
Advanced OpenMP
Swarnendu Biswas

ACM Winter School 2019 on High Performance Computing

Content influenced by many excellent references, see References slide for acknowledgements.

Warm up!
cout << "This is serial code";

#pragma omp parallel

{

#pragma omp single

cout << omp_get_num_threads();

}
cout << "This is serial code";
omp_set_num_threads(4);

#pragma omp parallel

{

#pragma omp single

cout << omp_get_num_threads();

}

#pragma omp parallel num_threads(12)

{

#pragma omp single

cout << omp_get_num_threads();

}
cout << "This is serial code";
cout << omp_get_nested();

omp_set_nested(1);

omp_set_num_threads(2);

#pragma omp parallel

{

#pragma omp parallel

{

cout << omp_get_thread_num();

} } }
ACM WS HPC 2019 Swarnendu Biswas

Distributing Work

• Threads can perform disjoint work division using their thread
ids and knowledge of total # threads

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
for (int i = t_id; i < 1000; i += omp_get_num_threads()) {
A[i]= foo(i);

}
}

ACM WS HPC 2019 Swarnendu Biswas

Cyclic distribution
of work

Distributing Work

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
int num_thrs = omp_get_num_threads();
int b_size = 1000 / num_thrs;
for (int i = t_id*b_size; i < (t_id+1)*b_size; i += num_thrs) {
A[i]= foo(i);

}
}

ACM WS HPC 2019 Swarnendu Biswas

Block distribution
of work

Cyclic vs Block Distribution of Work

• Say I have a computation like

for (int i = 0; i < N; i++) {

A[i] = B[i] + C[i];

}

ACM WS HPC 2019 Swarnendu Biswas

Would you prefer cyclic distribution or
block distribution with OpenMP?

Use of nowait clause

pragma omp for nowait

for (/* ... */) {

// .. first loop ..

}

pragma omp for

for (/* ... */) {

// .. second loop ..

}

ACM WS HPC 2019 Swarnendu Biswas

Can be useful if the two
loops are independent

Use of nowait clause

pragma omp for nowait

for (/* ... */) {

// .. first loop ..

}

pragma omp for

for (/* ... */) {

// .. second loop ..

}

pragma omp for nowait

for (int i=0; i<N; i++) {

a[i] = b[i] + c[i];

}

pragma omp for

for (int i=0; i<N; i++) {

d[i] = a[i] + b[i];

}

ACM WS HPC 2019 Swarnendu Biswas

Can be useful if the two
loops are independent

Data Scope

int n = 10;

std::vector<int> vector(n);

int a = 10;

#pragma omp parallel for default(none) shared(n, vector)

for (int i = 0; i < n; i++) {

vector[i] = i*a;

}

ACM WS HPC 2019 Swarnendu Biswas

Is this snippet correct?

Explicit Tasks

ACM WS HPC 2019 Swarnendu Biswas

Explicit Task Constructs in OpenMP

• Not all programs have simple loops that OpenMP can parallelize

• OpenMP can only parallelize loops in a basic standard form with loop
counts known at runtime

ACM WS HPC 2019 Swarnendu Biswas

Explicit Task Constructs in OpenMP

• Not all programs have simple loops OpenMP can parallelize

• OpenMP can only parallelize loops in a basic standard form with loop
counts

• Consider a program to traverse a linked list

ACM WS HPC 2019 Swarnendu Biswas

p=head;
while (p) {
dowork(p);
p = p->next;

}

One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for (i=0; i<count; i++)

dowork(parr[i]);

}

ACM WS HPC 2019 Swarnendu Biswas

1

2

3

One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

dowork(parr[i]);

}

ACM WS HPC 2019 Swarnendu Biswas

1

2

3

This works, but is inelegant (had to use a vector or array as
an intermediate storage) and is inefficient (requires multiple
passes over the data)

Tasks in OpenMP

• Explicit tasks were introduced in OpenMP
3.0

• Tasks are independent units of work,
composed of
• code to execute
• data to compute
• control variables

• Threads are assigned to perform the
work of each task

• Runtime system decides when tasks are
executed
• Tasks may be deferred or executed

immediately

ACM WS HPC 2019 Swarnendu Biswas

The Tasking Concept in OpenMP

ACM WS HPC 2019 Swarnendu Biswas

Thread
Generate
tasks

Ex
ec

u
te

 t
as

ks

Thread

Thread

Thread

Tasks in OpenMP

• The task construct includes a
structured block of code

• Inside a parallel region, a thread
encountering a task construct
will package up the code block
and its data for execution

