
Introduction to MPI

Sandeep Agrawal
C-DAC Pune

 General concepts

 About Message Passing Model

 What is MPI

 MPI Point-to-Point Communication

 MPI Datatypes

Contents

Start

Input

Do the Computation

Output

Stop

Start

Input

Do the computation

Collect the results

Output

Stop

Divide the Work

Communicate input

Parallelism

Communication

Communication

Serial vs Parallel Flow

Compute  xi for (i=1,2,…… 109)

Parallelism

Start

Input

Do the computation

Collect the results

Output

Stop

Divide the Work

Communicate input

Communication

Communication

P0

Start

Stop

Initialization

P1 P2 P3
Pn-1

Idle
Generate input

Write output

Option 1: Read and Distribute inputs

Serial vs Parallel Flow

Parallelism

Start

Input

Do the computation

Collect the results

Output

Stop

Divide the Work

Communicate input

Communication

P0

Start

Stop

Initialization

P1 P2 P3 Pn-1

Generate input

Write output

Option 2: Generate inputs simultaneously

Communication

Serial vs Parallel Flow

Performance Metrics

1. Speed up =
Time for sequential code

Time for parallel code

SP = 1 < SP < P
Ts

Tp

2. Efficiency EP = 0 < EP < 1
Sp

p

EP = 1 => SP = P 100% efficient

Amdahl’s Law

S =
1

f + (1-f) / P

f = Sequential part of the code

Example f = 0.1 assume P = 10 processes

1

0.1 + (0.9) / 10
S =

1

0.1 + (0.09)
= @ 5

As P S 10

Whatever we do, 10 is the maximum speedup possible

Communication Overheads

Latency

Startup time for each message transaction e.g. 1 ms

Bandwidth

The rate at which the messages are transmitted across the nodes / processors
e.g. 100 Gbits / sec.

• Asynchronous parallelism

• Separate memory address spaces

• Explicit interaction

• Explicit data and work allocation by user

Characteristics of Message Passing Model

• A parallel computation consists of a number of processes

• Each process has purely local variables

• No mechanism for any process to directly access memory of another

• Sharing of data among processes is done by explicitly message passing

• Data transfer requires cooperative operations by each process

• Different processes need not be running on different processors

How Message Passing Model Works

• Extremely general model

• Essentially, any type of parallel computation can be cast in the message
passing form

• Can be implemented on wide variety of platforms, from networks of
workstations to even single processor machines

• Generally allows more control over data location and flow within a
parallel application than in, for example the shared memory model

• High performance

Usefulness of Message Passing Model

What is MPI ?

MPI stands for Message-Passing Interface

• MPI (Message-Passing Interface) is a message-passing library interface specification

• MPI addresses primarily the message-passing parallel programming model, in which data is moved from the
address space of one process to that of another process through cooperative operations on each process.

• Extensions to the classical message-passing model are provided in collective operations, remote-memory
access operations, dynamic process creation, threads and parallel I/O

• Every major HPC vendor have their own implementation of MPI

• However, programs written in message-passing style can run on any architecture
that supports such model

o Distributed or shared-memory multi-processors
o Networks of workstations
o Single processor systems

12

is MPI large or small ?

• MPI is Large (hundreds of functions)
• Many features require extensive API
• Complexity of use not related to number of functions

• MPI is small (6 basic functions)
• All that’s needed to get started are only 6 functions

• MPI is just right !
• Flexibility available when required
• Can start with small subset

13

Data and Work Distribution

• Programmer imagines several processors, each with own memory, and
writes a program to run on each processor

• To communicate together mpi-processes need unique identifiers: rank =
identifying number

• all distribution decisions are based on the rank
• like which process works on what data
• which process works on what tasks

14

Point-to-Point Communication

• Communication between two processes

• Source process sends message to destination process

• Communication takes place within a communicator

• MPI_COMM_WORLD is default communicator

15

1

0
2

3

4

source

destination

communicator

Collective Communication

• Communication between all processes

• A source process sends messages to or receives messages from all other processes

• Communication takes place within a communicator

• MPI_COMM_WORLD is default communicator

16

1

0
2

3

4

source

communicator

destination

destination

destination

destination

Communicators
• Is an object to handle a collection of processes

• Only processes within a communicator can talk among themselves

- ranks 0 to N-1

• MPI_COMM_WORLD is default communicator containing all the processes

• User can create subsets of default communicators – overlapping or disjoint

17

1

0
2

3 4

MPI_COMM_WORLD

1

2
0

1
0

COMM_ONE
COMM_TWO

2

Building blocks: Send and Recv

Basic operations in Message-passing programming paradigm
are send and receive

send(void *sendbuf, int noelems, int dest)

receive(void *recvbuf, int noelems, int source)

18

Building blocks: Send and Recv (contd….)

