
Basics of Basics of
Computer Architecture Computer Architecture

d O ti S td O ti S tand Operating Systemsand Operating Systems

Mainak Chaudhuri
Indian Institute of Technology Kanpur

AgendaAgenda
• Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

AgendaAgenda
Basics of computer architecture
Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

The computing stackThe computing stack

The computing stackThe computing stack
Problem
AlgorithmS ft Algorithm

HLL program
Software

The computing stackThe computing stack
Problem
AlgorithmS ft

HLL compiler

Algorithm
HLL program

Software

HLL compiler
Assembly language

Assembler and linker
Hardware/
software

Executable binary
Operating system

software
interface

The computing stackThe computing stack
Problem
AlgorithmS ft

HLL compiler

Algorithm
HLL program

Software

HLL compiler
Assembly language

Assembler and linker
Hardware/
software

Mi hit t

Executable binary
Operating system

software
interface

Microarchitecture
Function blocks

Logic gatesHardware
Circuits

Transistors

The computing stackThe computing stack
Problem
AlgorithmS ft

HLL compiler

Algorithm
HLL program

Software

HLL compiler
Assembly language

Assembler and linker
Hardware/
software

Mi hit t

Executable binary
Operating system

software
interface

Microarchitecture
Function blocks

Logic gatesHardware
Circuits

Transistors

The computing stackThe computing stack
Problem
AlgorithmS ft

HLL compiler

Algorithm
HLL program

Software

HLL compiler
Assembly language

Assembler and linker
Hardware/
software

Mi hit t

Executable binary
Operating system

software
interface

Microarchitecture
Function blocks

Logic gatesHardware
Circuits

Transistors

Anatomy of a computer systemAnatomy of a computer system

I/O devices and non-volatile
t

I t ti

storage

Instruction
Processor

or
CPU

Main memory (DRAM)

Anatomy of a computer systemAnatomy of a computer system
Th t l i it (CPU)• The central processing unit (CPU)
– Also known as microprocessor
– Dictates how a task will be done, but cannot do

anything on its own
N d t b t ld h t t d t i th f f– Needs to be told what to do next in the form of a
stream of “instructions”

These instructions are generated from a program that• These instructions are generated from a program that
represents an algorithm for accomplishing the task

– Can store intermediate/final results of aCan store intermediate/final results of a
computation in main memory

• Dynamic random access memory (DRAM); volatile

– Can store information on persistent non-volatile
storage media e.g., magnetic hard disk

Anatomy of a computer systemAnatomy of a computer system
• Peripheral I/O devices

– Plug-ins to the CPU for communicating with the
world

– Display (CRT, LCD, touchscreen)
K b d– Keyboard

– Mouse
DVD d / it– DVD reader/writer

– Speaker
Microphone– Microphone

– Camera
Wireless communication– Wireless communication

– Wired Ethernet communication

Anatomy of a computer systemAnatomy of a computer system
• How does an instruction execute inside the

processor?p
– Every entity residing inside a computer has an

address
• An instruction also has an address

– The processor maintains the address of the next
instruction in a register called program counter

– The instruction is fetched from main memory
and placed in an instruction register

– The instruction is decoded to generate the
l i l f i h i icontrol signals for executing the instruction

• Send to adder if this is an addition instruction

Anatomy of a computer systemAnatomy of a computer system
• How does an instruction execute inside the

processor?
– Most instructions require source operands for

execution
a+b• a+b

– After decoding the instruction, the operands are
fetchedfetched

• Operand addresses are typically encoded in the
instruction or could be implicit
Th dd k ft d di th• These addresses are known after decoding the
instruction

– The instruction can now executeThe instruction can now execute
• Operands are sent to the adder

Anatomy of a computer systemAnatomy of a computer system
• How does an instruction execute inside the

processor?p
– Most instructions generate a result

• c=a+b

– The address of the result (or destination)
operand is typically encoded in the instruction or
implicit

• This address is known after decoding the instruction

– The result is stored in the destination operand
location

Anatomy of a Anatomy of a computer systemcomputer system
• How does an instruction execute inside the

processor?p
– The execution of an instruction requires the

appropriate control and data paths to be pp p p
activated

• Data path is usually slow because main p y
memory is much slower than the processor
– Commonly used optimizations for speeding up y p p g p

the data path:
• Reasonably large set of general-purpose registers

inside the processor
• Fast memory (known as cache) inside the processor

Anatomy of a computer systemAnatomy of a computer system
• The SRAM cache on processor chip helps• The SRAM cache on processor chip helps

improve the average memory access time
(AMAT)(AMAT)

Hard disksDisk
controller

I/O
D i

Processor chip
(SRAM + logic)

Devices

(SRAM + logic)

DRAM controllerDRAM controller

DRAM channels

Anatomy of a computer systemAnatomy of a computer system

Hard disksDisk
controller

Processor logic DIMM card

controller

Processor logic

32-bit
data

32-bit
address

Command
bus (read/

ACT/
PRE/CAS

DIMM card

64-bit
data

Addr.
busdata

bus bus
(

write)

DRAM

64-byte data bus

32 bit addr bus

data
ch.

bus

SRAM cache
DRAM

Controller
32-bit addr. bus

Command bus
Read/WriteRead/Write

I/O hub DMA controller

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

What is ISA?What is ISA?
• Operations of a computer are done through

instructions
O i t ti d ti– One instruction does one operation

• Set of instructions supported by a computer is
the instruction set of the computerthe instruction set of the computer

• Organization of the computer defined by the
instruction set is the instruction set architectureinstruction set is the instruction set architecture
(ISA) of the computer

• The guiding principle in designing ISA is that g g p p g g
the implementation of the ISA should be simple

• The programming language that uses g g g g
instructions of a computer is called an assembly
language

Computer operationsComputer operations
• Every computer must be able to do• Every computer must be able to do

arithmetic operations
Add subtract multiply divide– Add, subtract, multiply, divide

– The variables operated on and the result
variables are called operandsvariables are called operands

• The operands used in an operation are called source
operands or read operandsp p

• The operands used for storing the result of an
operation are called destination operands or write

doperands
• c = a + b: a and b are source or read operands, c is

the destination or write operandt e dest at o o te ope a d
• Most computers allow at most two sources and one

destination per instruction

Computer operationsComputer operations
• Consider the MIPS instruction “add a b c”• Consider the MIPS instruction add a, b, c

– MIPS is the name of a processor family
We will understand what MIPS stands for later in the• We will understand what MIPS stands for later in the
course

– “add” is the name of the instruction whichadd is the name of the instruction which
defines the operation to be done when this
instruction is encountered by the computer

– Among the three operands (a, b, c), the one
right after “add” is the destination operand

• Usually the destination operand is mentioned right
after the operation name

Oth t d (b) d– Other two operands (b, c) are source operands
– Add b and c, put the result in a

OperandsOperands
• So far we have assumed that instruction• So far we have assumed that instruction

operands are same as HLL program variables
– This assumption is incorrectThis assumption is incorrect
– Each hardware operation reads its source

operands from some storage and writes its
destination operand to some storage

• This storage can be either a register from the register
file inside the processor or a memory locationfile inside the processor or a memory location

– By memory we usually mean RAM of the computer (DRAM)
– Anything that is accessed from DRAM is also copied into

SRAM cache inside the processor replacing something if theSRAM cache inside the processor replacing something if the
SRAM cache is already full

– So, at any point in time, the SRAM cache stores a subset of
the DRAM contents

– The data in a memory location can be found in SRAM cache
or in DRAM (DRAM is accessed only if SRAM cache does not
have the data)

OperandsOperands
• Translating an HLL program to an assembly• Translating an HLL program to an assembly

language program involves two basic steps
– Mapping HLL operators to computer instructionsMapping HLL operators to computer instructions

• Exact instruction names differ from one computer to
another, but the operations done by the instructions
are largely sameare largely same

– Mapping HLL operands (or variables) to
computer instruction operandscomputer instruction operands

• Requires deciding which variable is stored where and
when
E e a iable gets a fi ed memo location• Every variable gets a fixed memory location

– However, this forces every computer instruction to operate
on memory operands only and obviates the need for a
register fileregister file

– But accessing a register is faster than accessing memory
(faster than even SRAM cache)

OperandsOperands
• Mapping variables to operands• Mapping variables to operands

– Fast access to registers motivates mapping
variables to register operandsg p

– Simplicity of design also motivates restricting the
operands of certain instructions to registers only

• Consistent latency of these operations (recall that
accessing memory can have variable latency)

• In MIPS, many instructions (including arithmetic)In MIPS, many instructions (including arithmetic)
allow only register operands

• In x86, both register and memory operands are
allowedallowed

– Makes instruction latency variable

– Width of register file dictates the width of a g
register operand (usually 32 or 64 bits)

• Dictates the width of datapath used in computation

OperandsOperands
• Mapping variables to operands• Mapping variables to operands

– Since taller register file is slower, the number of
registers must be restrictedg

– Since each variable is given a unique memory
location to store its value, it must be copied to a

i if i i iregister if an instruction wants to use it as a
register operand

• In MIPS arithmetic and many other instructions onlyIn MIPS, arithmetic and many other instructions only
allow register operands

– Not all variables of a program can be allocated in
h d dregisters at the same time due to restricted

number of registers
• Variables are allocated in and de-allocated from• Variables are allocated in and de allocated from

registers as the program progresses (filled from and
spilled into memory)

OperandsOperands
• Mapping variables to operands• Mapping variables to operands

– Register allocation of variables is the compiler’s
responsibilityresponsibility

• Goal is to minimize the number of fills and spills
because memory access is inefficienty

• Example: assume four registers r1, r2, r3, r4
Consider the C statements:

a=b + c; // Allocate a, b, c to r1, r2, r3
d=e + f; // Allocate d to r4, how to allocate e and f?
a=a + d;;
b=a + e;

OperandsOperands
• Mapping variables to operandsMapping variables to operands

Consider the C statements:
a=b + c; // Allocate a, b, c to r1, r2, r3
d + f // All t d t 4 h t ll t d f?d=e + f; // Allocate d to r4, how to allocate e and f?
a=a + d;
b=a + e;