• Tasks can be nested
• A task may itself generate tasks

ACM WS HPC 2019 Swarnendu Biswas

Task Directive

#pragma omp parallel
{

#pragma omp master
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp task
billy();

}
}

ACM WS HPC 2019 Swarnendu Biswas

Thread 0 packages data

Tasks executed by some
thread in some order

All tasks complete
before this barrier ends

Task Completion

• #pragma omp barrier
• All tasks created by any thread in the current team are guaranteed to be

completed at the barrier exit

• #pragma omp taskwait
• Wait for child tasks to complete

• Applies only to children, not descendants

ACM WS HPC 2019 Swarnendu Biswas

Example of Tasks

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task

cout << “car “;

cout << “is fun to watch!”;

}

}

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task

cout << “car “;

#pragma omp taskwait

cout << “is fun to watch!”;

}

}

ACM WS HPC 2019 Swarnendu Biswas

Task Synchronization

#pragma omp parallel num_threads(n)
{
#pragma omp task
funcA();

#pragma omp barrier
#pragma omp single
{
#pragma omp task
funcB();

}
}

ACM WS HPC 2019 Swarnendu Biswas

What is the sequence of
task creation and

termination?

An Example with OpenMP Tasks

#pragma omp parallel
{

#pragma omp single private(p)
{

p = listhead ;
while (p) {
#pragma omp task firstprivate(p)
{
process (p);

}
p=next (p) ;

} } }

ACM WS HPC 2019 Swarnendu Biswas

Binary Tree Traversal

void postorder(node *p) {

if (p->left) {

postorder(p->left);

if (p->right)

postorder(p->right);

process(p->data);

}

ACM WS HPC 2019 Swarnendu Biswas

Scheduling of Tasks

• Tasks are tied to the thread that first executes them
• Need not necessarily be the creator thread

• Scheduling constraints
• Only the thread a task is tied to can execute it

• A task can be suspended at task scheduling points
• Task creation and finish, taskwait, barrier, taskyield, …

ACM WS HPC 2019 Swarnendu Biswas

Scheduling of Tasks

• When a thread encounters a task scheduling point, it may do one of
the following
• Begin execution of a tied task bound to the current team

• Resume any suspended task region, bound to the current team, to which it is
tied

• Begin execution of an untied task bound to the current team

• Resume any suspended untied task region bound to the current team

• If more than one of the above choices is available, it is unspecified as
to which will be chosen

ACM WS HPC 2019 Swarnendu Biswas

Scheduling of Tasks

• Tasks created with the untied clause are never tied
• Resume at task scheduling points possibly by different threads

• May provide better load balancing

ACM WS HPC 2019 Swarnendu Biswas

Great! But is
that all?

Example

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process(double);

int main() {
#pragma omp parallel
{

#pragma omp single
{
int i;
#pragma omp task untied
// i is firstprivate, item is shared
{
for (i=0; i<LARGE_NUMBER; i++) {
#pragma omp task
process(item[i]);

} } } } }

ACM WS HPC 2019 Swarnendu Biswas

Scheduling of Tasks

• Tasks created with the untied clause are never tied
• Resume at task scheduling points possibly by different threads

• May provide better load balancing

• Things to remember!
• Avoid threadprivate variables

• Avoid dependence of thread ids

• Be careful while using critical regions and locks

ACM WS HPC 2019 Swarnendu Biswas

The taskyield Directive

• Specifies that the current task
can be suspended in favor of
execution of a different task
• Hint to the OpenMP runtime

void foo(omp_lock_t* lock, int n) {

for(int i = 0; i < n; i++)

#pragma omp task

{

something_useful();

while(!omp_test_lock(lock)) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}

ACM WS HPC 2019 Swarnendu Biswas

Other Details in Tasking

Other clauses
• priority – Hint to the runtime system for task execution order

• depends – Task dependence is fulfilled when the predecessor task
has completed

• final – Stop task decomposition at a certain depth for recursive
problems, exposes enough parallelism but reduces overhead for
small data sizes

