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Warm up!
cout << "This is serial code";

#pragma omp parallel

{

#pragma omp single

cout << omp_get_num_threads();

}
cout << "This is serial code";
omp_set_num_threads(4);

#pragma omp parallel

{

#pragma omp single

cout << omp_get_num_threads();

}

#pragma omp parallel num_threads(12)

{

#pragma omp single

cout << omp_get_num_threads();

}
cout << "This is serial code";
cout << omp_get_nested();

omp_set_nested(1); 

omp_set_num_threads(2);

#pragma omp parallel

{

#pragma omp parallel

{

cout << omp_get_thread_num();

} } }
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Distributing Work

• Threads can perform disjoint work division using their thread 
ids and knowledge of total # threads

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
for (int i = t_id; i < 1000; i += omp_get_num_threads()) {
A[i]= foo(i);

}
}
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Distributing Work

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
int num_thrs = omp_get_num_threads();
int b_size = 1000 / num_thrs;
for (int i = t_id*b_size; i < (t_id+1)*b_size; i += num_thrs) {
A[i]= foo(i);

}
}
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Cyclic vs Block Distribution of Work

• Say I have a computation like 

for (int i = 0; i < N; i++) {

A[i] =  B[i] + C[i];

}
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Would you prefer cyclic distribution or 
block distribution with OpenMP?



Use of nowait clause

# pragma omp for nowait

for ( /* ... */ ) {

// .. first loop ..

}

# pragma omp for

for ( /* ... */ ) {

// .. second loop ..

}
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Use of nowait clause

# pragma omp for nowait

for ( /* ... */ ) {

// .. first loop ..

}

# pragma omp for

for ( /* ... */ ) {

// .. second loop ..

}

# pragma omp for nowait

for (int i=0; i<N; i++ ) {

a[i] = b[i] + c[i];

}

# pragma omp for

for (int i=0; i<N; i++) {

d[i] = a[i] + b[i];

}
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Can be useful if the two 
loops are independent



Data Scope

int n = 10; 

std::vector<int> vector(n);

int a = 10;

#pragma omp parallel for default(none) shared(n, vector)

for (int i = 0; i < n; i++) {

vector[i] = i*a;

}
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Is this snippet correct?



Explicit Tasks
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Explicit Task Constructs in OpenMP

• Not all programs have simple loops that OpenMP can parallelize

• OpenMP can only parallelize loops in a basic standard form with loop 
counts known at runtime
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Explicit Task Constructs in OpenMP

• Not all programs have simple loops OpenMP can parallelize

• OpenMP can only parallelize loops in a basic standard form with loop 
counts 

• Consider a program to traverse a linked list
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p=head;
while (p) {
dowork(p);
p = p->next;

}



One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for (i=0; i<count; i++)

dowork(parr[i]);

}
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One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

dowork(parr[i]);

}
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This works, but is inelegant (had to use a vector or array as 
an intermediate storage) and is inefficient (requires multiple 
passes over the data)



Tasks in OpenMP

• Explicit tasks were introduced in OpenMP 
3.0

• Tasks are independent units of work, 
composed of
• code to execute
• data to compute
• control variables

• Threads are assigned to perform the 
work of each task

• Runtime system decides when tasks are 
executed
• Tasks may be deferred or executed 

immediately
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The Tasking Concept in OpenMP
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Tasks in OpenMP

• The task construct includes a 
structured block of code

• Inside a parallel region, a thread 
encountering a task construct 
will package up the code block 
and its data for execution

• Tasks can be nested
• A task may itself generate tasks
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Task Directive

#pragma omp parallel
{

#pragma omp master
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp task
billy();

}
}
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Thread 0 packages data

Tasks executed by some 
thread in some order

All tasks complete 
before this barrier ends



Task Completion

• #pragma omp barrier
• All tasks created by any thread in the current team are guaranteed to be 

completed at the barrier exit

• #pragma omp taskwait
• Wait for child tasks to complete

• Applies only to children, not descendants
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Example of Tasks

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task 

cout << “car “;

cout << “is fun to watch!”;

}

}

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task 

cout << “car “;

#pragma omp taskwait

cout << “is fun to watch!”;

}

}
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Task Synchronization

#pragma omp parallel num_threads(n)
{
#pragma omp task 
funcA();

#pragma omp barrier
#pragma omp single 
{
#pragma omp task 
funcB();

}
}
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What is the sequence of 
task creation and 

termination?