A bl l t l ti (t tl MIPS)• Assembly language translation (not exactly MIPS)
load r2, addr_b #fill b
load r3, addr_c #fill c
add r1, r2, r3 #a = b + c
load r2, addr_e #fill e
load r3, addr_f #fill f
add r4, r2, r3 #d = e + f
add r1, r1, r4 #a= a + d
add r3, r1, r2 #b=a + e
store r1, addr_a #spill a (note changed syntax)
store r3, addr_b #spill b
store r4, addr_d #spill d

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

Abstract model of computerAbstract model of computer
• Each instruction undergoes five stagesg g

– Stage 0 (IF): fetch the instruction pointed to by
program counter from memory

– Stage 1 (ID/RF): decode the instruction to
extract various fields and read source register
operandsoperands

– Stage 2 (EX): execute the instruction in ALU;
compute address of load/store instructions; p / ;
update program counter to branch target (if this
instruction is a control transfer instruction)
St 3 (MEM) if l d/ t– Stage 3 (MEM): access memory if load/store
instruction; use address computed in stage 2
Stage 4 (WB): write result back to destination– Stage 4 (WB): write result back to destination
register if the instruction produces a result

SingleSingle--cycle instruction executioncycle instruction execution
clk

ICACHE DCACHE

clk

ICACHE

io
n

re
ss

to
re

at
a

lo
ad

da
ta

in
st

ru
ct

i

ad
dr st da l d

r/w ports

reg1
Combinational

logicPC
REGFILE

i reg1

reg2

instruction result

Update PC with branch target

MultiMulti--cycle instruction executioncycle instruction execution
• Each stage takes one cycle to execute• Each stage takes one cycle to execute

– Processor is now a five state FSM and the
memory elements are sequentialy q

– Need flip-flops at stage boundaries and each
stage is a combinational logic

– Clock cycle time = latency of the longest stage

Pipelined instruction executionPipelined instruction execution
Ob ti f lti l d i• Observations from multi-cycle design
– In the second cycle, I know if it is a branch; if

not start fetching the next instruction?not, start fetching the next instruction?
– When the ALU is doing an addition (say), the

decoder is sitting idle; can we use it for somedecoder is sitting idle; can we use it for some
other instruction?

– In summary, exactly one stage is active at any
point in time: wastes hardware resources

• Form a pipeline
– Process five instructions in parallel
– Each instruction is in a different stage of

processing (called pipe stage)processing (called pipe stage)

Pipelined instruction executionPipelined instruction execution
I di id l i t ti l t i fi l• Individual instruction latency is five cycles,
but ideally can finish one instruction every
cycle after the pipeline is filled upcycle after the pipeline is filled up
– Ideal CPI of 1.0 at the clock frequency of multi-

cycle designcycle design
– Execution time is ideally one-fifth of the multi-

cycle design
• Instruction throughput improves five times (number of

instructions completed in a given time)
I0 IF ID/RF EX MEM WBI0 IF ID/RF EX MEM WB
I1 IF ID/RF EX MEM WB
I2 IF ID/RF EX MEM WB
I3 IF ID/RF EX MEM WB
I4 IF ID/RF EX MEM

time

Pipelined instruction executionPipelined instruction execution
• Gains• Gains

– Extracting parallelism from a sequential instruction
stream: known as instruction-level parallelism (ILP)stream: known as instruction level parallelism (ILP)

– Can complete one instruction every cycle (ideally)

• LossLoss
– Each pipe stage may get lengthened a little bit due

to control overhead (skew time, setup time, (, p ,
propagation delay): limits the gain due to pipelining

– Each instruction may take slightly longer for this
reason

– Bigger aggregate memory bandwidth: icache and
dcache may miss in the same cycledcache may miss in the same cycle

– Pipeline hazards

Pipeline hazard: controlPipeline hazard: control

• Branches pose a problem
CyclesCycles

ins i (beq $1, $0, label) IF ID/RF EX MEM WB
What to fetch? IF
What to fetch? IFWhat to fetch? IF
ins i+1 (target) IF

• Two pipeline bubbles: increases average CPI

Branch predictionBranch prediction
• Today all processors rely on branch• Today all processors rely on branch

predictors that observe the behavior of
individual branches and learn to predict theirindividual branches and learn to predict their
future behavior
– Makes it possible to infer the next instruction’sMakes it possible to infer the next instruction s

PC even before the branch executes
– Pipeline must be flushed on a wrong prediction

Pipeline hazard: dataPipeline hazard: data
• Pipelining disturbs the sequential thought-p g q g

process
– Data dependencies among instructions start to show

upup
add $1, $2, $3
sub $4, $1, $5
and $6, $1, $7
or $8, $1, $9
xor $10 $1 $11xor $10, $1, $11
– Result of add is needed by all instructions (RAW

hazard: read after write hazard)
dd IF ID EX MEM WBadd IF ID EX MEM WB

sub IF ID EX MEM WB
and IF ID EX MEM WBand IF ID EX MEM WB
or IF ID EX MEM WB
xor IF ID EX MEM WB

Pipeline hazard: dataPipeline hazard: data
• How to avoid increasing CPI?How to avoid increasing CPI?

– Can we forward the correct value just in time?
add IF ID EX MEM WBadd IF ID EX MEM WB
sub IF ID EX MEM WB
and IF ID EX MEM WBand IF ID EX MEM WB
– Read wrong value in ID/RF, but bypassed value

overrides it (need a multiplexor for each ALUoverrides it (need a multiplexor for each ALU
input to choose between the RF value and the
bypassed value)bypassed value)

Pipeline hazard: dataPipeline hazard: data
• Can we always avoid stalling?Can we always avoid stalling?

lw $1, 0($2)
sub $4, $1, 5 , $, $
and $6, $1, $7
or $8, $1, $9

lw IF ID EX MEM WB
sub IF ID EX MEM WBsub IF ID EX MEM WB
and IF ID EX MEM WB
or IF ID EX MEM WB
– Need some time travel (backwards)! Not yet

feasible!!
O ti h d i li i t l k t t ll– One option: hardware pipeline interlock to stall
the sub by a cycle

Pipelined instruction executionPipelined instruction execution
• Hazards can cause pipeline stalls and• Hazards can cause pipeline stalls and

introduce bubbles in the pipeline depending
on the pipeline organizationon the pipeline organization

• Overall speedup of pipelining over multi-
cycle non-pipelined implementation =cycle non pipelined implementation =
number of pipe stages/(1 + average stall
cycles per instruction)y p)

Abstract model of computerAbstract model of computer
FSM + ALU

Processor logic DIMM cardProcessor logic

32-bit
data

32-bit
address

Command
bus (read/

ACT/
PRE/CAS

DIMM card

64-bit
data

Addr.
busdata

bus bus
(

write)

DRAM

64-byte data bus

32 bit addr bus

data
ch.

bus

SRAM cache
DRAM

Controller
32-bit addr. bus

Command bus
Read/WriteRead/Write

ALU architectureALU architecture
ALU i ibl f ti th f• ALU is responsible for executing the core of
the instructions

E thi t l d/ t i t ti– Everything except load/store instructions
• ALU takes two inputs for most instructions

and produces a result that may or may notand produces a result that may or may not
get written to a destination register

For example control transfer instructions do not– For example, control transfer instructions do not
write to a general-purpose register, but writes to
the program counter

• ALUs are of two kinds: integer and floating-
point
– The floating-point ALU is often referred to as the

floating-point unit (FPU)

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

Abstract model of computerAbstract model of computer

Hard disksDisk
controller

Processor logic DIMM card

controller

Processor logic

32-bit
data

32-bit
address

Command
bus (read/

ACT/
PRE/CAS

DIMM card

64-bit
data

Addr.
busdata

bus bus
(

write)

DRAM

64-byte data bus

32 bit addr bus

data
ch.

bus

SRAM cache
DRAM

Controller
32-bit addr. bus

Command bus
Read/WriteRead/Write

I/O hub DMA controller

Locality principlesLocality principles
P i i l f l lit hibit d b• Principles of locality exhibited by programs
– Code and data accessed now are likely to be

accessed again in near futureaccessed again in near-future
• Any interesting program would have loops and/or

recursions
– Justifies why code and data accesses may be repeated
– Example: reuse of rows of A and columns of B when

multiplying matrices A and B
• Known as temporal locality

– Code and data allocated close to the code and
data being accessed now are likely to bedata being accessed now are likely to be
accessed in near-future

• Sequential code accessq
• Sequential data access (e.g., walking over an array)
• Known as spatial locality

Memory and storage hierarchyMemory and storage hierarchy
L lit i i l i l i t t• Locality principles imply an important
corollary

P ll k ll ti f– Programs usually work on a small portions of
code and data at a time

• The code and data needed over a time window ofThe code and data needed over a time window of
length t could be a subset of the code and data
needed over a bigger time window of length t’

• Think about nested loops• Think about nested loops

• This corollary is exploited to build a hierarchy
of memory and storage structuresof memory and storage structures
– Keep most recently used code and data close to

the processor because this is needed nowp
– Keep increasingly larger supersets of code and

data gradually away from the processor

Memory and storage hierarchyMemory and storage hierarchy
• Why not keep everything in a large on-chipWhy not keep everything in a large on chip

SRAM?
– Expensive and slowp

• Memory and storage parts are usually
arranged in a hierarchyg y
– SRAM caches are closest to the processor logic,

smallest in size, and fastest
• Total on-chip cache is usually few tens of MBs

– DRAM is outside processor chip, much larger in
size much slower than SRAM cachessize, much slower than SRAM caches

• Tens to hundreds of GBs
– Hard disk holds everything, non-volatile, veryHard disk holds everything, non volatile, very

large, very slow
• Tens to hundreds of TBs

Memory and storage hierarchyMemory and storage hierarchy
Hi hi l i ti ll f t• Hierarchical organization allows very fast
access to a small subset of code and data
needed now from the SRAM cacheneeded now from the SRAM cache

• Later this code and data can be exchanged
to bring something else from DRAMto bring something else from DRAM
– SRAM caches have finite capacity, so something

must be replaced to bring something new if themust be replaced to bring something new if the
cache is already full

• Also, code and data in DRAM can be ,
swapped with something else from hard disk
on demand
– Less frequent than exchange between SRAM and