• “Completion” means that memory locations used in the message transfer can be
safely accessed

• send: variable sent can be modified after completion
• receive: variable received can now be used

• MPI communication modes differ in what conditions on the receiving end are
needed for completion

• Communication modes can be blocking or non-blocking
• Blocking: return from function call implies completion
• Non-blocking: routine returns immediately, completion to be tested for

19

Blocking Operation

An operation that does not complete until the operation
either succeeds or fails

20

Non-Blocking operation

An operation, such as sending or receiving a message, that returns
immediately whether or not the operation was completed

21

Point to Point Communication

• Message is sent from a sending process to a receiving process. Only these two process
need to know anything about the message.

• Message passing system provides following information to specify the message transfer

• Which process is sending the message

• Where is the data on the sending process

• What kind of data is being sent

• How much data is there

• Which process is receiving the message

• Where should the data be left on the receiving process

• How much data is receiving process prepared to accept

22

General MPI Program Structure

23

Header files and calls format

• MPI constants, macros, definitions, function prototypes and handles are defined
in a header file

• Required for all programs/routines which make MPI library calls

24

C (case sensitive):

include “mpi.h”

error = MPI_Xxxxx(parameter,...);

Fortran (case unimportant):

include “mpif.h”

CALL MPI_XXXXX(parameter,...,IERROR)

Starting With MPI Programming

• Six basic functions to start :

25

1. MPI_INIT Initialize MPI Environment

2. MPI_FINALIZE Finish MPI Environment

3. MPI_COMM_RANK Get the process rank

4. MPI_COMM_SIZE Get the number of processes

5. MPI_Send Send data to another process

6. MPI_Recv Get data from another process

Initializing MPI

• MPI_Init is the first MPI routine called (only once)
• Initializes the MPI environment

26

C: int MPI_Init(int *argc, char ***argv)

Communicator Size

• How many processes are contained within a communicator?

27

C: MPI_Comm_size (MPI_Comm comm, int *size)

Process Rank

• Process ID number within the communicator
• Starts with zero and goes to (n - 1) where n is the number of processes requested

• Used to identify the source and destination of messages

28

C: MPI_Comm_rank(MPI_Comm comm, int *rank)

Exiting MPI

• Performs various clean-ups tasks to terminate the MPI environment.
• Always called at end of the computation.

29

C: MPI_Finalize()

Note : If any one process does not reach the finalization
statement, the program will appear to hang.

Example program: hello_world.c

30

Example program 1: hello_world.f

31

program hello
include 'mpif.h'

integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

print*, 'node', rank, ': Hello world '

call MPI_FINALIZE(ierror)

end

How to Compile &Execute MPI Programs ?

32

To Compile : mpicc hello_world.c -o hello

mpif90 hello_world.f -o hello

To run with 4 processes : mpiexec -np 4 hello

Output Hello world! I'm 2 of 4

Hello world! I'm 1 of 4

Hello world! I'm 3 of 4

Hello world! I'm 0 of 4

Note - Order of output is not specified by MPI

MPI Send

33

int MPI_Send(void *buf, // Data To be sent

int count, // Total Data Elements to be sent

MPI_Datatype datatype, // Datatype of the data to be sent

int dest, // Processor to which data is being sent

int tag, // To distinguish from diff types of msg

MPI_Comm comm) // Communicator

MPI Receive

34

int MPI_Recv(void *buf, // Data To be Receive

int count, // Total Data Elements to be recv

MPI_Datatype datatype, // Datatype of the data to be recv

int source, // Processor from where data is being sent

int tag, // To distinguish from diff types of msg

MPI_Comm comm, // Communicator

MPI_Status *status) // Status structure

Wildcards

• Allow you to not necessarily specify a tag or source
• Eg :MPI_ANY_SOURCE and MPI_ANY_TAG are wild cards

• Status structure is used to get wildcard values

35

o The tag of a received message
C : status.MPI_TAG

o The source of a received message
C : status.MPI_SOURCE

o The error code of the MPI call
C : status.MPI_ERROR

MPI Status

Accessing status information

• The tag of a received message
• C : status.MPI_TAG
• Fortran : STATUS(MPI_TAG)

• The source of a received message
• C : status.MPI_SOURCE
• Fortran : STATUS(MPI_SOURCE)

• The error code of the MPI call
• C : status.MPI_ERROR
• Fortran : STATUS(MPI_ERROR)

36

Message Datatype

• A message contains an array of elements or scalar element of some
particular MPI datatype

• MPI datatypes:
• Basic types
• Derived types

• Derived types can be build up from basic types

37

MPI DataTypes

38

Sending a Message

• int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

• buf: starting address of the data to be sent
• count: number of elements to be sent (not bytes)
• datatype: MPI datatype of each element
• dest: rank of destination process
• tag: message identifier (set by user)
• comm: MPI communicator of processors involved

• MPI_Send(data, 500, MPI_FLOAT, 5, 25, MPI_COMM_WORLD)