An Example with OpenMP Tasks

#pragma omp parallel
{

#pragma omp single private(p)
{

p = listhead ;
while (p) {
#pragma omp task firstprivate(p)
{
process (p);

}
p=next (p) ;

} } }
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Binary Tree Traversal

void postorder(node *p) {

if (p->left) { 

postorder(p->left); 

if (p->right)

postorder(p->right); 

process(p->data);

}
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Scheduling of Tasks

• Tasks are tied to the thread that first executes them
• Need not necessarily be the creator thread

• Scheduling constraints
• Only the thread a task is tied to can execute it

• A task can be suspended at task scheduling points
• Task creation and finish, taskwait, barrier, taskyield, …
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Scheduling of Tasks

• When a thread encounters a task scheduling point, it may do one of 
the following 
• Begin execution of a tied task bound to the current team

• Resume any suspended task region, bound to the current team, to which it is 
tied

• Begin execution of an untied task bound to the current team

• Resume any suspended untied task region bound to the current team

• If more than one of the above choices is available, it is unspecified as 
to which will be chosen
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Scheduling of Tasks

• Tasks created with the untied clause are never tied
• Resume at task scheduling points possibly by different threads

• May provide better load balancing
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Great! But is 
that all?



Example

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process(double);

int main() {
#pragma omp parallel
{

#pragma omp single
{
int i;
#pragma omp task untied
// i is firstprivate, item is shared
{
for (i=0; i<LARGE_NUMBER; i++) {
#pragma omp task
process(item[i]); 

} } } } }
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Scheduling of Tasks

• Tasks created with the untied clause are never tied
• Resume at task scheduling points possibly by different threads

• May provide better load balancing

• Things to remember!
• Avoid threadprivate variables

• Avoid dependence of thread ids

• Be careful while using critical regions and locks
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The taskyield Directive

• Specifies that the current task 
can be suspended in favor of 
execution of a different task
• Hint to the OpenMP runtime

void foo(omp_lock_t* lock, int n) {

for(int i = 0; i < n; i++)

#pragma omp task

{

something_useful();

while(!omp_test_lock(lock)) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}
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Other Details in Tasking

Other clauses
• priority – Hint to the runtime system for task execution order

• depends – Task dependence is fulfilled when the predecessor task 
has completed

• final – Stop task decomposition at a certain depth for recursive 
problems, exposes enough parallelism but reduces overhead for 
small data sizes
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SIMD Programming 
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SPMD Programming

Single Program Multiple Data

• Each thread runs same program

• Selection of data, or branching conditions, based on thread id

• General and common parallel programming paradigm

OpenMP implementation

• Perform work division in parallel loops

• Query thread_id and num_threads

• Partition work among threads
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Different Levels of Parallelism in Hardware

Instruction-level Parallelism

• Microarchitectural techniques like pipelining, OOO execution, and superscalar

Vector-level Parallelism

• Use Single Instruction Multiple Data (SIMD) vector processing instructions and 
units

Thread-level Parallelism

• Hyperthreading
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Vectorization

• Process of transforming a scalar operation on single data elements at 
a time (SISD) to an operation on multiple data elements at once 
(SIMD)

• Loop vectorization transforms a program so that the same operation 
is performed at the same time on several vector elements
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Vectorization

Scalar mode

• One instruction produces on 
result
• vaddsd/vaddss

Vector mode

• One instruction can produce 
multiple results
• vaddpd/vaddps

double *a, *b, *c;
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

a[i]

b[i]

c[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

M. Voss. Topics in Loop Vectorization.



Vectorization

for (i=0; i<n; i++) 
c[i] = a[i] + b[i];

…Register File

X1

Y1

Z1

32 bits

32 bits

+

32 bits

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

n
times

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3, addr3

n/4 
times

M. Garzaran et al. Program Optimization Through Loop Vectorization.
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Intel-Supported SIMD Extensions

SIMD 
extensions

Width (bits) Dual precision 
(64 bit) 
calculations

Single 
precision (32 
bit) 
calculations

Introduced

SSE2/SSE3/SSE
4

128 2 4 ~2001-2007

AVX/AVX2 256 4 8 ~2011-2015

AVX-512 512 8 16 ~2017

Other platforms that support SIMD have different extensions
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SIMD Vectorization

• Use of SIMD units can speed up the program
• Intel SSE has 128-bit vector registers and functional units

• 4 32-bit single precision floating point numbers
• 2 64-bit double precision floating point numbers
• 4 32-bit integer numbers
• 2 64 bit integer
• 8 16-bit integer or shorts
• 16 8-bit bytes or chars

• Assuming a single ALU, these SIMD units can execute 4 single precision 
floating point number or 2 double precision operations in the time it takes 
to do only one of these operations by a scalar unit
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128-bit wide operands using integers

Daniel Kusswurm. Modern X86 Assembly Language Programming.