DRAM

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WBWBDRAM Hard disk

State 3
SRAM MEMSRAM
cache

State 0 State 1 State 2PC
IF ID/RF EX

PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WBWBDRAM Hard disk

State 3
SRAM MEMSRAM
cache

PC
Load/Store address

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WBWBDRAM Hard disk

State 3
SRAM MEMSRAM
cache

PC
Load/Store addressN

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WBWBDRAM Hard disk

State 3
SRAM MEMSRAM
cache

PC
Load/Store addressN

Nx [t1]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x)

WBDRAM Hard disk

State 3
SRAM MEMSRAM
cache

PC
Load/Store addressN

Nx [t1]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x)

WBDRAM Hard disk

State 3
SRAM

N(1 – x)y

MEMSRAM
cache

PC
Load/Store addressN

Nx [t1]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x)

WBDRAM Hard disk

State 3
SRAM

N(1 – x)y

MEMSRAM
cache

PC
Load/Store addressN

Nx [t1] N(1 – x)y [t2]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x) N(1 – x)(1 – y)

WBDRAM Hard disk

State 3
SRAM

N(1 – x)y

MEMSRAM
cache

PC
Load/Store addressN

Nx [t1] N(1 – x)y [t2]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x) N(1 – x)(1 – y)

WBDRAM Hard diskN(1 – x)(1 – y)

State 3
SRAM

N(1 – x)y

MEMSRAM
cache

PC
Load/Store addressN

Nx [t1] N(1 – x)y [t2]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x) N(1 – x)(1 – y)

WBDRAM Hard diskN(1 – x)(1 – y)

State 3
SRAM

N(1 – x)y N(1 – x)(1 – y)

MEMSRAM
cache

PC
Load/Store addressN

Nx [t1] N(1 – x)y [t2]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

State 4
WB

N(1 – x) N(1 – x)(1 – y)

WBDRAM Hard diskN(1 – x)(1 – y)

State 3
SRAM

N(1 – x)y N(1 – x)(1 – y)

MEMSRAM
cache

PC
Load/Store addressN

Nx [t1] N(1 – x)y [t2] N(1 – x)(1 – y) [t3]

State 0 State 1 State 2PC

PC

IF ID/RF EX
PC

Memory and storage hierarchyMemory and storage hierarchy
• Example• Example

– Suppose a program’s load/store instructions and
instruction fetcher generate N memory accessesg y

– Nx accesses find the requested data in on-chip
SRAM cache (x < 1)
N(1 x)y accesses find the requested data in– N(1 – x)y accesses find the requested data in
DRAM (y < 1)

– Remaining accesses fetch data from hard diskg
– An access to SRAM cache requires time t1 (hit)
– An access to DRAM requires time t2 (cache miss)

A t h d di k i ti t3– An access to hard disk requires time t3
– Average access time = (Nxt1 + N(1 – x)yt2 +

N(1 – x)(1 – y)t3)/NN(1 x)(1 y)t3)/N
• Since t1 << t2 << t3, as x and/or y increase(s), the

average access time goes down

Basics of SRAM cacheBasics of SRAM cache
• Cache is looked up in two events• Cache is looked up in two events

– State 0 of FSM generates an access for
instruction using program counter as the addressinstruction using program counter as the address

– State 3 of FSM generates an access for data
using the address computed in state 2g p

– Requested block is searched in the cache
• Needs to store the address along with each block
• Block address is the search key
• This searching time can be very large if done

sequentiallysequentially
• A parallel search would require a large number of

comparators (equal to number of blocks in the cache)
Would consume a lot of power and area– Would consume a lot of power and area

Basics of SRAM cacheBasics of SRAM cache
• Start with a simple design• Start with a simple design

Address >> log2(Block size)

Code block
Code block

Block addr.
Block addr.

Data block
Code block
Data block

Block addr.
Block addr.
Block addr Data block

Data block
Data block
D t bl k

Block addr.
Block addr.
Block addr.
Bl k dd

Search

Data block
Code block
Block size

Block addr.
Block addr.

Block size

Address is either the PC or the load/store address

Basics of SRAM cacheBasics of SRAM cache
• If the looked up block is found in the cache, p ,

it is called a cache hit; otherwise it is a cache
miss
– Cache miss requests are forwarded to the DRAM

controller for further handling
E t ll th DRAM t ll ill d ith– Eventually the DRAM controller will respond with
the requested block and it will be allocated in the
cachecac e

• What if the cache is full?
– Needs to replace a block

Which block to eplace?• Which block to replace?
– Maybe the block that is not used recently (least-recently-

used or LRU replacement algorithm)
M b d bl k (d l t l ith)– Maybe a random block (random replacement algorithm)

– LRU replacement requires keeping track of time of access
– Random replacement requires a random number generator

Basics of SRAM cacheBasics of SRAM cache
• Cache hits need to be much faster than• Cache hits need to be much faster than

cache misses to be useful
T ti i th h ti f h bl k• To optimize the search time of a cache block,
caches are typically organized as hash tables
– Each hash element has a block, a block address

or tag, and a few state bits (e.g., valid/invalid)
Th bl k i h l i ll di id d i t– The blocks in a cache are logically divided into
disjoint sets (these are hash buckets)

• Each set can have a maximum number of valid blocks• Each set can have a maximum number of valid blocks
• This maximum number is known as the associativity

of the cache
• For example, a 16 KB cache with 64-byte blocks can

have 32 sets each with associativity 8

22--way set associative cacheway set associative cache

TAG1TAG0 TAG1

TAG DATATAG DATA 2m setsTAG DATATAG DATA

2n bytes

STATESTATE
Way#0 Way#1

Block address = {TAG,INDEX}; TAG bits can uniquely identify a block in a set

22--way set associative cacheway set associative cache

TAG1TAG0 TAG1

Set 0

TAG DATATAG DATA 2m setsTAG DATATAG DATA

2n bytes

STATESTATE
Way#0 Way#1

Block address = {TAG,INDEX}; TAG bits can uniquely identify a block in a set

22--way set associative cacheway set associative cache

TAG1TAG0 TAG1

Set 0
Set 1

TAG DATATAG DATA

Set 1

2m setsTAG DATATAG DATA

2n bytes

STATESTATE
Way#0 Way#1

Block address = {TAG,INDEX}; TAG bits can uniquely identify a block in a set

22--way set associative cacheway set associative cache

TAG1TAG0 TAG1

Set 0
Set 1

TAG DATATAG DATA

Set 1
Set 2

2m setsTAG DATATAG DATA

2n bytes

STATESTATE
Way#0 Way#1

Block address = {TAG,INDEX}; TAG bits can uniquely identify a block in a set

22--way set associative cacheway set associative cache

TAG1TAG0 TAG1

Set 0
Set 1

TAG DATATAG DATA

Set 1
Set 2

2m setsTAG DATATAG DATA

Set k
2n bytes

STATESTATE
Way#0 Way#1

Block address = {TAG,INDEX}; TAG bits can uniquely identify a block in a set

Basics of SRAM cacheBasics of SRAM cache
• A cache with associativity A is often called an• A cache with associativity A is often called an

A-way set-associative cache
• To look up a cache with an address• To look up a cache with an address

– The set index is first determined by passing the
address through a hash functionaddress through a hash function

– Within the set, the block addresses are searched
in parallel for the target addressp g

• Number of comparators is equal to the associativity of
the cache (which is usually small)

Basics of SRAM cacheBasics of SRAM cache
• Observations• Observations

– If associativity is one, number of sets is equal to
the number of blocks in cachethe number of blocks in cache

• A given block address has a unique location in cache
• Known as direct-mapped cache (a given block address

directly maps to a unique location in cache)
• Simple design, but may suffer from large number of

collisions between blocks (known as conflicts)()
– Block addresses 0, N, 2N, 3N, … all map to set 0 if there are

N blocks in the cache
– Can increase the number of cache misses compared to a set-p

associative design
• This is the minimum possible associativity

Basics of SRAM cacheBasics of SRAM cache
• ObservationsObservations

– If associativity is equal to the number of blocks
in the cache, then the number of sets is one

• Need to search all blocks in the cache during a lookup
• Known as fully associative cache (usually small in size)

A given block can be placed anywhere in the cache• A given block can be placed anywhere in the cache
– Significantly reduces conflicts

• This is the maximum possible associativity for a given
cache capacity

– Cache capacity = no. of blocks x block size = no. of sets x
no. of ways x block size

Cache performanceCache performance
• Definitions• Definitions

– Hit rate = number of hits / number of accesses
• Bigger the betterBigger the better

– Miss rate = number of misses / number of
accesses = 1 – hit rate

• Smaller the better
– Average memory access time (AMAT) = hit/miss

detection time + miss rate x miss penaltydetection time + miss rate x miss penalty
– Decreasing any of the three terms would

improve AMATimprove AMAT
– Miss rate x miss penalty is often referred to as

the memory stall time
– Overall execution time = CPU time + memory

stall time

MultiMulti--level cache hierarchylevel cache hierarchy
• All commercial processors have two or threeAll commercial processors have two or three

levels of SRAM cache on chip today
– L1 is the closest to the processor and L2, L3, …L1 is the closest to the processor and L2, L3, …

are further away, get gradually bigger and slower
– The levels are designed such that the latency of a d g d u a a y o

fetching a block from the last level SRAM cache
is still much smaller than fetching from DRAM

• Typical sizes: L1: < 100 KB, L2: < 1 MB, L3: 2-32 MB
• Associativity typically increases with increasing level

Bl k i i i• Block size may increase or may remain constant
• Typical round-trip latencies could be L1: <1 ns, L2: ~5

ns L3: ~10 ns DRAM: 50-100 nsns, L3: 10 ns, DRAM: 50 100 ns
• Missing in last-level cache can be highly detrimental

for performance

MultiMulti--level cache hierarchylevel cache hierarchy
• Processor FSM and logic injects code/data• Processor FSM and logic injects code/data

requests to L1 instruction/data cache
• L1 cache hits are returned immediately to• L1 cache hits are returned immediately to

the processor; L1 cache misses are
forwarded to the L2 cacheforwarded to the L2 cache

• L2 cache hits are returned to the L1 cache,
which forwards the requested bytes to thewhich forwards the requested bytes to the
processor and also fills the block in L1 cache
– Future accesses can be satisfied from the L1Future accesses can be satisfied from the L1

cache until the block is replaced from L1 cache
• L2 cache misses are forwarded to L3 cache

or DRAM depending on the number of SRAM
cache levels

MultiMulti--level cache hierarchylevel cache hierarchy
U d t d AMAT ti• Updated AMAT equation
– Average memory access time (AMAT) = L1

hit/ i d t ti ti + L1 i t L2hit/miss detection time + L1 miss rate x L2
hit/miss detection time + L1 miss rate x L2 miss
rate x L3 hit/miss detection time + L1 miss rate xrate x L3 hit/miss detection time + L1 miss rate x
L2 miss rate x L3 miss rate x DRAM fetch latency

Why virtual memory?Why virtual memory?
• With a 32-bit address you can access 4 GB of

physical memory (you will never get the full
memory though)memory though)
– Seems enough for most day-to-day applications
– But there are important applications that have much

bi f i d b i ifibigger memory footprint: databases, scientific apps
operating on large matrices etc.

