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Performance Metrics

1. Speed up = 
Time for sequential code

Time for parallel code

SP = 1 < SP < P
Ts

Tp

2. Efficiency   EP = 0 < EP < 1
Sp

p

EP = 1 => SP = P 100% efficient



Amdahl’s Law

S = 
1

f + (1-f) / P

f = Sequential part of the code

Example f =  0.1                     assume P = 10 processes

1

0.1 + (0.9) / 10
S =

1

0.1 + (0.09) 
= @ 5

As P          S            10

Whatever we do, 10 is the maximum speedup possible



Communication Overheads

Latency

Startup time for each message transaction e.g. 1 ms

Bandwidth

The rate at which the messages are transmitted across the nodes / processors
e.g. 100 Gbits / sec.



• Asynchronous parallelism

• Separate memory address spaces

• Explicit interaction   

• Explicit data and work allocation by user

Characteristics of Message  Passing Model



• A parallel computation consists of a number of processes

• Each process has purely local variables

• No mechanism for any process to directly access memory of another

• Sharing of data among processes is done by explicitly message passing

• Data transfer requires cooperative operations by each process 

• Different processes need not be running on different processors

How Message Passing Model Works



• Extremely general model

• Essentially, any type of parallel computation can be cast in the message 
passing form

• Can be implemented on wide variety of platforms, from networks of 
workstations to even single processor machines 

• Generally allows more control over data location and flow within a 
parallel application than in, for example the shared memory model

• High performance

Usefulness of Message Passing Model



What is MPI ?

MPI stands for  Message-Passing Interface 

• MPI (Message-Passing Interface) is a message-passing library interface specification

• MPI addresses primarily the message-passing parallel programming model, in which data is moved from the 
address space of one process to that of another process through cooperative operations on each process.

• Extensions to the classical message-passing model are provided in collective operations, remote-memory 
access operations, dynamic process creation, threads and parallel I/O

• Every major  HPC vendor have their own implementation of MPI

• However, programs written in message-passing style can run                                               on any architecture 
that supports such model

o Distributed or shared-memory multi-processors
o Networks of workstations
o Single processor systems
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is MPI large or small ?

• MPI is Large (hundreds of functions)
• Many features require extensive API
• Complexity of use not related to number of functions

• MPI is small (6 basic functions)
• All that’s needed to get started are only 6 functions

• MPI is just right !
• Flexibility available when required
• Can start with small subset
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Data and Work Distribution

• Programmer imagines several processors, each with own memory, and 
writes a program to run on each processor

• To communicate together mpi-processes need unique  identifiers: rank = 
identifying number

• all distribution decisions are based on the rank
• like which process works on what data
• which process works on what tasks
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Point-to-Point Communication

• Communication between two processes

• Source process sends message to destination process

• Communication takes place within a communicator

• MPI_COMM_WORLD  is default  communicator

15

1

0
2

3

4

source

destination

communicator



Collective Communication

• Communication between all processes

• A source process sends messages to or receives messages from all other processes

• Communication takes place within a communicator

• MPI_COMM_WORLD  is default  communicator
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Communicators
• Is an object to handle a collection of processes 

• Only processes within a communicator can talk among themselves

- ranks 0 to N-1

• MPI_COMM_WORLD  is default  communicator containing all the processes

• User can create subsets of default communicators – overlapping or disjoint
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Building blocks: Send and Recv

Basic operations in Message-passing programming paradigm 
are send and receive

send(void *sendbuf,  int noelems,  int dest)

receive(void *recvbuf,  int noelems,  int source)
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Building blocks: Send and Recv (contd….)

• “Completion” means that memory locations used in the message transfer can be 
safely accessed

• send: variable sent can be modified after completion
• receive: variable received can now be used

• MPI communication modes differ in what conditions on the receiving end are 
needed for completion

• Communication modes can be blocking or non-blocking
• Blocking: return from function call implies completion
• Non-blocking: routine returns immediately, completion to be tested for
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Blocking Operation

An operation that does not complete until the operation 
either succeeds or fails

20



Non-Blocking operation

An operation, such as sending or receiving a message, that returns 
immediately whether or not the operation was completed

21



Point to Point Communication

• Message is sent from a sending process to a receiving process. Only these two process 
need to know anything about the message.

