–380, 1990.

[3] J. Buchmann. On computation of units and class number by a generaliza-
tion of Lagrange’s algorithm. Journal of Number Theory, 26:8–30, 1987.

[4] J. Buchmann. On the period length of the generalized Lagrange algorithm.
Journal of Number Theory, 26:31–37, 1987.

15

[5] J. Buchmann and H. W. Lenstra Jr. Computing maximal orders and de-
composing primes in number fields. preprint.

[6] J. Buchmann and H. C. Williams. On the infrastructure of the principal
ideal class of an algebraic number field of unit rank one. Mathematics of
Computation, 50:569–579, 1988.

[7] J. Buchmann and H. C. Williams. On the existence of a short proof for the
value of the class number and regulator of a real quadratic field. Number
Theory and Applications, 265:327–345, 1989.

[8] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-
Verlag, Berlin, 1993.

[9] S. Fenner, L. Fortnow, S. A. Kurtz, and L. Li. An oracle builder’s toolkit.
In SCT: Annual Conference on Structure in Complexity Theory, pages 120–
131, 1993.

[10] S. A. Fenner, L. Fortnow, and S. A. Kurtz. Gap-definable counting classes.
In Structure in Complexity Theory Conference, pages 30–42, 1991.

[11] L. Fortnow and J. D. Rogers. Complexity limitations on quantum compu-
tation. In IEEE Conference on Computational Complexity, pages 202–209,
1998.

[12] S. Hallgren. Polynomial-time quantum algorithms for pell’s equation and
the principal ideal problem. In Proceedings of the 34th ACM Symposium
on Theory of Computing, pages 653–658. IEEE, 2002.

[13] H. W. Lenstra Jr. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983.

[14] J. Kobler, U. Schoning, S. Toda, and J. Toran. Turing machines with few
accepting computations and low sets for PP. Journal of Computer and
System Sciences, 44(2):272–286, 1992.

[15] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem:
Its Structural Complexity. Birkhauser, 1993.

[16] K. S. McCurley. Cryptographic key distribution and computation in class
groups. In NATO Advanced Science Institute Series C, volume 256, pages
459–479. Kluwer, Dordrecht, 1989.

[17] C. Thiel. Under the assumption of the Generalized Riemann Hyothesis
verifying the class number belongs to NP∩ co-NP. In Algorithmic Number
Theory, First International Symposium, ANTS-I, volume 877 of Lecture
Notes in Computer Science, pages 234–247. Springer, 1994.

16