– Even if your application fits entirely in physical y pp y p y
memory it seems unfair to load the full image at
startup

– Just takes away memory from other processes, butJust takes away memory from other processes, but
probably doesn’t need the full image at any point of
time during execution: hurts multiprogramming

• Need to provide an illusion of bigger memory:• Need to provide an illusion of bigger memory:
Virtual Memory (VM)

Virtual memoryVirtual memory
• Need an address to access virtual memory• Need an address to access virtual memory

– Virtual Address (VA)
• Assume a 32-bit VA• Assume a 32-bit VA

– Every process sees a 4 GB of virtual memory
– This is much better than a 4 GB physical memory– This is much better than a 4 GB physical memory

shared between multiprogrammed processes
– The size of VA is really fixed by the processor y y p

data path width
– Large virtual and physical memory is very

i t t i i l k t d timportant in commercial server market: need to
run large databases

Addressing VMAddressing VM
• There are primarily three ways to address VM

– Paging, Segmentation, Segmented pagingg g, g , g p g g
– We will focus on flat paging only

• Paged VMg
– The entire VM is divided into small units called pages
– Virtual pages are loaded into physical page framesp g p y p g

as and when needed (demand paging)
– Thus the physical memory is also divided into equal

d fsized page frames
– The processor generates virtual addresses

B t i h i ll dd d d VA t– But memory is physically addressed: need a VA to
PA translation

VA to PA translationVA to PA translation
• The VA generated by the processor is divided

into two parts:
– Page offset and Virtual page number (VPN)
– Assume a 4 KB page: within a 32-bit VA, lower 12

bits will be page offset (offset within a page) and thebits will be page offset (offset within a page) and the
remaining 20 bits are VPN (hence 1 M virtual pages
total)

ff– The page offset remains unchanged in the
translation

– Need to translate VPN to a physical page frameNeed to translate VPN to a physical page frame
number (PPFN)

– This translation is held in a page table resident in
fi d hi blmemory: so first we need to access this page table

– How to get the address of the page table?

VA to PA translationVA to PA translation
• Accessing the page table

– The Page table base register (PTBR) contains the g g ()
starting physical address of the page table

– PTBR is normally accessible in the kernel mode only
– Assume each entry in page table is 32 bits (4 bytes)
– Thus the required page table address is

PTBR (VPN 2)PTBR + (VPN << 2)
– Access memory at this address to get 32 bits of data

from the page table entry (PTE)from the page table entry (PTE)
– These 32 bits contain many things: a valid bit, the

much needed PPFN (may be 20 bits for a 4 GB (y
physical memory), access permissions (read, write,
execute), a dirty/modified bit etc.

Page faultPage fault
• The valid bit within the 32 bits tells you if the

translation is valid
If thi bit i t th t th i t• If this bit is reset that means the page is not
resident in memory: results in a page fault

• In case of a page fault the kernel needs to bring• In case of a page fault the kernel needs to bring
in the page to memory from disk

• The disk address is normally provided by the y p y
page table entry (different interpretation of 31
bits)

• Also kernel needs to allocate a new physical• Also kernel needs to allocate a new physical
page frame for this virtual page

• If all frames are occupied it invokes a pageIf all frames are occupied it invokes a page
replacement policy

VA to PA translationVA to PA translation
• Page faults take a long time: order of ms

– Need a good page replacement policy
• Once the page fault finishes, the page table

entry is updated with the new VPN to PPFN
mappingmapping

• Of course, if the valid bit was set, you get the
PPFN right away without taking a page fault

• Finally, PPFN is concatenated with the page
offset to get the final PA
Processor now can issue a memory request with

PPFN Offset

• Processor now can issue a memory request with
this PA to get the necessary data

• Really two memory accesses are neededReally two memory accesses are needed
• Can we improve on this?

TLBTLB
• Why can’t we cache the most recently used

translations?
– Translation Look-aside Buffers (TLB)
– Small set of registers (normally fully associative)
– Each entry has two parts: the tag which is simply

VPN and the corresponding PTE
– The tag may also contain a process id
– On a TLB hit you just get the translation in one cycle

(may take slightly longer depending on the design)(may take slightly longer depending on the design)
– On a TLB miss you may need to access memory to

load the PTE in TLB (heavily optimized today)load the PTE in TLB (heavily optimized today)
– Normally there are two TLBs: instruction and data

Memory op latencyMemory op latency
L1 hi 1• L1 hit: ~1 ns

• L2 hit: ~5 ns
L3 hit: 10 15 ns• L3 hit: ~10-15 ns

• Main memory: ~70 ns DRAM access time + bus
transfer etc. = ~110-120 nstransfer etc. 110 120 ns

• If a load misses in all caches it will eventually
come to the head of the ROB and block
i t ti ti t (i d ti t iinstruction retirement (in-order retirement is a
must)

• Gradually the pipeline backs up processor runs• Gradually, the pipeline backs up, processor runs
out of resources such as ROB entries and
physical registers

• Ultimately, the fetcher stalls: severely limits ILP

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
Communicating with environmentCommunicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

I/O devicesI/O devices
• A computer that can only execute

instructions for computing and accessing
memory is not very useful
– There is no way for the environment to give

inp ts to the comp te o e amine o tp ts ofinputs to the computer or examine outputs of
computation

• A typical computer interfaces with a large• A typical computer interfaces with a large
number of I/O devices
– Keyboard display mouse speaker microphoneKeyboard, display, mouse, speaker, microphone,

hard disk, printer, USB devices, etc.
– Need a mechanism to communicate with these

devices
• How to read a key punch or how to display

I/O devicesI/O devices
A t i l I/O d i h t f d• A typical I/O device has a set of command
registers and a set of data registers

Th i d i dd d b– These are assigned unique addresses and can be
read or written to through load or store
instructions

• Known as memory-mapped I/O registers
– To the computer, these appear as memory

llocations
• The only difference is that they are not in DRAM, but

in I/O devicesin I/O devices
– For example, printing something on the printer

involves storing the data to be printed to the
printer data registers and an appropriate
command to the printer command registers

I/O devicesI/O devices
C t i I/O d d b k• Certain I/O commands send responses back
to the computer

k b d d d b d h– A keyboard read needs to be conveyed to the
computer
C l ti f di k d d t b d– Completion of a disk read needs to be conveyed
to the computer
Any read operation must be communicated to– Any read operation must be communicated to
the computer
To detect completion of a disk or keyboard read– To detect completion of a disk or keyboard read,
one possibility is to continuously poll a register of
the disk controller or the keyboard controllerthe disk controller or the keyboard controller

• Wastes computer’s time (computer could do
something else during this time)

I/O devicesI/O devices
• Polling works only if the computer is aware

that it will receive some response from a
certain I/O device
– Certain responses are accidental (e.g., ctrl+C to

terminate a program or a mouse click)
• In such cases, the computer did not know beforehand

d t lli th d i tand was not polling the memory-mapped register

• An efficient solution that covers all cases is
i l t d i i t timplemented using interrupts
– These are signals sent by the I/O devices to the

tcomputer
– For example, a key punch generates an interrupt

InterruptsInterrupts
• Interrupts stop the normal instruction

processing of a computer and make it
h dl fexecute an interrupt handler function

– Interrupts can be generated by hardware (e.g.,
I/O devices) or software (e.g., exceptions and
system calls)
Th t t i l t i t t– There are two ways to implement interrupt or
exception handlers

• Vectored interrupts or exceptions• Vectored interrupts or exceptions
• Cause-based interrupt handling (non-vectored)

Direct memory access (DMA)Direct memory access (DMA)
• Copying large amounts of data from input• Copying large amounts of data from input

devices to memory may take a significant
amount of timeamount of time
– Reading files from disk

• Same applies to copying from memory to• Same applies to copying from memory to
output devices
– Write to files on diskWrite to files on disk

• Occupying the computer during this time
wastes computer’s resourceswastes computer s resources
– Could compute something useful during this time

• Direct memory access (DMA) frees up theDirect memory access (DMA) frees up the
computer during data copying from/to I/O

Direct memory access (DMA)Direct memory access (DMA)
• Computer initializes a specialized hardware• Computer initializes a specialized hardware

called DMA controller by setting up the copy
address range and the number of bytes to beaddress range and the number of bytes to be
copied

• DMA controller does the actual copyDMA controller does the actual copy
operation
– DMA controller when copying from an input py g p

device sends the data to the DRAM controller for
writing
DMA t ll h i t t t d i– DMA controller when copying to an output device
sends read requests to the DRAM controller

– When the copying completes the DMA controllerWhen the copying completes, the DMA controller
sends an interrupt to the computer to notify
about the DMA completion

ExceptionsExceptions
• Exceptions refer to situations where the• Exceptions refer to situations where the

running program exhibits unexpected
behaviorbehavior
– Arithmetic overflow, divide by zero, fetching and

decoding an illegal opcode, accessing an g g p , g
illegitimate address

– In such situations, the PC of the offending
i t ti i d i i t ll d tiinstruction is saved in a register called exception
PC (EPC) and the program counter is changed to
point to a location that has a “trap” instructionpoint to a location that has a trap instruction

– The trap instruction allows the computer to enter
the operating system which further invokes the
appropriate exception handler after examining
the cause register

ExceptionsExceptions
• Some exceptions are restartable while someSome exceptions are restartable while some

exceptions are not
– Restartable exceptions return to normalRestartable exceptions return to normal

execution of the program after the exception
handler completes

• Example: non-availability of code/data in memory
(causes a page fault exception)