• Message passing system provides following information to specify the message transfer 

• Which process is sending the message 

• Where is the data on the sending process

• What kind of data is being sent

• How much data is there

• Which process is receiving the message

• Where should the data be left on the receiving process

• How much data is receiving process prepared to accept
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General MPI Program Structure 
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Header files and calls format

• MPI constants, macros, definitions, function prototypes and handles are defined 
in a header file

• Required for all programs/routines which make MPI library calls
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C (case sensitive): 

# include “mpi.h”

error = MPI_Xxxxx(parameter,...);

Fortran (case unimportant):

include “mpif.h”

CALL MPI_XXXXX(parameter,...,IERROR)



Starting With MPI Programming

• Six basic functions to start :

25

1. MPI_INIT      Initialize MPI Environment

2. MPI_FINALIZE Finish MPI Environment

3. MPI_COMM_RANK  Get the process rank

4. MPI_COMM_SIZE   Get the number of processes

5. MPI_Send Send data to another process

6. MPI_Recv Get data from another process



Initializing MPI

• MPI_Init is the first MPI routine called (only once)
• Initializes the MPI environment 

26

C: int MPI_Init(int *argc, char ***argv)



Communicator Size

• How many processes are contained within a communicator?
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C: MPI_Comm_size (MPI_Comm comm, int *size)



Process Rank

• Process ID number within the communicator
• Starts with zero and goes to (n - 1) where n is the number of processes requested

• Used to identify the source and destination of messages
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C: MPI_Comm_rank(MPI_Comm comm, int *rank)



Exiting MPI

• Performs various clean-ups tasks to terminate the MPI environment.
• Always called at end of the computation.
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C: MPI_Finalize()

Note : If any one process does not reach the finalization 
statement, the program will appear to hang.



Example program: hello_world.c
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Example program 1: hello_world.f
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program hello
include 'mpif.h'

integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

print*, 'node', rank, ': Hello world '

call MPI_FINALIZE(ierror)

end



How to Compile &Execute MPI Programs ?

32

To Compile : mpicc hello_world.c -o hello

mpif90 hello_world.f -o hello

To run with 4 processes : mpiexec -np 4 hello

Output Hello world! I'm 2 of 4

Hello world! I'm 1 of 4

Hello world! I'm 3 of 4

Hello world! I'm 0 of 4

Note - Order of output is not specified by MPI



MPI Send
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int MPI_Send( void *buf, // Data To be sent 

int count, // Total Data Elements to be sent

MPI_Datatype datatype, // Datatype of the data to be sent

int dest,  // Processor to which data is being sent

int tag, // To distinguish from diff types of msg

MPI_Comm comm) // Communicator



MPI Receive
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int MPI_Recv(void *buf, // Data To be Receive

int count, // Total Data Elements to be recv

MPI_Datatype datatype, // Datatype of the data to be recv

int source,        // Processor from where data is being sent

int tag, // To distinguish from diff types of msg

MPI_Comm comm, // Communicator

MPI_Status *status)    // Status structure



Wildcards

• Allow you to not necessarily specify a tag or source
• Eg :MPI_ANY_SOURCE and MPI_ANY_TAG are wild cards

• Status structure is used to get wildcard values
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o The tag of a received message
C : status.MPI_TAG

o The source of a received message
C : status.MPI_SOURCE

o The error code of the MPI call
C : status.MPI_ERROR



MPI Status

Accessing status information

• The tag of a received message
• C : status.MPI_TAG
• Fortran : STATUS(MPI_TAG)

• The source of a received message
• C : status.MPI_SOURCE
• Fortran : STATUS(MPI_SOURCE)

• The error code of the MPI call
• C : status.MPI_ERROR
• Fortran : STATUS(MPI_ERROR)
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Message Datatype

• A message contains an array of elements or scalar element of some 
particular MPI datatype

• MPI datatypes:
• Basic types
• Derived types

• Derived types can be build up from basic types

37



MPI DataTypes
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Sending a Message

• int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, 
int tag, MPI_Comm comm)

• buf: starting address of the data to be sent
• count: number of elements to be sent (not bytes)
• datatype: MPI datatype of each element
• dest: rank of destination process
• tag: message identifier (set by user)
• comm: MPI communicator of processors involved

• MPI_Send(data, 500, MPI_FLOAT, 5, 25, MPI_COMM_WORLD)
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Receiving a Message

• int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, 
int tag, MPI_Comm comm, MPI_Status *status)

• buf: starting address of buffer where the data is to be stored
• count: number of elements to be received (not bytes)
• datatype: MPI datatype of each element
• source: rank of source process
• tag: message identifier (set by user)
• comm: MPI communicator of processors involved
• status: structure of information about the message that is returned

• MPI_Recv(buffer, 500, MPI_FLOAT, 3, 25, MPI_COMM_WORLD, 
status)

40



Blocking Communication Functions
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Mode MPI Function