ACM WS HPC 2019 Swarnendu Biswas

SIMD Programming

ACM WS HPC 2019 Swarnendu Biswas

SPMD Programming

Single Program Multiple Data

• Each thread runs same program

• Selection of data, or branching conditions, based on thread id

• General and common parallel programming paradigm

OpenMP implementation

• Perform work division in parallel loops

• Query thread_id and num_threads

• Partition work among threads

ACM WS HPC 2019 Swarnendu Biswas

Different Levels of Parallelism in Hardware

Instruction-level Parallelism

• Microarchitectural techniques like pipelining, OOO execution, and superscalar

Vector-level Parallelism

• Use Single Instruction Multiple Data (SIMD) vector processing instructions and
units

Thread-level Parallelism

• Hyperthreading

CS 698L Swarnendu Biswas

Vectorization

• Process of transforming a scalar operation on single data elements at
a time (SISD) to an operation on multiple data elements at once
(SIMD)

• Loop vectorization transforms a program so that the same operation
is performed at the same time on several vector elements

CS 698L Swarnendu Biswas

Vectorization

Scalar mode

• One instruction produces on
result
• vaddsd/vaddss

Vector mode

• One instruction can produce
multiple results
• vaddpd/vaddps

double *a, *b, *c;
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

a[i]

b[i]

c[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

M. Voss. Topics in Loop Vectorization.

Vectorization

for (i=0; i<n; i++)
c[i] = a[i] + b[i];

…Register File

X1

Y1

Z1

32 bits

32 bits

+

32 bits

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

n
times

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3, addr3

n/4
times

M. Garzaran et al. Program Optimization Through Loop Vectorization.

M. Voss. Topics in Loop Vectorization.

Intel-Supported SIMD Extensions

SIMD
extensions

Width (bits) Dual precision
(64 bit)
calculations

Single
precision (32
bit)
calculations

Introduced

SSE2/SSE3/SSE
4

128 2 4 ~2001-2007

AVX/AVX2 256 4 8 ~2011-2015

AVX-512 512 8 16 ~2017

Other platforms that support SIMD have different extensions

CS 698L Swarnendu Biswas

SIMD Vectorization

• Use of SIMD units can speed up the program
• Intel SSE has 128-bit vector registers and functional units

• 4 32-bit single precision floating point numbers
• 2 64-bit double precision floating point numbers
• 4 32-bit integer numbers
• 2 64 bit integer
• 8 16-bit integer or shorts
• 16 8-bit bytes or chars

• Assuming a single ALU, these SIMD units can execute 4 single precision
floating point number or 2 double precision operations in the time it takes
to do only one of these operations by a scalar unit

CS 698L Swarnendu Biswas

128-bit wide operands using integers

Daniel Kusswurm. Modern X86 Assembly Language Programming.

Intel-Supported SIMD Extensions

512 bits

256 bits

128 bits

XMMYMMZMM

64-bit architecture

SSE XMM0-XMM15

AVX YMM0-YMM15 Low- order 128 bits of each YMM register are
aliased to a corresponding XMM register

AVX-512 ZMM-ZMM31 low-order 256 and 128 bits are aliased to registers
YMM0-YMM31 and XMM0-XMM31 respectively

x86-64 Vector Operations

• Example instructions
• Move: (V)MOV[A/U]P[D/S]
• Comparing: (V)CMP[P/S][D/S]
• Arithmetic operations: (V)[ADD/SUB/MUL/DIV][P/S][D/S]

• Instruction decoding
• V – AVX
• P, S – packaged, scalar
• A, U – aligned, unaligned
• D, S – double, single
• B, W, D, Q – byte, word, doubleword, quadword integers

[] – required
() - optional

Andreas Schmitz. GCC AutoVectorization.

x86-64 Vector Operations

Instruction

movss xmm2, xmm1

vmovapd ymmword ptr [edi], ymm1

Explanation

xmm2 = xmm2 + xmm1 (SSE/SSE2)

Move aligned packed double-
precision floating-point values
from ymm2/mem to ymm1.

CS 698L Swarnendu Biswas

AVX Scalar Floating-Point Instruction
Examples

Instruction

vaddss xmm0,xmm1,xmm2

vaddsd xmm0,xmm1,xmm2

Explanation

xmm0[31:0] = xmm1[31:0] + xmm2[31:0]

xmm0[127:32] = xmm1[127:32]

ymm0[255:128] = 0

xmm0[63:0] = xmm1[63:0] + xmm2[63:0]

xmm0[127:64] = xmm1[127:64]

ymm0[255:128] = 0

CS 698L Swarnendu Biswas

Kirill Rogozhin, Intel. Vectorization.