N t t bl ti t i ll l d t– Non-restartable exceptions typically lead to
termination of the running program with an
appropriate message printed on displayappropriate message printed on display

• Arithmetic exceptions, illegal opcode, crossing
legitimate memory boundary, etc.g y y,

System callsSystem calls
S t ll d f ti ll t• System calls are pseudo-function calls to
request access to certain hardware/software

f th t tresources of the computer system
– Reading from a file on disk, reading from

ke bo d iting to di pl iting to filekeyboard, writing to display, writing to a file,
allocating dynamic memory, etc. involve system
callscalls

– Some computers refer to system calls as
software interruptssoftware interrupts

– MIPS ISA has the syscall instruction for this
purposep p

• Before invoking the syscall instruction, few registers
need to be set up with appropriate information

ssyscallyscall instructioninstruction
E t ll h b t i di t• Every system call has a number to indicate
the purpose of the system call

d f f l f l ll– Reading from a file, writing to a file, allocating
dynamic memory all have different system call
numbersnumbers

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

Why measure performance?Why measure performance?
• Primarily two reasons• Primarily two reasons

– To measure how good a computer is
To understand why a computer is or is not– To understand why a computer is or is not
performing as expected

• Performance of a computer is a function ofPerformance of a computer is a function of
the performance of individual programs that
run on the computerp

• A program’s performance is best measured
as the reciprocal of its execution timep

• Equivalently, two computers’ performance on
the same program can be compared by p g p y
looking at the reciprocal of respective
execution times

CPI equationCPI equation
How do we measure execution time? Which• How do we measure execution time? Which
are the determinant factors?

• Assume that we want to calculate the• Assume that we want to calculate the
execution time of a program
– Execution time = Clock cycles to execute the y

progam × clock cycle time
– Executed clock cycles = number of executed

instructions × average cycles per instructioninstructions × average cycles per instruction
– Execution time = instruction count × CPI × cycle

time
– Cycle time is also same as reciprocal of

frequency (in appropriate unit)
– Execution time equally depends on three– Execution time equally depends on three

components

Amdahl’s lawAmdahl’s law
• Look for portions of program that takes largeLook for portions of program that takes large

amount of time to execute
– Allocate resources and design time proportionate g p p

to execution time
– As x increases the achieved speedup goes up

f fi d i d ifor a fixed y; as y increases, speedup remains
limited by x

– Amdahl’s law is usually used to compare design– Amdahl s law is usually used to compare design
alternatives i.e. which design would bring more
performance

Amdahl’s lawAmdahl’s law
• Amdahl’s law can be used to derive upperAmdahl s law can be used to derive upper

bound on achievable speedup in a parallel
computer
– Suppose a sequential program takes time t to

run on a single processor
– A fraction s of this time is spent in executing– A fraction s of this time is spent in executing

inherently sequential portions of the program
– The remaining time can be perfectly parallelized

bit b fon arbitrary number of processors
– Maximum achievable speedup = t / (s*t + (1 –

s)*t / P) which is 1 / (s + (1 – s) / P) on Ps) t / P) which is 1 / (s (1 s) / P) on P
processors

– In the limit, speedup gets capped at 1 / s
E en if i 0 05 peed p nnot be mo e th n 20• Even if s is 0.05, speedup cannot be more than 20

• To get very large speedup, s should be tiny

BenchmarksBenchmarks
• Want to compare two processors byWant to compare two processors by

measuring their performance
Need some standardized set of programs– Need some standardized set of programs

– These are called benchmark programs
Different types of computers have different– Different types of computers have different
focus: needs different set of benchmarks

• Performance metric for desktop/workstation isPerformance metric for desktop/workstation is
execution time (also known as response time)

• Performance metric for servers is throughput (number
of jobs done per unit time with a limit on response
time per job)

• Performance metric for embedded processors is also• Performance metric for embedded processors is also
execution time with an emphasis on deadline and
power consumption

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement
Performance optimizationPerformance optimization
– Multi-core processors

B i f ti t• Basics of operating systems

Moore’s lawMoore’s law
• Number of transistors in a given area g

doubles every 18 to 24 months
– Made possible by improved technology enabling

shrinking of transistors
– More transistors means more smartness in the

chip and hence more performancechip and hence, more performance
• Could design more sophisticate ALUs, for example

– Moore’s law has played a vital role inMoore s law has played a vital role in
performance improvement of computers

– Negative side: switching more transistors every
clock cycle increases power consumption leading
to more heating (needs sophisticated cooling
solutions)solutions)

• Moore’s law is said to have “slowed down” these days
because of this reason

OutOut--ofof--order Executionorder Execution
load r2, addr
add r3 r2 r1add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1
addi r29, r29, 0xffff, ,
sll r29, r29, 2
mul r20 r20mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,
addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2
mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,

addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2
mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,

addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2

mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,

addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2

mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,

addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2

mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3

sub r9, r10, r1, ,
addi r29, r29, 0xffff

sll r29 r29 2sll r29, r29, 2
mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3

sub r9, r10, r1, ,
addi r29, r29, 0xffff

sll r29 r29 2sll r29, r29, 2
mul r20, r20

OutOut--ofof--order Executionorder Execution
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3

sub r9, r10, r1, ,
addi r29, r29, 0xffff

sll r29 r29 2sll r29, r29, 2
mul r20, r20

Results must become visible in-order

Multiple IssueMultiple Issue
load r2, addr
add r3 r2 r1add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1
addi r29, r29, 0xffff, ,
sll r29, r29, 2
mul r20 r20mul r20, r20

Multiple IssueMultiple Issue
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,

addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2

mul r20, r20

Multiple IssueMultiple Issue
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3
sub r9, r10, r1, ,

addi r29, r29, 0xffff
sll r29 r29 2sll r29, r29, 2

mul r20, r20

Multiple IssueMultiple Issue
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3

sub r9, r10, r1, ,
addi r29, r29, 0xffff

sll r29 r29 2sll r29, r29, 2
mul r20, r20

Multiple IssueMultiple Issue
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3

sub r9, r10, r1, ,
addi r29, r29, 0xffff

sll r29 r29 2sll r29, r29, 2
mul r20, r20

Multiple IssueMultiple Issue
load r2, addrCache miss

add r3, r2, r1
xor r10, r5, r3

sub r9, r10, r1, ,
addi r29, r29, 0xffff

sll r29 r29 2sll r29, r29, 2
mul r20, r20

Results must become visible in-order

OutOut--ofof--order Multiple Issueorder Multiple Issue
S h d i ht• Some hardware nightmares
– Complex issue logic to discover independent

instructionsinstructions
– Increased pressure on cache

• Impact of a cache miss is much bigger now in termsImpact of a cache miss is much bigger now in terms
of lost opportunity

• Various speculative techniques are in place to
“ignore” the slow and stupid memoryignore the slow and stupid memory

– Increased impact of control dependence
• Must feed the processor with multiple correctMust feed the processor with multiple correct

instructions every cycle
• One cycle of bubble means lost opportunity of

multiple instructionsmultiple instructions
– Complex logic to verify

MLPMLP
• Need memory level parallelism (MLP)• Need memory-level parallelism (MLP)

– Simply speaking, need to mutually overlap
several memory operationsseveral memory operations

• Step 1: Non-blocking cache
– Allow multiple outstanding cache misses– Allow multiple outstanding cache misses
– Mutually overlap multiple cache misses
– Supported by all microprocessors todaySupported by all microprocessors today

• Step 2: Out-of-order load issue
– Issue loads out of program order (address is not– Issue loads out of program order (address is not

known at the time of issue)
– How do you know the load didn’t issue before a y

store to the same address? Issuing stores must
check for this memory-order violation

OutOut--ofof--order loadsorder loads
0(7) 6sw 0(r7), r6

… /* other instructions */
l 2 80(20)lw r2, 80(r20)
• Assume that the load issues before the store

because r20 gets ready before r6 or r7because r20 gets ready before r6 or r7
• The load accesses the store buffer (used for

holding already executed store values beforeholding already executed store values before
they are committed to the cache at retirement)

• If it misses in the store buffer it looks up theIf it misses in the store buffer it looks up the
caches and, say, gets the value somewhere

• After several cycles the store issues and it turnsAfter several cycles the store issues and it turns
out that 0(r7)==80(r20) or they overlap; now
what?

Load/store orderingLoad/store ordering
O f d l d i li l i• Out-of-order load issue relies on speculative
memory disambiguation
– Assumes that there will be no conflicting storeAssumes that there will be no conflicting store
– If the speculation is correct, you have issued the

load much earlier and you have allowed the
dependents to also execute much earlierdependents to also execute much earlier

– If there is a conflicting store, you have to squash the
load and all the dependents that have consumed the
load value and re execute them systematicallyload value and re-execute them systematically

– Turns out that the speculation is correct most of the
time

– To further minimize the load squash,
microprocessors use simple memory dependence
predictors (predicts if a load is going to conflict with p (p g g
a pending store based on that load’s or load/store
pairs’ past behavior)

MLP and memory wallMLP and memory wall
Today microprocessors try to hide cache misses• Today microprocessors try to hide cache misses
by initiating early prefetches:
– Hardware prefetchers try to predict next several load p y p

addresses and initiate cache line prefetch if they are
not already in the cache

– All processors today also support prefetchAll processors today also support prefetch
instructions; so you can specify in your program
when to prefetch what: this gives much better
control compared to a hardware prefetchercontrol compared to a hardware prefetcher

• Researchers have worked on load value
prediction

• Even after doing all these, memory latency
remains the biggest bottleneck

• Today microprocessors are trying to overcome• Today microprocessors are trying to overcome
one single wall: the memory wall

AgendaAgenda
Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
Multi-core processors

B i f ti t• Basics of operating systems

MultiMulti--corecore
• Put a few reasonably complex processors or

many simple processors on the chipy p p p
– Each processor has its own primary cache and

pipelinep p
– Often a processor is called a core
– Often called a chip-multiprocessor (CMP)p p ()

• Did we use the transistors properly?
– Depends on if you can keep the cores busy– Depends on if you can keep the cores busy
– Introduces the concept of thread-level

parallelism (TLP)parallelism (TLP)

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

PipelinePipeline

IL1 DL1
L2 slice

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Pipeline PipelinePipeline

IL1 DL1

Pipeline

IL1 DL1
L2 slice L2 slice

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Pipeline PipelinePipeline

IL1 DL1

Pipeline

IL1 DL1
L2 slice L2 slice

IL1 DL1
L2 slice

Pipeline

IL1 DL1

p

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Pipeline PipelinePipeline

IL1 DL1

Pipeline

IL1 DL1
L2 slice L2 slice

IL1 DL1
L2 slice

IL1 DL1
L2 slice

Pipeline

IL1 DL1

Pipeline

IL1 DL1

pp

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Pipeline PipelineMemPipeline

IL1 DL1

Pipeline

IL1 DL1
Mem.
Coh.
CntrL2 slice L2 sliceCntr.