Intel-Supported SIMD Extensions

512 bits

256 bits

128 bits

XMMYMMZMM

64-bit architecture

SSE XMM0-XMM15

AVX YMM0-YMM15 Low- order 128 bits of each YMM register are 
aliased to a corresponding XMM register

AVX-512 ZMM-ZMM31 low-order 256 and 128 bits are aliased to registers 
YMM0-YMM31 and XMM0-XMM31 respectively



x86-64 Vector Operations

• Example instructions
• Move: (V)MOV[A/U]P[D/S]
• Comparing: (V)CMP[P/S][D/S]
• Arithmetic operations: (V)[ADD/SUB/MUL/DIV][P/S][D/S]

• Instruction decoding
• V – AVX 
• P, S – packaged, scalar
• A, U – aligned, unaligned
• D, S – double, single 
• B, W, D, Q – byte, word, doubleword, quadword integers

[ ] – required 
( ) - optional

Andreas Schmitz. GCC AutoVectorization.



x86-64 Vector Operations

Instruction

movss xmm2, xmm1

vmovapd ymmword ptr [edi], ymm1

Explanation

xmm2 = xmm2 + xmm1 (SSE/SSE2)

Move aligned packed double-
precision floating-point values 
from ymm2/mem to ymm1. 
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AVX Scalar Floating-Point Instruction 
Examples

Instruction

vaddss xmm0,xmm1,xmm2 

vaddsd xmm0,xmm1,xmm2

Explanation

xmm0[31:0] = xmm1[31:0] + xmm2[31:0]

xmm0[127:32] = xmm1[127:32]

ymm0[255:128] = 0

xmm0[63:0] = xmm1[63:0] + xmm2[63:0]

xmm0[127:64] = xmm1[127:64]

ymm0[255:128] = 0
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Kirill Rogozhin, Intel. Vectorization.



Vectorize Code
• Auto-vectorizing compiler

• Vector intrinsics

• Assembly language

for (i=0; i<LEN; i++) 
c[i] = a[i] + b[i];

void example(){  
__m128 rA, rB, rC; 
for (int i = 0; i <LEN; i+=4){    

rA = _mm_load_ps(&a[i]);    
rB = _mm_load_ps(&b[i]);    
rC = _mm_add_ps(rA,rB);   

_mm_store_ps(&C[i], rC);  
}}

..B8.5 
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
jl ..B8.5

easy, but low 
control

hard, but 
most control



Vectorize Code

• Auto-vectorization
• Compiler vectorizes automatically – No code changes 

• Semi auto-vectorization – Use pragmas as hints to guide compiler

• Explicit vector programming – OpenMP SIMD pragmas

• SIMD/Vector intrinsics

• Inline assembly language

• Use SIMD-capable libraries like Intel Math Kernel Library (MKL)

most control, but 
harder to code, debug 

and maintain
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Auto-Vectorization

Transparent to programmers

Compilers can apply other transformations

Portability of code across architectures

• Vectorization instructions may differ but compilers take care of it 
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Auto-Vectorization

Transparent to programmers

Compilers can apply other transformations

Portability of code across architectures

• Vectorization instructions may differ but compilers take care of it 

Compilers may fail to vectorize
• Programmers may give hints to help the compiler
• Programmers may have to manually vectorize their code

CS 698L Swarnendu Biswas



Why Auto Vectorizers Fail?

• Data dependences 

• Unaligned accesses

• Function calls in loop block

• Complex control flow, conditional branches 

• Loop not “countable”, e.g., upper bound not a runtime constant 

• Loop body too complex (register pressure)

• Vectorization seems inefficient
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How about SIMD support?