Standard send MPI_Send

Synchronous send MPI_Ssend

Buffered send MPI_Bsend

Ready send MPI_Rsend

Receive MPI_Recv

Similar variants exist for non-blocking calls also



For a Communication to Succeed

• Sender must specify a valid destination rank
• Receiver must specify a valid source rank
• The communicator must be the same
• Tags must match
• Receiver’s buffer must be large enough
• User-specified buffer should be large enough (buffered send only)
• Receive posted before send (ready send only)
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Deadlocks

• A deadlock occurs when two or more processors try to access the 
same set of resources

• Deadlocks are possible in blocking communication
• Example: Two processors initiate a blocking send to each other without posting a receive
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Thank YOU
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#define NRA 50 /* Rows in Matrix A */

#define NCA 40 /* Columns in Matrix A */

#define NCB 30 /* Columns in Matrix B */

#include "mpi.h" 

#include <stdio.h> 

int main(int argc, int *argv[]) 

{

int numtasks,taskid; /* No.of tasks and task identifier */

int source,dest /* Task id of message source and destination*/

double a[NRA][NCA],b[NCA][NCB],c[NRA][NCB]; /* Matrix A, B, C */

rows,averow,extra,offset,numworkers,i,j,k,rc; /* Miscellaneous */

MPI_Status status;

rc = MPI_Init(&argc,&argv); 

rc|= MPI_Comm_size(MPI_COMM_WORLD,&numtasks); 

rc|= MPI_Comm_rank(MPI_COMM_WORLD,&taskid); 

if (rc != 0)printf("\nError initializing MPI or Task ID\n"); 

else printf("\nTask ID = %d\n", taskid); 

numworkers = numtasks-1;

Example program: Matrix-Matrix Multiply



if(taskid == 0) 

{ 

printf("Number of worker tasks = %d\n",numworkers); 

for (i=0; i<NRA; i++) /* Generate data for Matrix A & B */

for (j=0; j<NCA; j++)a[i][j]= i+j; 

for (i=0; i<NCA; i++)

for (j=0; j<NCB; j++)b[i][j]= i*j;

averow = NRA/numworkers; 

extra = NRA%numworkers;

offset = 0;

for (dest=1; dest<=numworkers; dest++)

{

rows = (dest <= extra) ? averow+1 : averow;

printf(“\nSending %d rows to task %d\n",rows,dest);

MPI_Send(&offset,      1,       MPI_INT,   dest,1,MPI_COMM_WORLD);

MPI_Send(&rows,        1,       MPI_INT,   dest,1,MPI_COMM_WORLD);

MPI_Send(&a[offset][0],rows*NCA,MPI_DOUBLE,dest,1,MPI_COMM_WORLD);

MPI_Send(&b,           NCA*NCB, MPI_DOUBLE,dest,1,MPI_COMM_WORLD);

offset = offset + rows; 

}

Master process



for (i=1; i<=numworkers; i++) /* Wait for results from workers */

{

source = i;

MPI_Recv(&offset,1,MPI_INT,source,2,MPI_COMM_WORLD,&status); 

MPI_Recv(&rows,  1,MPI_INT,source,2,MPI_COMM_WORLD,&status); 

MPI_Recv(&c[offset][0],rows*NCB,MPI_DOUBLE,source,2,

MPI_COMM_WORLD, &status);

} 

printf("Here is the result matrix\n"); /* Print Results */

for (i=0; i<NRA; i++) 

{ 

printf("\n"); 

for (j=0; j<NCB; j++) 

printf("%6.2f ", c[i][j]); 

} 

printf ("\n");

} 

Master process (contd…)



if (taskid > 0) /* Worker Tasks */

{  

MPI_Recv(&offset,1,       MPI_INT,    0,1,MPI_COMM_WORLD,&status); 

MPI_Recv(&rows,  1,       MPI_INT,    0,1,MPI_COMM_WORLD,&status); 

MPI_Recv(&a,     rows*NCA,MPI_DOUBLE, 0,1,MPI_COMM_WORLD,&status); 

MPI_Recv(&b,     NCA*NCB, MPI_DOUBLE, 0,1,MPI_COMM_WORLD,&status);

for (k=0; k<NCB; k++) 

for (i=0; i<rows; i++) 

{

c[i][k] = 0.0;

for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k]; 

} 

MPI_Send(&offset, 1,        MPI_INT,    0, 2, MPI_COMM_WORLD); 

MPI_Send(&rows,   1,        MPI_INT,    0, 2, MPI_COMM_WORLD);

MPI_Send(&c,      rows*NCB, MPI_DOUBLE, 0, 2, MPI_COMM_WORLD); 

}

MPI_Finalize(); 

} /* End main */

Worker processes