IL1 DL1
L2 slice

IL1 DL1
L2 slice

Pipeline

IL1 DL1

Pipeline

IL1 DL1

pp

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Pipeline PipelineMemPipeline

IL1 DL1

Pipeline

IL1 DL1
Mem.
Coh.
CntrL2 slice L2 sliceCntr.

IL1 DL1
L2 slice

IL1 DL1
L2 slice Mem.

Pipeline

IL1 DL1

Pipeline

IL1 DL1 Coh.
Cntr. pp

Tiled CMP (Hypothetical FloorTiled CMP (Hypothetical Floor--plan)plan)

Pipeline PipelineMemPipeline

IL1 DL1

Pipeline

IL1 DL1
Mem.
Coh.
CntrL2 slice L2 slice

Crossbar

Cntr.

IL1 DL1
L2 slice

IL1 DL1
L2 slice

Crossbar

Mem.

Pipeline

IL1 DL1

Pipeline

IL1 DL1 Coh.
Cntr. pp

Shared Cache CMPShared Cache CMP

Shared Cache CMPShared Cache CMP

PipelinePipeline

IL1 DL1

Shared Cache CMPShared Cache CMP

PipelinePipeline

IL1 DL1

IL1 DL1

Pipeline

IL1 DL1

Shared Cache CMPShared Cache CMP

Pipeline PipelinePipeline

IL1 DL1

Pipeline

IL1 DL1

IL1 DL1

Pipeline

IL1 DL1

Shared Cache CMPShared Cache CMP

Pipeline PipelinePipeline

IL1 DL1

Pipeline

IL1 DL1

IL1 DL1 IL1 DL1

Pipeline

IL1 DL1

Pipeline

IL1 DL1

Shared Cache CMPShared Cache CMP

Pipeline PipelinePipeline

IL1 DL1

Pipeline

IL1 DL1

Non-uniform access L2
(NUCA)

IL1 DL1 IL1 DL1

(NUCA)

Pipeline

IL1 DL1

Pipeline

IL1 DL1

Shared Cache CMPShared Cache CMP

Pipeline PipelineMem.Pipeline

IL1 DL1

Pipeline

IL1 DL1
Coh.
Cntr.

Non-uniform access L2
(NUCA)

IL1 DL1 IL1 DL1

(NUCA)

Pipeline

IL1 DL1

Pipeline

IL1 DL1

Shared Cache CMPShared Cache CMP

Pipeline PipelineMem.Pipeline

IL1 DL1

Pipeline

IL1 DL1
Coh.
Cntr.

Non-uniform access L2
(NUCA)

IL1 DL1 IL1 DL1

(NUCA)

Mem

Pipeline

IL1 DL1

Pipeline

IL1 DL1Mem.
Coh.
CntrCntr.

Niagara FloorNiagara Floor--planplan

QuadQuad--core Sandy Bridgecore Sandy Bridge

Floor of today’s chipsFloor of today’s chips
L3 bank L3 bankPipe+L1+

L2
Pipe+L1+

L2

Interconnection networkMC MC

Switch

Interconnection network

L3 bank L3 bankPipe+L1+
L2

Pipe+L1+
L2

NI

DIMMs DIMMsDDRx DRAM channels

Simple interconnection networks:
Linear bus, ring, 2D mesh (usually bidirectional)

Cache CoherenceCache Coherence

Cache coherenceCache coherence
• Nothing unique to multiprocessors• Nothing unique to multiprocessors

– Even uniprocessor computers need to worry
about cache coherence

– For sequential programs we expect a memory
location to return the latest value written

– For concurrent programs running on multiple
threads or processes on a single processor we
expect the same model to hold because allexpect the same model to hold because all
threads see the same cache hierarchy (same as
shared L1 cache)

– For multiprocessors there remains a danger of
using a stale value: hardware must ensure that
cached values are coherent across the systemcached values are coherent across the system
and they satisfy programmers’ intuitive memory
model

Cache coherence: ExampleCache coherence: Example
• Assume a write through cache• Assume a write-through cache

– P0: reads x from memory, puts it in its cache,
and gets the value 5and gets the value 5

– P1: reads x from memory, puts it in its cache,
and gets the value 5g

– P1: writes x=7, updates its cached value and
memory value

– P0: reads x from its cache and gets the value 5
– P2: reads x from memory, puts it in its cache,

and gets the value 7 (now the system isand gets the value 7 (now the system is
completely incoherent)

– P2: writes x=10, updates its cached value andP2: writes x 10, updates its cached value and
memory value

Cache coherence: ExampleCache coherence: Example
C id th l ith• Consider the same example with a
writeback cache

P0 h h d l 5 P1 h 7 P2 h 10– P0 has a cached value 5, P1 has 7, P2 has 10,
memory has 5 (since caches are not write
through)g)

– The state of the line in P1 and P2 is M while the
line in P0 is clean

– Eviction of the line from P1 and P2 will issue
writebacks while eviction of the line from P0
will not issue a writeback (clean lines do notwill not issue a writeback (clean lines do not
need writeback)

– Suppose P2 evicts the line first, and then P1Suppos s s , a d
– Final memory value is 7: we lost the store x=10

from P2

What went wrong?What went wrong?
F it th h h• For write through cache
– The memory value may be correct if the writes

are correctly orderedare correctly ordered
– But the system allowed a store to proceed

when there is already a cached copywhen there is already a cached copy
– Lesson learned: must invalidate all cached

copies before allowing a store to proceed
• Writeback cache

– Problem is even more complicated: stores are
no longer visible to memory immediately

– Writeback order is important
l d d ll h– Lesson learned: do not allow more than one

copy of a cache line in M state

Protocol implementationsProtocol implementations
M t i lid t ll h d i b f• Must invalidate all cached copies before
allowing a store to proceed

N d t k h th h d i– Need to know where the cached copies are
– Solution1: Never mind! Just tell everyone that

you are going to do a storeyou are going to do a store
• Leads to broadcast snoopy protocols
• Popular with small-scale bus-based CMPs and SMPs
• AMD Opteron implements it on a distributed network

(the Hammer protocol)
Solution2: Keep track of the sharers and– Solution2: Keep track of the sharers and
invalidate them when needed

• Where and how is this information stored?
• Leads to directory-based scalable protocols

SynchronizationSynchronization

Synchronization typesSynchronization types
• Mutual exclusion

– Synchronize entry into critical sections
– Normally done with locks

• Point-to-point synchronizationPoint to point synchronization
– Tell a set of processors (normally set cardinality

is one) that they can proceedis one) that they can proceed
– Normally done with flags

• Global synchronization• Global synchronization
– Bring every processor to sync

Wait at a point until everyone is there– Wait at a point until everyone is there
– Normally done with barriers

SynchronizationSynchronization
• Normally a two-part process: acquire and

release; acquire can be broken into tworelease; acquire can be broken into two
parts: intent and wait
– Intent: express intent to synchronize (i eIntent: express intent to synchronize (i.e.

contend for the lock, arrive at a barrier)
– Wait: wait for your turn to synchronization (i.e.Wait: wait for your turn to synchronization (i.e.

wait until you get the lock)
– Release: proceed past synchronization and e ease p oceed past sy c o at o a d

enable other contenders to synchronize

• Waiting algorithms do not depend on theWaiting algorithms do not depend on the
type of synchronization

Waiting algorithmsWaiting algorithms
• Busy wait (common in multiprocessors)• Busy wait (common in multiprocessors)

– Waiting processes repeatedly poll a location
(implemented as a load in a loop)

– Releasing process sets the location appropriately
– May cause network or bus transactions

• Block• Block
– Waiting processes are de-scheduled
– Frees up processor cycles for doing something elsep p y g g

• Busy waiting is better if
– De-scheduling and re-scheduling take longer than

busy waitingbusy waiting
– No other active process
– Does not work for single processorg p

• Hybrid policies: busy wait for some time and
then block

ImplementationImplementation

• Popular trend• Popular trend
– Architects offer some simple atomic primitives

Library writers use these primitives to implement– Library writers use these primitives to implement
synchronization algorithms
Normally hardware primitives for acquire and– Normally hardware primitives for acquire and
possibly release are provided

– Hard to offer hardware solutions for waitingHard to offer hardware solutions for waiting
– Also hardwired waiting may not offer that much

of flexibilityof flexibility

Software locksSoftware locks
• Bakery algorithm• Bakery algorithm
Shared: choosing[P] = FALSE, ticket[P] = 0;
Acquire: choosing[i] = TRUE; ticket[i] = max(ticket[0],…,ticket[P-1]) + 1;

choosing[i] = FALSE;choosing[i] = FALSE;
for j = 0 to P-1

while (choosing[j]);
while (ticket[j] && ((ticket[j] j) < (ticket[i] i)));while (ticket[j] && ((ticket[j], j) < (ticket[i], i)));

endfor
Release: ticket[i] = 0;

• Does it work for multiprocessors?
– Performance issues related to coherence?

• Too much overhead: need faster and simpler
lock algorithms
– Need some hardware support

Hardware supportHardware support
• Start with a simple software lock• Start with a simple software lock
Shared: lock = 0;
Acquire: while (lock); lock = 1;
R l U l k l k 0Release or Unlock: lock = 0;

• Assembly translation
Lock: lw register lock addr /* register is any processor register */Lock: lw register, lock_addr / register is any processor register /

bnez register, Lock
addi register, register, 0x1
sw register lock addrsw register, lock_addr

Unlock: xor register, register, register
sw register, lock_addr

D it k?• Does it work?
– What went wrong?