Vectorize Code
• Auto-vectorizing compiler

• Vector intrinsics

• Assembly language

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

void example(){
__m128 rA, rB, rC;
for (int i = 0; i <LEN; i+=4){

rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);

_mm_store_ps(&C[i], rC);
}}

..B8.5
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
jl ..B8.5

easy, but low
control

hard, but
most control

Vectorize Code

• Auto-vectorization
• Compiler vectorizes automatically – No code changes

• Semi auto-vectorization – Use pragmas as hints to guide compiler

• Explicit vector programming – OpenMP SIMD pragmas

• SIMD/Vector intrinsics

• Inline assembly language

• Use SIMD-capable libraries like Intel Math Kernel Library (MKL)

most control, but
harder to code, debug

and maintain

CS 698L Swarnendu Biswas

Auto-Vectorization

Transparent to programmers

Compilers can apply other transformations

Portability of code across architectures

• Vectorization instructions may differ but compilers take care of it

CS 698L Swarnendu Biswas

Auto-Vectorization

Transparent to programmers

Compilers can apply other transformations

Portability of code across architectures

• Vectorization instructions may differ but compilers take care of it

Compilers may fail to vectorize
• Programmers may give hints to help the compiler
• Programmers may have to manually vectorize their code

CS 698L Swarnendu Biswas

Why Auto Vectorizers Fail?

• Data dependences

• Unaligned accesses

• Function calls in loop block

• Complex control flow, conditional branches

• Loop not “countable”, e.g., upper bound not a runtime constant

• Loop body too complex (register pressure)

• Vectorization seems inefficient

ACM WS HPC 2019 Swarnendu Biswas

How about SIMD support?

• Support in older versions of OpenMP (< 4.0) required vendor-specific
extensions
• Programming models (e.g., Intel Cilk Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs or intrinsics (e.g., _mm_add_pd())

ACM WS HPC 2019 Swarnendu Biswas

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i = 0; i < N; i++) {

a[i] = b[i] + 10;
}

simd Construct

• #pragma omp simd …
• Can be applied to a loop to indicate that the loop can be transformed to a

SIMD loop

• Use SIMD instructions

• Partition loop into chunks that fit a SIMD vector register

• Does not parallelize the loop body

• #pragma omp declare simd
• Applied to a function to enable creation of one or more versions to allow for

SIMD processing

ACM WS HPC 2019 Swarnendu Biswas

SIMD Function Vectorization

#pragma omp declare simd …
function-definition-or-declaration

• Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

ACM WS HPC 2019 Swarnendu Biswas

#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

// Vector version
vec8 min_v(vec8 a, vec8 b) {

return a < b ? a : b;
}

simd Worksharing Construct

• #pragma omp for simd …

• Parallelize and vectorize a loop nest
• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register

ACM WS HPC 2019 Swarnendu Biswas

OpenMP Example
uint64_t seq_sum = 0;

for (int i = 0; i < N; i++) {

seq_sum += x[i];

}

uint64_t vec_sum = 0;

double start_time, end_time;

start_time = omp_get_wtime();

#pragma omp simd // num_threads(4)

for (int i = 0; i < N; i++) {

vec_sum += x[i];

}

end_time = omp_get_wtime();

assert(seq_sum == vec_sum);

cout << "SIMD time: " << (end_time-
start_time) << " seconds\n";

uint64_t for_sum = 0;

start_time = omp_get_wtime();

#pragma omp parallel for simd reduction(+ :
for_sum) num_threads(4)

for (int i = 0; i < N; i++) {

for_sum += x[i];

}

end_time = omp_get_wtime();

assert(seq_sum == for_sum);

cout << "Parallel SIMD time: " << (end_ti
me-start_time)<< " seconds\n";

ACM WS HPC 2019 Swarnendu Biswas

OpenMP Example
uint64_t seq_sum = 0;

for (int i = 0; i < N; i++) {

seq_sum += x[i];

}

uint64_t vec_sum = 0;

double start_time, end_time;

start_time= omp_get_wtime();

