
Introduction to OpenMP

Sandeep Agrawal
C-DAC Pune

Parallelism
Source: https://en.wikipedia.org/wiki/Pit_stop

 General concepts
 What is OpenMP
 OpenMP Programming and Execution Model
 OpenMP constructs
 Data Locality
 Granularity of Parallelization
 Domain Decomposition
 Advantages and Disadvantages of OpenMP
 References

Contents

Basis System Architecture

Memory

Memory

Single Core Processor Multi Core Processor

Sequential Program Execution

Memory

Multi Core Processor
When you run sequential program

• Instructions executed in serial
• Other cores are idle

Waste of available resource… We
want all cores to be used to execute
program.

HOW ?

• An executing instance of a program is called a process

• Process has its independent memory space

• A thread is a subset of the process – also called lightweight process allowing faster

context switching

• Threads share memory space within process’s memory

• Threads may have some (usually small) private data

• A thread is an independent instruction stream, thus allowing concurrent operation

• In OpenMP one usually wants no more than one thread per core

Process and Thread

 Multiple threads operate independently but share same
memory resources

 Data is not explicitly allocated

 Changes in a memory location effected by one process
is visible to all other processes

 Communication is implicit

 Synchronization is explicit

Shared Memory Model

Memory

Open Multi-Processing
(OpenMP)

OpenMP Introduction

 Open Specification for Multi Processing

 Provides multi-threaded parallelism

 It is an specification for

o Directives

o Runtime Library Routines

o Environment Variables

 OpenMP is an Application Program Interface (API) for writing multi-
threaded, shared memory parallelism.

 Easy to create multi-threaded programs in C,C++ and Fortran.

Why Choose OpenMP ?

Portable

o Standardized for shared memory architectures

Simple and Quick

o Relatively easy to do parallelization for small parts of an application at a time
o Incremental parallelization
o Supports both fine grained and coarse grained parallelism

Compact API

o Simple and limited set of directives
o Not automatic parallelization

OpenMP Consortia and Release History

OpenMP Architecture Review Board (ARB) members are from across
academic, research, industrial organizations such as:

AMD, ARM, CRAY, IBM, Fujitsu, NEC, Intel, Red Hat …
ANL, LLNL, LBNL, ORNL, RWTH Aachen University, NASA ...

OpenMP Compilers for C/C++/Fortran:

GNU, Intel, PGI, LLVM/Clang, IBM, Absoft …

From GCC 4.9.1, OpenMP 4.0 is fully supported for C/C++/Fortran
From GCC 6.1, OpenMP 4.5 is fully supported for C and C++
From GCC 7.1, OpenMP 4.5 is partially supported for Fortran
From GCC 9.1, OpenMP 5.0 is partially supported for C and C++

https://www.openmp.org/

Version Year
Fortran 1.0 1997
C/C++ 1.0 1998
Fortran 1.1 1999
Fortran 2.0 2000
C/C++ 2.0 2002
OpenMP 2.5 2005
OpenMP 3.0 2008
OpenMP 3.1 2011
OpenMP 4.0 2013
OpenMP 4.5 2015
OpenMP 5.0 2018

Execution Model

 OpenMP program starts single threaded

 To create additional threads, user starts a parallel region

 additional threads are launched to create a team
 original (master) thread is part of the team

 threads “go away” at the end of the parallel region

 Repeat parallel regions as necessary

Fork-join model

OpenMP Basic Syntax

C:

#pragma omp construct [clauses...]

{

// .. Do some work here

} // end of parallel region/block

#pragma omp parallel
{

……
…...

}

main (..)
{

#pragma omp parallel
{

……
…...