39

Receiving a Message

• int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

• buf: starting address of buffer where the data is to be stored
• count: number of elements to be received (not bytes)
• datatype: MPI datatype of each element
• source: rank of source process
• tag: message identifier (set by user)
• comm: MPI communicator of processors involved
• status: structure of information about the message that is returned

• MPI_Recv(buffer, 500, MPI_FLOAT, 3, 25, MPI_COMM_WORLD,
status)

40

Blocking Communication Functions

41

Mode MPI Function

Standard send MPI_Send

Synchronous send MPI_Ssend

Buffered send MPI_Bsend

Ready send MPI_Rsend

Receive MPI_Recv

Similar variants exist for non-blocking calls also

For a Communication to Succeed

• Sender must specify a valid destination rank
• Receiver must specify a valid source rank
• The communicator must be the same
• Tags must match
• Receiver’s buffer must be large enough
• User-specified buffer should be large enough (buffered send only)
• Receive posted before send (ready send only)

42

Deadlocks

• A deadlock occurs when two or more processors try to access the
same set of resources

• Deadlocks are possible in blocking communication
• Example: Two processors initiate a blocking send to each other without posting a receive

43

…

MPI_Send(P1)

MPI_Recv(P1)

…

…

MPI_Send(P0)

MPI_Recv (P0)

…

Process 0 Process 1

Thank YOU

44

#define NRA 50 /* Rows in Matrix A */

#define NCA 40 /* Columns in Matrix A */

#define NCB 30 /* Columns in Matrix B */

#include "mpi.h"

#include <stdio.h>

int main(int argc, int *argv[])

{

int numtasks,taskid; /* No.of tasks and task identifier */

int source,dest /* Task id of message source and destination*/

double a[NRA][NCA],b[NCA][NCB],c[NRA][NCB]; /* Matrix A, B, C */

rows,averow,extra,offset,numworkers,i,j,k,rc; /* Miscellaneous */

MPI_Status status;

rc = MPI_Init(&argc,&argv);

rc|= MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

rc|= MPI_Comm_rank(MPI_COMM_WORLD,&taskid);

if (rc != 0)printf("\nError initializing MPI or Task ID\n");

else printf("\nTask ID = %d\n", taskid);

numworkers = numtasks-1;

Example program: Matrix-Matrix Multiply

if(taskid == 0)

{

printf("Number of worker tasks = %d\n",numworkers);

for (i=0; i<NRA; i++) /* Generate data for Matrix A & B */

for (j=0; j<NCA; j++)a[i][j]= i+j;

for (i=0; i<NCA; i++)

for (j=0; j<NCB; j++)b[i][j]= i*j;

averow = NRA/numworkers;

extra = NRA%numworkers;

offset = 0;

for (dest=1; dest<=numworkers; dest++)

{

rows = (dest <= extra) ? averow+1 : averow;

printf(“\nSending %d rows to task %d\n",rows,dest);

MPI_Send(&offset, 1, MPI_INT, dest,1,MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, dest,1,MPI_COMM_WORLD);

MPI_Send(&a[offset][0],rows*NCA,MPI_DOUBLE,dest,1,MPI_COMM_WORLD);

MPI_Send(&b, NCA*NCB, MPI_DOUBLE,dest,1,MPI_COMM_WORLD);

offset = offset + rows;

}

Master process

for (i=1; i<=numworkers; i++) /* Wait for results from workers */

{

source = i;

MPI_Recv(&offset,1,MPI_INT,source,2,MPI_COMM_WORLD,&status);

MPI_Recv(&rows, 1,MPI_INT,source,2,MPI_COMM_WORLD,&status);

MPI_Recv(&c[offset][0],rows*NCB,MPI_DOUBLE,source,2,

MPI_COMM_WORLD, &status);

}

printf("Here is the result matrix\n"); /* Print Results */

for (i=0; i<NRA; i++)

{

printf("\n");

for (j=0; j<NCB; j++)

printf("%6.2f ", c[i][j]);

}

printf ("\n");

}

Master process (contd…)

if (taskid > 0) /* Worker Tasks */

{

MPI_Recv(&offset,1, MPI_INT, 0,1,MPI_COMM_WORLD,&status);

MPI_Recv(&rows, 1, MPI_INT, 0,1,MPI_COMM_WORLD,&status);

MPI_Recv(&a, rows*NCA,MPI_DOUBLE, 0,1,MPI_COMM_WORLD,&status);

MPI_Recv(&b, NCA*NCB, MPI_DOUBLE, 0,1,MPI_COMM_WORLD,&status);

for (k=0; k<NCB; k++)

for (i=0; i<rows; i++)

{

c[i][k] = 0.0;

for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];

}

MPI_Send(&offset, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);

MPI_Send(&c, rows*NCB, MPI_DOUBLE, 0, 2, MPI_COMM_WORLD);

}

MPI_Finalize();

} /* End main */

Worker processes