#pragma omp simd // num_threads(4)

for (int i = 0; i < N; i++) {

vec_sum += x[i];

}

end_time=omp_get_wtime();

assert(seq_sum == vec_sum);

cout << "SIMD time: " << (end_time-
start_time) << " seconds\n";

uint64_t for_sum = 0;

start_time=omp_get_wtime();

#pragma omp parallel for simd reduction(+ :
for_sum) num_threads(4)

for (int i = 0; i < N; i++) {

for_sum += x[i];

}

end_time=omp_get_wtime();

assert(seq_sum == for_sum);

cout << "Parallel SIMD time: " << (end_ti
me-start_time)<< " seconds\n";

ACM WS HPC 2019 Swarnendu Biswas

OpenMP Memory Model

ACM WS HPC 2019 Swarnendu Biswas

Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;

ACM WS HPC 2019 Swarnendu Biswas

done = true;

X = new Object();

while (!done) {}
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {}

Thread T1 Thread T2

Infinite loop

ACM WS HPC 2019 Swarnendu Biswas

What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0

ACM WS HPC 2019 Swarnendu Biswas

Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

ACM WS HPC 2019 Swarnendu Biswas

Different
addresses!

Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

ACM WS HPC 2019 Swarnendu Biswas

Different
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context

What values can a load return?

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?

ACM WS HPC 2019 Swarnendu Biswas

Memory Consistency Model

Set of rules that govern how systems process memory operation
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors of multithreaded programs executing
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors

ACM WS HPC 2019 Swarnendu Biswas

Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program
performance

Impacts program portability

ACM WS HPC 2019 Swarnendu Biswas

Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?

ACM WS HPC 2019 Swarnendu Biswas

Sequential Consistency

ACM WS HPC 2019 Swarnendu Biswas

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport

Interleavings with SC

ACM WS HPC 2019 Swarnendu Biswas

Interleavings with SC

ACM WS HPC 2019 Swarnendu Biswas

SC Formalism

Every load gets its value from the last store before it
(in global memory order) to the same address

ACM WS HPC 2019 Swarnendu Biswas

SC Rules

Suppose we
have two

addresses a
and b

• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b)

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b)

ACM WS HPC 2019 Swarnendu Biswas

End-to-end SC

Simple memory model that can be implemented both
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write

ACM WS HPC 2019 Swarnendu Biswas

Existing Memory Consistency Models

Hardware

• Sequential Consistency (SC)

• Total Store Order (TSO)

• Partial Store Order (PSO)

• Weak Ordering (WO)

• …

Programming Languages

• Java

• C++ and OpenMP

• …

ACM WS HPC 2019 Swarnendu Biswas

Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is
equivalent to TSO

ACM WS HPC 2019 Swarnendu Biswas

TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b)

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it
to the same address

ACM WS HPC 2019 Swarnendu Biswas

Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

ACM WS HPC 2019 Swarnendu Biswas

Possible Outcomes with TSO

ACM WS HPC 2019 Swarnendu Biswas

Possible Outcomes with TSO

ACM WS HPC 2019 Swarnendu Biswas

Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be
pipelined or overlapped and are allowed to reach memory or other
cached copies out of program order

• Can read own write early, not other’s writes

ACM WS HPC 2019 Swarnendu Biswas

Opportunities to Reorder Memory Operations

ACM WS HPC 2019 Swarnendu Biswas

Reorder Operations Within a Synchronization
Block

ACM WS HPC 2019 Swarnendu Biswas

Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct

ACM WS HPC 2019 Swarnendu Biswas

Desirable Properties of a Memory Model

Hard to
satisfy all

three
properties

• Programmability

• Performance

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler
transformations

• Almost all recent
architectures violate SC

ACM WS HPC 2019 Swarnendu Biswas

Think of SC

Relaxed Consistency Memory Model

• OpenMP supports a relaxed consistency shared memory model
• Closely related to the weak ordering model

• Threads can maintain a temporary view of shared memory that is not
consistent with other threads

• These temporary views are made consistent only at certain points in
the program

• The operation that enforces consistency is called the flush operation

ACM WS HPC 2019 Swarnendu Biswas

Synchronization Construct: flush

• #pragma omp flush (list)