}

}

Header file #include “omp.h”
Parallel region

Parallel Region

Fork a team of N threads {0.... N-1}

Without it, all codes are sequential

Parallel Directive

 OpenMP directives are comments in source code that specify parallelism

 C/C++ compiler directives begin with the sentinel #pragma omp

 FORTRAN compiler directives begin with one of the sentinels !OMP, COMP, or *$OMP
 use !$OMPfor free-format F90

Fortran

!$OMP parallel
work …

!$OMP end parallel

!$OMP parallel
work …

!$OMP end parallel

C/C++
pragma omp parallel
{
work ...
}

pragma omp parallel
{

work...
}

How do Threads Interact ?

o threads read and write shared variable
– hence communication is implicit

o Unintended sharing of data causes race conditions
– race condition can lead to different outputs across different runs

o use synchronization to protect against race conditions

o synchronization is expensive
– change data storage attributes for minimizing synchronization

and improving cache reuse

OpenMP Language Extensions

Parallel Control
Structures

Parallel Control
Structures Work SharingWork Sharing Data HandlingData Handling SynchronizationSynchronization Runtime functions,

Environment Variables
Runtime functions,

Environment Variables

Governs flow
of control in
the program

parallel
directive

Governs flow
of control in
the program

parallel
directive

Distribute works
amongst threads

Do / for
parallel do/for

section
directives

Distribute works
amongst threads

Do / for
parallel do/for

section
directives

Data scope
variables

shared

private
clauses

Data scope
variables

shared

private
clauses

Coordinates
thread execution

critical

barrier
directives

Coordinates
thread execution

critical

barrier
directives

Runtime environments

omp_set_num_threads()
omp_get_thread_num()

OMP_NUM_THREADS
OMP_SCHEDULE

Runtime environments

omp_set_num_threads()
omp_get_thread_num()

OMP_NUM_THREADS
OMP_SCHEDULE

OpenMP Constructs

 Parallel region

#pragma omp parallel

 Worksharing

#pragma omp for

#pragma omp sections

 Data Environment

#pragma omp parallel shared/private (...)

 Synchronization

#pragma omp barrier

#pragma omp critical

Loop Constructs: Parallel for

In C/C++:

#pragma omp parallel for

for(i=0; i<n; i++)
{

a[i] = b[i] + c[i] ;
}

Scheduling of loop iterations

Schedule clause:
- specifies how loop iteration are divided among team of threads

Supported scheduling types

o Static
o Dynamic
o Guided
o Runtime

#pragma omp parallel for schedule (type,[chunk size])
{

// ...some stuff
}

schedule Clause

Schedule (static, [n])

• Each thread is assigned chunks in “round robin” fashion, known as block cyclic
scheduling

• If n has not been specified, it will contain
CEILING(number_of_iterations / number_of_threads) iterations

• Deterministic

Example:
loop of length 16, with 3 threads, and chunk size of 2:

schedule(dynamic, [n])

o Iteration of loop are divided into chunks containing n iterations each

o Default chunk size is 1

o Iterations picked by threads depends upon the relative speeds of thread execution

#pragma omp parallel for schedule (dynamic)
for(i=0; i<8; i++)
{

… (loop body)
}

schedule Clause (cont…)

schedule (guided, [n])

• If you specify n, that is the minimum chunk size that each thread should get

• Size of each successive chunks is decreasing

chunk size = max((num_of_iterations remaining / 2*num_of_threads), n)

- the formula may differ across compiler implementations

schedule (runtime)

Determine the scheduling type at run time by the OMP_SCHEDULE environment
variable

export OMP_SCHEDULE=“static, 4”

schedule Clause (cont…)

Data Scoping in OpenMP

o shared

o private

o firstprivate

o lastprivate

o default

#pragma omp parallel [data scope clauses ...]

shared Clause (Data Scope)

o Shared data among team of threads

o Each thread can modify shared variables

o Data corruption is possible when multiple threads attempt to update the same

memory location

o Data correctness is user’s responsibility

private Clause (Data Scope)

The values of private data are undefined upon entry to and exit from the specific
construct.