• Support in older versions of OpenMP (< 4.0) required vendor-specific 
extensions
• Programming models (e.g., Intel Cilk Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs or intrinsics (e.g., _mm_add_pd())
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#pragma omp parallel for 
#pragma vector always
#pragma ivdep
for (int i = 0; i < N; i++) {

a[i] = b[i] + 10;
}



simd Construct

• #pragma omp simd …
• Can be applied to a loop to indicate that the loop can be transformed to a 

SIMD loop

• Use SIMD instructions

• Partition loop into chunks that fit a SIMD vector register

• Does not parallelize the loop body

• #pragma omp declare simd
• Applied to a function to enable creation of one or more versions to allow for 

SIMD processing
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SIMD Function Vectorization

#pragma omp declare simd …
function-definition-or-declaration

• Declare one or more functions to be compiled for calls from a SIMD-
parallel loop
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#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

// Vector version
vec8 min_v(vec8 a, vec8 b) {

return a < b ? a : b;
}



simd Worksharing Construct

• #pragma omp for simd …

• Parallelize and vectorize a loop nest
• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register
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OpenMP Example
uint64_t seq_sum = 0;

for (int i = 0; i < N; i++) {

seq_sum += x[i];

}

uint64_t vec_sum = 0;

double start_time, end_time;

start_time = omp_get_wtime();

#pragma omp simd // num_threads(4)

for (int i = 0; i < N; i++) {

vec_sum += x[i];

}

end_time = omp_get_wtime();

assert(seq_sum == vec_sum);

cout << "SIMD time: " << (end_time-
start_time) << " seconds\n";

uint64_t for_sum = 0;

start_time = omp_get_wtime();

#pragma omp parallel for simd reduction(+ :
for_sum) num_threads(4)

for (int i = 0; i < N; i++) {

for_sum += x[i];

}

end_time = omp_get_wtime();

assert(seq_sum == for_sum);

cout << "Parallel SIMD time: " << (end_ti
me-start_time)<< " seconds\n";

ACM WS HPC 2019 Swarnendu Biswas



OpenMP Example
uint64_t seq_sum = 0;

for (int i = 0; i < N; i++) {

seq_sum += x[i];

}

uint64_t vec_sum = 0;

double start_time, end_time;

start_time= omp_get_wtime();

#pragma omp simd // num_threads(4)

for (int i = 0; i < N; i++) {

vec_sum += x[i];

}

end_time=omp_get_wtime();

assert(seq_sum == vec_sum);

cout << "SIMD time: " << (end_time-
start_time) << " seconds\n";

uint64_t for_sum = 0;

start_time=omp_get_wtime();

#pragma omp parallel for simd reduction(+ :
for_sum) num_threads(4)

for (int i = 0; i < N; i++) {

for_sum += x[i];

}

end_time=omp_get_wtime();

assert(seq_sum == for_sum);

cout << "Parallel SIMD time: " << (end_ti
me-start_time)<< " seconds\n";

ACM WS HPC 2019 Swarnendu Biswas



OpenMP Memory Model
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Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;
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done = true;

X = new Object();

while (!done) {} 
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {} 

Thread T1 Thread T2

Infinite loop
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What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0
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Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

ACM WS HPC 2019 Swarnendu Biswas

Different 
addresses!



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

ACM WS HPC 2019 Swarnendu Biswas

Different 
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context



What values can a load return? 

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?
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Memory Consistency Model

Set of rules that govern how systems process memory operation 
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors  of multithreaded programs executing 
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors
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Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program 
performance

Impacts program portability
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Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?
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Sequential Consistency

ACM WS HPC 2019 Swarnendu Biswas

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport



Interleavings with SC
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Interleavings with SC
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SC Formalism

Every load gets its value from the last store before it 
(in global memory order) to the same address
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SC Rules

Suppose we 
have two 

addresses a 
and b

• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) 

ACM WS HPC 2019 Swarnendu Biswas



End-to-end SC

Simple memory model that can be implemented both 
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write
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Existing Memory Consistency Models

Hardware

• Sequential Consistency (SC)

• Total Store Order (TSO)

• Partial Store Order (PSO)

• Weak Ordering (WO)

• …

Programming Languages

• Java

• C++ and OpenMP

• …
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Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is 
equivalent to TSO
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TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b) 

• If S(a) <p S(b) ⇒ S(a) <m S(b) 

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it 
to the same address
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Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p FENCE ⇒ FENCE <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 