W d h d dif i– We wanted the read-modify-write sequence to
be atomic

Atomic exchangeAtomic exchange
• We can fix this if we have an atomic

exchange instructiong
addi register, r0, 0x1 /* r0 is hardwired to 0 */

Lock: xchg register, lock_addr /* An atomic load and store */
bnez register Lockbnez register, Lock

Unlock remains unchanged

• Various processors support this type ofVarious processors support this type of
instruction
– Intel x86 has xchg Sun UltraSPARC has ldstub– Intel x86 has xchg, Sun UltraSPARC has ldstub

(load-store-unsigned byte), UltraSPARC also has
swapp

Compare & swapCompare & swap
M hi ti t d &• More sophisticated: compare & swap
– Takes three operands: reg1, reg2, memory

ddaddress
– Compares the value in reg1 with contents of

address and if they are equal swaps the contentsaddress and if they are equal swaps the contents
of reg2 and address

Compare & swapCompare & swap

addi reg1, r0, 0x0 /* reg1 has 0x0 */
addi reg2, r0, 0x1 /* reg2 has 0x1 */

Lock: compare & swap reg1, reg2, lock_addr
bnez reg2 Lockbnez reg2, Lock

BarrierBarrier
• High level classification of barriers• High-level classification of barriers

– Hardware and software barriers
Two types of software barriers• Two types of software barriers
– Centralized barrier: every processor polls a single

countcount
– Distributed tree barrier: shows much better

scalabilityy

Memory Consistency ModelsMemory Consistency Models

Memory consistency modelsMemory consistency models
• A parallel program can have multiple possible• A parallel program can have multiple possible

outputs
T0: x=1; T1: y=x; print y;T0: x=1; T1: y=x; print y;
What does T1 print if the initial value of x is 0?

• Coherence protocol is not enough to• Coherence protocol is not enough to
completely specify the output(s) of a parallel
programprogram
– Coherence protocol only provides the foundation

to reason about the legal outcomes of accesses
to the same memory location

– Memory consistency models tell us the possible
outcomes arising from legal ordering of accessesoutcomes arising from legal ordering of accesses
to all memory locations

Memory consistency modelsMemory consistency models
• Without any specified ordering constraints• Without any specified ordering constraints,

all possible outputs could be legal
T0: A=1; print B; T1: B=1; print A;T0: A 1; print B; T1: B 1; print A;
What do T0 and T1 print if the initial values of A
and B are zero?

• Given a memory consistency model, only a
subset of outcomes is possible and it is
important for a programmer to know this
subset
– A shared memory machine advertises the

supported memory consistency model; it is a
“contract” with the writers of parallel applicationscontract with the writers of parallel applications
and system software

Memory consistency modelsMemory consistency models
• Usually the programmer wants one specific• Usually, the programmer wants one specific

output from a correct program
– Suppose the programmer wants T1 to print 1 inSuppose the programmer wants T1 to print 1 in

the following program
T0: x=1; T1: y=x; print y;
– It may seem that synchronization can guarantee

such an output (flag=0 initially)
fl h l (fl)T0: x=1; flag=1; T1: while(!flag); y=x; print y;

– What if flag=1 is made visible to other processes
before x=1 becomes visible?before x=1 becomes visible?

• Either by compiler re-ordering or hardware re-ordering
(latter must still honor precise exception)

– This is quite possible given that the two stores
are going to two different addresses

Memory consistency modelsMemory consistency models
• A memory consistency model is a set of rules• A memory consistency model is a set of rules

that specify the set of allowed orderings
between all memory accessesbetween all memory accesses

• A multiprocessor normally advertises the
supported memory consistency modelsupported memory consistency model
– This essentially tells the programmer what the

possible correct outcome(s) of a program couldpossible correct outcome(s) of a program could
be when run on that machine
A multiprocessor is said to implement a memory– A multiprocessor is said to implement a memory
consistency model when it adheres to the set of
ordering rules specified by that modelg p y

Sequential consistencySequential consistency
• Many memory consistency models exist• Many memory consistency models exist

– Each model represents a unique point in the
three-dimensional space spanned by ease ofthree-dimensional space spanned by ease of
programming, implementation complexity, and
performance/energyperformance/energy

– Sequential consistency (SC) is the most intuitive
one and we will focus on it first

• Legal SC orders
– Achieved by interleaving accesses from different y g

processors
– The accesses from the same processor are

t d t th t ipresented to the memory system in program
order

Sequential consistencySequential consistency
• A legal SC ordering is equivalent to the total• A legal SC ordering is equivalent to the total

order obtained by a randomly moving switch
connecting the processors to memoryconnecting the processors to memory
– Picks the next access from a randomly chosen

processorprocessor

P0 PP2P1P0 P3P2P1

MEMORY

read A

MEMORY

Sequential consistencySequential consistency
• A legal SC ordering is equivalent to the total• A legal SC ordering is equivalent to the total

order obtained by a randomly moving switch
connecting the processors to memoryconnecting the processors to memory
– Picks the next access from a randomly chosen

processorprocessor

P0 PP2P1P0 P3P2P1

MEMORY

write X

MEMORY

Sequential consistencySequential consistency
• A legal SC ordering is equivalent to the total• A legal SC ordering is equivalent to the total

order obtained by a randomly moving switch
connecting the processors to memoryconnecting the processors to memory
– Picks the next access from a randomly chosen

processorprocessor

P0 PP2P1P0 P3P2P1

MEMORY

read Y

MEMORY

Sequential consistencySequential consistency
• A legal SC ordering is equivalent to the total• A legal SC ordering is equivalent to the total

order obtained by a randomly moving switch
connecting the processors to memoryconnecting the processors to memory
– Picks the next access from a randomly chosen

processorprocessor

P0 PP2P1P0 P3P2P1

MEMORY

write A

MEMORY

Total order: read A, write X, read Y, write A

What is program order?What is program order?
• Any legal re-ordering is allowedy g g
• The program order is the order of

instructions from a sequential piece of code
h ’ i t iti i dwhere programmer’s intuition is preserved

– The order must produce the result a programmer
expectsexpects

• Can out-of-order execution violate program
order?
– No. All microprocessors commit instructions in-

order and that is where the state becomes visible
For modern microprocessors the program order– For modern microprocessors the program order
is really the commit order

ExampleExample
P0: x=8; u=y; v=9;P0: x 8; u y; v 9;
P1: r=5; y=4; t=v;
Total order: x 8; u y; r 5; y 4; t v; v 9;Total order: x=8; u=y; r=5; y=4; t=v; v=9;
Another legal total order:
x=8; r=5; y=4; u=y; v=9; t=v;
• All such total orders are allowed by y

sequential consistency
– A multiprocessor implementing sequentialA multiprocessor implementing sequential

consistency can produce an output conforming
to any of these total orders

– All these possible outputs are correct for a
sequentially consistent multiprocessor

Relaxed modelsRelaxed models
I l ti SC i l h d• Implementing SC requires complex hardware
and verification effort

B t h i l ti– But such violations are rare
– Many processors today relax the consistency

model to get rid of complex hardware andmodel to get rid of complex hardware and
achieve some extra performance at the cost of
making program reasoning complex
T0: A=1; B=1; flag=1; T1: while (!flag); print A; print
B;
• Can re-order the stores to A and B without anyCan re order the stores to A and B without any

problem
• Cannot compromise on precise exception, however

SC i t t i ti l i it d t l– SC is too restrictive; relaxing it does not always
violate programmers’ intuition

Relaxed modelsRelaxed models
• Three attributes of a relaxed modelThree attributes of a relaxed model

– System specification: which orders are preserved
and which are not; if all program orders are not ; p g
preserved what support is provided (software
and hardware) to enforce a particular order that
the programmer wishes (often SC-compliant
order is required)
P ’ i t f t f l if f ll d– Programmer’s interface: set of rules, if followed,
will lead to an execution as expected by the
programmer; specified in terms of high-levelprogrammer; specified in terms of high-level
language annotations and labels

– Translation mechanism: how to translateTranslation mechanism: how to translate
programmer’s annotations to hardware actions

Total store order (TSO)Total store order (TSO)
O f th l d d l• One of the many relaxed models

• TSO allows a load to bypass and commit
earlier than an older incomplete store
– A blocked store at the head of the ROB can be

d (b t i i FIFO t b ff)removed (but remains in a FIFO store buffer)
and subsequent instructions are allowed to
commit bypassing the blocked storeco t bypass g t e b oc ed sto e

– Motivation: can hide latency of store operations
– This is the only allowed re-orderingy g

• Only a load can bypass an older store
• A load cannot bypass an older load; a store cannot

bypass an older load; a store cannot bypass an olderbypass an older load; a store cannot bypass an older
store

Total store order (TSO)Total store order (TSO)
TSO ll l d t b d it• TSO allows a load to bypass and commit
earlier than an older incomplete store

P ’ i t iti i d i t– Programmer’s intuition is preserved in most
cases, but not always

– P0: A=1; flag=1; P1: while (!flag); print A;– P0: A=1; flag=1; P1: while (!flag); print A;
[same as SC]

– P0: A=1; B=1; P1: print B; print A; [same as SC]; ; p ; p ; []
– P0: A=1; P1: while (!A); B=1; P2: while (!B);

print A; [same as SC]
– P0: A=1; print B; P1: B=1; print A; [violates SC]
– Implemented in many Sun (Oracle) UltraSPARC

microprocessorsmicroprocessors

AgendaAgenda
• Basics of computer architecture

– Basics of the basicsBasics of the basics
– Instruction set architecture (ISA)
– Processor designProcessor design
– Caches and virtual memory
– Communicating with environment– Communicating with environment
– Performance measurement

Performance optimization– Performance optimization
– Multi-core processors

B i f ti tBasics of operating systems

What is an operating systemWhat is an operating systemWhat is an operating systemWhat is an operating system

• A piece of software application• A piece of software application
• Resource manager of any computing

systemsystem
– Schedules resources like CPU, memory, hard

disks and other I/O devicesdisks, and other I/O devices

Summary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalities
• Two broad categories

– Functionalities to improve performanceFunctionalities to improve performance
• Job scheduling, context switch, memory management

– Functionalities to improve ease of usep
• File systems, I/O, security

• Two modes of operations
– User mode and kernel mode
– A system call from a user program leads to a

h k l dswitch to kernel mode
– Kernel mode allows unrestricted access to

hardware including execution of privilegedhardware including execution of privileged
instructions

Summary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalities

• Two modes of operations• Two modes of operations
– User mode avoids catastrophic failures

• Isolated virtual address space for each process in user• Isolated virtual address space for each process in user
mode

• Isolated execution of each process
• No direct access to any hardware device

– CPU needs to support a mode bit as part of the
machine status word or processor status word

– Switching modes is expensive
• Needs to save and restore user and kernel register

states

Summary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalities
• System boots up in kernel mode

– Kernel of the OS is loaded by the bootstrap loader– Kernel of the OS is loaded by the bootstrap loader
from a fixed location in the disk

– Only when a user program is scheduled to run on y p g
the CPU, does the mode bit switch to user mode

• System calls invoke system call handlersy y
– Locations of the handlers are found in an

interrupt vector table residing in the low memory
– Hardware interrupts are handled in the same way
– System call arguments are passed in registers

d/ i (b i i t iand/or in memory (by passing a pointer in a
register); what are these arguments?