Loop iteration variable is private by default

Example:

#prgma omp parallel for private(tid)

for(i=0; i<n; i++)

{

tid = omp_get_thread_num();

printf(“ My rank is %d ”, tid)

}

firstprivate Clause (Data Scope)

The clause combines behavior of private clause with automatic initialization of the
variables in its list with values prior to parallel region

Example:

int b=51, n=100 ;

printf(“Before parallel loop: b=%d ,n=%d\n”,b,n)

#pragma omp parallel for private(i), firstprivate(b)

for(i=0; i<n; i++)

{

a[i] = i + b;

}

lastprivate Clause (Data Scope)

Performs finalization of private variables

Each thread has its own copy

Example:

b=51,n=100;

printf(“Before parallel loop: b=%d ,n=%d\n”,b,n)

#pragma omp parallel for private(i), firstprivate(b), lastprivate(a)

for(i=0; i<n; i++)

{

a = i + b ;

}

//After parallel region: a = 150

default Clause (Data Scope)

o Defines the default data scope within parallel region

o default (private | shared | none)

More clauses for parallel directive

#pragma omp parallel [clause, clause, ...]

o nowait

o if

o reduction

nowait Clause

o By default there is implicit barrier at the end of parallel region

o Allows threads that finish earlier to proceed without waiting

o If specified, then threads do not synchronize at the end of parallel loop

#pragma omp parallel nowait

if Clause

if (integer expression)

o Determines if the region should be parallelized

o Useful option when data is too small

#pragma omp parallel if (flag != 0)
{

// ...some stuff
}

reduction Clause

o Performs a collective operation on variables according to the given operators
- built-in reduction operations such as +, *, -, max, min, logical operators
- user can define his/her own operations

o Makes reduction variable as private
- The variable is initialized according to reduction operator e.g. 0 for addition

o Each thread will perform the operation in its local variable

o Finally local results are combined into global result in shared variable

#pragma omp parallel for reduction(+ : result)

for (i = 1; i <= N; i++)
{

result += i ;
}

Work sharing : Section Directive

 One thread executes one section

 Each section is executed exactly once and

#pragma omp parallel

#pragma omp sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

Designated section is executed by single thread only.

#pragma omp single

{

// read value of “a” from file

}

#pragma omp for

for (i=0;i<N;i++)

b[i] = a;

Work sharing : Single Directive

Similar to single, but code block will be executed by the master thread only

#pragma omp master

{

// reading or writing data etc.

}

Work sharing : Master

#pragma omp master

----- block of code--

Race condition

Problem:

Finding the largest element in

a list of numbers

Max = 10
#pragma omp parallel for
for (i=0;i<N;i++)
{

if (a(i) > Max)
Max = a(i) ;

}

Thread 0

Read a(i) value = 12
Read Max value = 10

If (a(i) > Max) (12 > 10)
Max = a(i) (i.e. 12)

Thread 1

Read a(i) value = 11
Read Max value = 10

If (a(i) > Max) (11 > 10)
Max = a(i) (i.e. 11)

Synchronization: Critical Section

Critical section restricts access to the enclosed code to only one thread at a
time

Max = 10
#pragma omp parallel for
for (i=0;i<N;i++)
{

…. other work….
#pragma omp critical
{
if (a(i) > Max)

Max = a(i) ;
}
…. other work….

}

Synchronization: Barrier Directive

Synchronizes all the threads in a team

int x=2;

#pragma omp parallel shared(x)

{

int tid = omp_get_thread_num();

if(tid == 0)
x=5;

else
printf(“thread %d: x=%d”,tid,x);

#pragma omp barrier

printf(“thread %d: x=%d\n”,tid,x);

}

Synchronization: Barrier Directive

Some threads may still have x=2 here

Cache flush + thread synchronization

All threads have x=5 here

o Mini Critical section

o Specific memory location must be updated atomically

Synchronization: Atomic Directive

#pragma omp atomic

----- Single line code--

Some Runtime Library Routines

o Set number of threads for parallel region
omp_set_num_threads(integer)

o Get number of threads for parallel region
int omp_get_num_threads()

o Get thread ID / rank
omp_get_thread_num()