• Identifies a point at which a thread is guaranteed to see a consistent
view of memory with respect to the variables in “list”
• Flush forces data to be updated in memory so other threads see the most

recent value

• In the absence of a list, all shared objects are synchronized

ACM WS HPC 2019 Swarnendu Biswas

Synchronization Construct: flush

• If list contains a pointer, the pointer is flushed, not the object
referred to by the pointer

• It is recommended not to use flushes, excepting certain cases where
you want to implement say your own spin lock

• Flushes are expensive, since they require compilers to generate
memory fences

ACM WS HPC 2019 Swarnendu Biswas

Semantics of the flush Operation

• A flush is a sequence point at which a thread is guaranteed to see a
consistent view of memory
• All previous read/writes by this thread have completed and are visible to

other threads

• No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory
APIs

ACM WS HPC 2019 Swarnendu Biswas

Potential Benefits with Relaxed Consistency

• Relaxed memory model allows
flexibility to OpenMP
implementations

• Write to A
• May complete immediately

• May complete after the execution
marked “…”

A = 1

…

…

#pragma omp flush(A)

ACM WS HPC 2019 Swarnendu Biswas

Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations
• at entry/exit of parallel, critical, and ordered regions

• at implicit and explicit barriers

• at entry/exit of parallel worksharing regions

• during lock APIs

• ….

ACM WS HPC 2019 Swarnendu Biswas

Flush and Synchronization

• This means if you are mixing reads and writes of a variable across
multiple threads, you cannot assume the reading threads see the
results of the writes unless:
• The writing threads follow the writes with a construct that implies a flush

• The reading threads precede the reads with a construct that implies a flush

ACM WS HPC 2019 Swarnendu Biswas

Visibility of Data

• In order for a write of a variable on one thread to be guaranteed
visible and valid on a second thread, the following operations must
occur in the following order:

1. Thread A writes the variable

2. Thread A executes a flush operation

3. Thread B executes a flush operation

4. Thread B reads the variable

ACM WS HPC 2019 Swarnendu Biswas

Reordering Example

1. a = …;

2. b = …;

3. c = …;

4. #pragma omp flush(c)

5. #pragma omp flush(a, b)

6. …= a…b…;

7. …c…;

• 1 and 2 may not be moved after
5

• 4 and 5 maybe interchanged at
will

• 6 may not be moved before 5

ACM WS HPC 2019 Swarnendu Biswas

OpenMP Example
#pragma omp parallel sections

{

// Producer

#pragma omp section

{

// produce data

flag = 1;

}

// Consumer

#pragma omp section

{

while (flag == 0) {}

// consume data

}

}

#pragma omp parallel sections

{

#pragma omp section

{

// produce data

#pragma omp flush

#pragma omp write

flag = 1;

#pragma omp flush(flag)

}

#pragma omp section

{

while (1) {

#pragma omp flush(flag)

#pragma omp atomic read

flag_read = flag

if (flag_read) break;

}

#pragma omp flush

// consume data

}

}

ACM WS HPC 2019 Swarnendu Biswas

OpenMP Optimizing Compiler

• Can reorder operations freely inside a parallel region
• No guarantees about the ordering of operations during a parallel region

excepting around flush operations

• Parallel region contains implicit flushes

• Cannot move operations outside of the parallel region or around
synchronization operations

• Presence of flush operations make the OpenMP memory model a variant of
weak ordering

ACM WS HPC 2019 Swarnendu Biswas

More Rules

• If the intersection of the flush-sets of two flushes performed by two
different threads is non-empty, then the two flushes must be
completed as if in some sequential order, seen by all threads

• If the intersection of the flush-sets of two flushes performed by one
thread is non-empty, then the two flushes must appear to be
completed in that thread’s program order

• If the intersection of the flush-sets of two flushes is empty, then the
threads can observe these flushes in any order

ACM WS HPC 2019 Swarnendu Biswas

References

• Tim Mattson et al. The OpenMP Common Core: A hands on exploration. SC 2018.

• Ruud van der Pas. OpenMP Tasking Explained. SC 2013.

• Blaise Barney. OpenMP. https://computing.llnl.gov/tutorials/openMP/

• C. Terboven and M. Klemm. Advanced OpenMP Tutorial. OpenMPCon & IWOMP 2017.

ACM WS HPC 2019 Swarnendu Biswas

https://computing.llnl.gov/tutorials/openMP/