If FENCE <p S(a) ⇒ FENCE <m S(a) 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 
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Possible Outcomes with TSO
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Possible Outcomes with TSO
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Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be 
pipelined or overlapped and are allowed to reach memory or other 
cached copies out of program order

• Can read own write early, not other’s writes
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Opportunities to Reorder Memory Operations
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Reorder Operations Within a Synchronization 
Block
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Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct
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Desirable Properties of a Memory Model

Hard to 
satisfy all 

three 
properties

• Programmability

• Performance 

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler 
transformations

• Almost all recent 
architectures violate SC
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Relaxed Consistency Memory Model

• OpenMP supports a relaxed consistency shared memory model
• Closely related to the weak ordering model

• Threads can maintain a temporary view of shared memory that is not 
consistent with other threads

• These temporary views are made consistent only at certain points in 
the program

• The operation that enforces consistency is called the flush operation

ACM WS HPC 2019 Swarnendu Biswas



Synchronization Construct: flush

• #pragma omp flush (list)

• Identifies a point at which a thread is guaranteed to see a consistent 
view of memory with respect to the variables in “list”
• Flush forces data to be updated in memory so other threads see the most 

recent value

• In the absence of a list, all shared objects are synchronized
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Synchronization Construct: flush

• If list contains a pointer, the pointer is flushed, not the object 
referred to by the pointer

• It is recommended not to use flushes, excepting certain cases where 
you want to implement say your own spin lock

• Flushes are expensive, since they require compilers to generate 
memory fences
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Semantics of the flush Operation

• A flush is a sequence point at which a thread is guaranteed to see a 
consistent view of memory
• All previous read/writes by this thread have completed and are visible to 

other threads

• No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory 
APIs
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Potential Benefits with Relaxed Consistency

• Relaxed memory model allows 
flexibility to OpenMP 
implementations

• Write to A 
• May complete immediately

• May complete after the execution 
marked “…”

A = 1

…

…

#pragma omp flush(A)
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Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations
• at entry/exit of parallel, critical, and ordered regions

• at implicit and explicit barriers

• at entry/exit of parallel worksharing regions

• during lock APIs

• ….
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Flush and Synchronization

• This means if you are mixing reads and writes of a variable across 
multiple threads, you cannot assume the reading threads see the 
results of the writes unless:
• The writing threads follow the writes with a construct that implies a flush

• The reading threads precede the reads with a construct that implies a flush
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Visibility of Data

• In order for a write of a variable on one thread to be guaranteed 
visible and valid on a second thread, the following operations must 
occur in the following order:

1. Thread A writes the variable

2. Thread A executes a flush operation

3. Thread B executes a flush operation

4. Thread B reads the variable
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Reordering Example

1. a = …; 

2. b = …;

3. c = …;

4. #pragma omp flush(c)

5. #pragma omp flush(a, b)

6. …= a…b…;

7. …c…;

• 1 and 2 may not be moved after 
5

• 4 and 5 maybe interchanged at 
will

• 6 may not be moved before 5
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OpenMP Example
#pragma omp parallel sections

{

// Producer

#pragma omp section 

{

// produce data 

flag = 1;

}

// Consumer

#pragma omp section

{

while (flag == 0 ) {}

// consume data

}

}

#pragma omp parallel sections

{

#pragma omp section 

{

// produce data 

#pragma omp flush

#pragma omp write

flag = 1;

#pragma omp flush(flag)

}

#pragma omp section

{

while (1) {

#pragma omp flush(flag)

#pragma omp atomic read

flag_read = flag

if (flag_read) break;

}

#pragma omp flush

// consume data

}

}
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OpenMP Optimizing Compiler

• Can reorder operations freely inside a parallel region
• No guarantees about the ordering of operations during a parallel region 

excepting around flush operations

• Parallel region contains implicit flushes

• Cannot move operations outside of the parallel region or around 
synchronization operations 

• Presence of flush operations make the OpenMP memory model a variant of 
weak ordering
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More Rules

• If the intersection of the flush-sets of two flushes performed by two 
different threads is non-empty, then the two flushes must be 
completed as if in some sequential order, seen by all threads

• If the intersection of the flush-sets of two flushes performed by one 
thread is non-empty, then the two flushes must appear to be 
completed in that thread’s program order

• If the intersection of the flush-sets of two flushes is empty, then the 
threads can observe these flushes in any order
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