Environment Variables

o To set number of threads during execution
export OMP_NUM_THREADS=4

o To allow run time system to determine the number of threads
export OMP_DYNAMIC=TRUE

o To allow nesting of parallel region
export OMP_NESTED=TRUE

o Get thread ID
omp_get_thread_num()

Control the Number of Threads

o Parallel region clause

#pragma omp parallel num_threads(integer)

o Run-time function

omp_set_num_threads(integer)

o Environment Variable

OMP_NUM_THREADS

Priority

Data Locality

CPU Pinning

Default thread placement policy depends upon the OpenMP implementation being used.

In absence of thread placement policy, during execution threads may migrate across different physical cores
and therefore suffer data locality issues.

CPU pinning enables binding of threads to cores.

Uniform Memory Access (UMA) – all cores have equal access
times to shared memory

Non-uniform Memory Access (NUMA) – cores have higher
access times to non-local shared memory

First touch policy int a[N];
#pragma omp parallel for
For LOOP to initialize data

Fig: NUMA

Granularity of Parallelization

Coarse-grain parallelism vs. Fine grain parallelism

#pragma omp parallel

{

#pragma omp for

for(i=0; i<n; i++)
{

// work ;
}

#pragma omp for

for(i=0; i<n; i++)
{

// work ;
}

}

#pragma omp parallel for

for(i=0; i<n; i++)
{

// work 1;
}

#pragma omp parallel for

for(i=0; i<n; i++)
{

// work 2 ;
}

Subroutines having multiple independent DO/for Loops are good candidates

Program

1 Domain n threads
n sub-domains

Program

Domain Decomposition

#pragma omp parallel default(private) shared(N,nthreads)
{

nthreads = omp_get_num_threads()
iam = omp_get_thread_num()
ichunk = N/nthreads
istart = iam*ichunk
iend = (iam+1)*ichunk -1

my_sum(istart, iend, local)

#pragma omp atomic
global = global + local

}

 Identify Loop-level parallelism: Run the loop backwards and see if same results are produced

 Load imbalance due to branching statements, sparse matrices: schedule(dynamic)

 Parallelization of less compute intensive loops: Use small number of threads e.g.
#pragma omp parallel num_threads(4)

 Parallelize initialization of input data – speedup and data locality

Some Tips

Advantages and Disadvantages

Advantages
• Shared address space provides user friendly

programming

• Ease of programming

• Data sharing between threads is fast and
uniform (low latency)

• Incremental parallelization of sequential code

• Leaves thread management to compiler

• Directly supported by compiler

Disadvantages
• Internal details are hidden

• Programmer is responsible for specifying
synchronization, e.g. locks

• Cannot run across distributed memory

• Performance limited by memory architecture

• Lack of scalability between memory and CPUs

• Requires compiler which supports OpenMP

• Bigger machines are heavy on budget

Executing OpenMP Program

Compilation

gcc –fopenmp <program name> –o <execcutable>

gfortran –fopenmp <program name> –o <execcutable>

ifort <program name> -qopenmp –o <execcutable>

icc <program name> -qopenmp –o <execcutable>

Execution:

./ <executable-name>

References

The contents of the presentation have been adapted from several sources.
Some of the sources are as following:

www.openmp.org/

https://computing.llnl.gov/tutorials/openMP/

http://wiki.scinethpc.ca/wiki/images/9/9b/D s-openmp.pdf

http://openmp.org/sc13/OpenMP4.0_Intro_Y onghongYan_SC13.pdf

A "Hands-on" Introduction to OpenMP (Part 1/2) | Tim Mattson, Intel

Introduction to Parallel Computing on Ranger, Steve Lantz, Cornell University

Thank You