Summary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalities

• OS does several book-keeping tasksOS does several book keeping tasks
periodically
– Job scheduling is an important exampleJob scheduling is an important example
– Implemented by setting up a timer register which

is decremented on every processor clock tick
– When the timer register expires, a hardware

interrupt is generated
– The interrupt handler services the periodic tasks

one by one and sets up the timer register again

Summary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalities

• Four basic OS modulesFour basic OS modules
– Process management, memory management,

storage management, protectiong g
– Process management involves

• Creation, deletion, scheduling of processes
• Offering support for communication between

processes
• Synchronizing communicating processesy g g p
• Handling deadlocks

– Memory management involves
• Handling memory allocation and de-allocation

requests from user and kernel mode processes

Summary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalitiesSummary of OS functionalities

• Four basic OS modules• Four basic OS modules
– Storage management involves

• Implementing a virtual environment called file• Implementing a virtual environment called file
system

– Protection cross-cuts all the three modules
• Controls accesses to the resources managed by

the OS
• Usually the OS kernel is assumed to be trusted
• A stricter protection model requires hardware-

supported securitysupported security

Processes and ThreadsProcesses and Threads

What constitutes a processWhat constitutes a processWhat constitutes a processWhat constitutes a process
• A process is an executable in action

An executable is a passive entity and a process is– An executable is a passive entity and a process is
an active instantiation of the executable

– A new process gets created when an executableA new process gets created when an executable
starts running

– At any point in time, there may be several
processes inside the system (all may not be
executing)
Multiple processes may execute the same– Multiple processes may execute the same
program

• Multiple open shells, multiple internet browsersp p , p
– Process states: created, ready, executing,

waiting/sleeping, terminated

What constitutes a processWhat constitutes a processWhat constitutes a processWhat constitutes a process
• Handling multiple processes is necessary to

maximize hardware resource utilizationmaximize hardware resource utilization
– User executables run as user processes
– Kernel executables run as kernel processesKernel executables run as kernel processes
– Hardware cannot distinguish between these

without looking at the mode bitg
• Each process has its own text, data, and

stack regionsg
– Stack and heap grow in opposite directions
– Intermediate values are maintained in processor

registers; stack pointer and the program counter
are two special registers

What constitutes a processWhat constitutes a processWhat constitutes a processWhat constitutes a process
• Anything that is needed to reconstruct the

state of a process is in the process contextstate of a process is in the process context
– Processor registers

T d k i i– Text, data, stack regions in memory
– Various kernel data structures such as list of

fil d th i k i t topen files and their seek pointers, etc.
– The process control block (PCB) is a kernel data

structure that maintains all informationstructure that maintains all information
pertaining to the process context including the
current state of the processcurrent state of the process

Process control blockProcess control blockProcess control blockProcess control block
• The PCB entries start off as invalid for a

newly created processnewly created process
• The process enters the ready queue by

linking its PCB to the tail of the queuelinking its PCB to the tail of the queue
– Ready queue is a linked list of PCBs of processes

that are ready to execute
• On transition from executing to sleep state

– The PCB is used to remember the process p
context by maintaining

• a pointer to the memory region holding the saved
registers and other context informationregisters and other context information

• a pointer to the process region table

Process control blockProcess control blockProcess control blockProcess control block

• On transition from executing to sleep state• On transition from executing to sleep state
– The PCB is linked at the tail of the waiting list of

PCBs for the particular device or eventPCBs for the particular device or event

• On transition from ready to executing state
Context is restored from PCB– Context is restored from PCB

– Known as a context switch

Th PCB f i i i h• The PCB of a non-executing process is either
in the waiting queue of some device/event or
i th din the ready queue

Processes and threadsProcesses and threadsProcesses and threadsProcesses and threads

• A process has a single thread of controlA process has a single thread of control
– This thread refers to the sequence of instructions

executed by the processy p
– A fork() call generates a new thread of control

• Is it a thread or a process? Often used p
interchangeably

• Historically, a thread refers to a piece of code y p
in execution and is a part of a parent process
– As a result, lighter-weight than a full process, g g p

Processes and threadsProcesses and threads
• Multiprocessing: executing independent or

communicating processes simultaneously (or in
a time-shared manner)

• Multithreading: executing possibly dependent
and/or communicating parts of the same
process simultaneously in different threads of

t lcontrol
• Multiprogramming: executing independent

d ff l lprograms in different processes simultaneously
• Process scheduler is usually not aware of the

dependencies, if any, between the processes in
the ready queue

Process creationProcess creationProcess creationProcess creation
• A process is always created by another process

– Created process is the child of the creating process– Created process is the child of the creating process
• The system boots up as a process

– init process in UNIX, sched process in Solarisinit process in UNIX, sched process in Solaris
– This is the root of all processes
– Every process gets a unique integer ID known as the y p g q g

process ID or pid. The root process has pid zero.
• In UNIX, the system boot process has pid zero and init has

pid one.p d o e

• A process can be created by calling fork()
– Child pid is returned to parent, zero is returned to p p ,

child. A negative return value indicates error in
UNIX.

Process SchedulingProcess Scheduling

Overview of process schedulingOverview of process scheduling
• Every process in the ready queue can

request CPU cycles for execution
– An algorithm must select one process per

processor for execution; this is the scheduling
algorithmalgorithm

– Two types of process schedulers: short-term and
medium-term schedulers

• A short-term scheduler selects one process
from the ready queue for executiony q
– Invoked whenever the currently executing

process enters the sleep state or encounters a
timer interrupt or terminatestimer interrupt or terminates

– Decides the overall utilization of the CPU

Overview of process schedulingOverview of process scheduling
T t f• Two types of processes
– CPU-bound: These processes mostly compute i.e.,

major portion of life spent in ready or executingmajor portion of life spent in ready or executing
state

– I/O-bound: These processes spend significant
t f ti i I/O i j ti f lif tamount of time in I/O i.e., major portion of life spent

in sleep state
– The time spent computing between two consecutiveThe time spent computing between two consecutive

I/O operations is known as a CPU burst
– A CPU burst of a process can get executed through

lti l t iti b t th d d timultiple transitions between the ready and executing
states culminating into a sleep state when the CPU
burst completesp

• The CPU burst of a process does not include the time spent
waiting in the ready queue

Overview of process schedulingOverview of process schedulingOverview of process schedulingOverview of process scheduling
• Primary goal of a short-term scheduler

Every time a scheduling event occurs it should– Every time a scheduling event occurs, it should
pick a process so that

• all I/O bursts are overlapped by CPU bursts/ pp y
• the CPU is busy all the time executing the CPU burst

of some process (this may still not lead to 100% CPU
utilization)utilization)

• the scheduled process can execute for the full
allocated scheduling quantum (minimizes the chance
of too frequent context switches); this is usually hardof too frequent context switches); this is usually hard
to guarantee

• Scheduling quality plays an important role in g q y p y p
determining the degree of multiprogramming

Overview of process schedulingOverview of process schedulingOverview of process schedulingOverview of process scheduling
• Medium-term scheduler

If the system is running low on resources (e g– If the system is running low on resources (e.g.,
memory), some processes may have to be swapped
out from memory to disk and later swapped in when y pp
needed

– The medium-term scheduler selects the processes to
be swapped out from memory and swapped in from
disk
Not very critical to overall performance as long as a– Not very critical to overall performance as long as a
currently running process is not swapped out

– Invoked whenever the resource usage goes above orInvoked whenever the resource usage goes above or
falls below a threshold (usually infrequent)

Overview of process schedulingOverview of process schedulingOverview of process schedulingOverview of process scheduling

• Long-term scheduler• Long term scheduler
– Found in old computers where jobs (or

processes) used to be submitted in batchesprocesses) used to be submitted in batches
– The long-term scheduler decides which of the

submitted jobs will be loaded in memory andsubmitted jobs will be loaded in memory and
entered in the ready queue

– Invoked whenever a job completes so that a new j p
job can be loaded (even less frequent than the
medium-term scheduler)

General scheduling mechanismGeneral scheduling mechanism
P h d li i th ti it f l ti• Process scheduling is the activity of selecting
the process that will run next on the CPU

• A scheduler saves the context of the
currently running process, selects a process
from the ready queue, restores the context
of selected process

General scheduling mechanismGeneral scheduling mechanism
• The scheduler can be invoked in four possible• The scheduler can be invoked in four possible

circumstances
– The currently running process goes on a long-The currently running process goes on a long

latency system call i.e. transitions from running to
sleep state
A i t d l t– A new process is created or a process completes a
long-latency system call i.e., a process transitions
from created to ready or from sleep to readyy p y

– The currently running process terminates
– The currently running process receives a timer

i t tinterrupt
– The first and the third cases lead to non-preemptive

or co-operative schedulingor co operative scheduling
– The remaining two cases lead to pre-emptive

scheduling

Goals of process schedulingGoals of process scheduling
• A scheduling algorithm can target a subset of

the following
– Maximize throughput: rate at which processes

complete
Mi i i t d ti– Minimize turnaround time

• Average, maximum, standard deviation?
Minimize waiting time in the ready queue– Minimize waiting time in the ready queue

• Direct measure of scheduler efficiency
• Average, maximum, standard deviation?g , ,

– Minimize response time
• How long a process takes to produce the first result
• Important for interactive systems
• Average, maximum, standard deviation?

