Perceptron and (Lack of) Margins

- Perceptron learns a hyperplane (of many possible) that separates the classes.
Perceptron and (Lack of) Margins

- Perceptron learns a hyperplane (of many possible) that separates the classes

- Standard Perceptron doesn’t guarantee any “margin” around the hyperplane

\[y_n (w^T x_n + b) \leq \gamma \]

where \(\gamma > 0 \) is a pre-specified margin. For standard Perceptron, \(\gamma = 0 \)

Support Vector Machine (SVM) offers a more principled way of doing this by learning the maximum margin hyperplane.
Perceptron and (Lack of) Margins

- Perceptron learns a hyperplane (of many possible) that separates the classes

- Standard Perceptron doesn’t guarantee any “margin” around the hyperplane

- Note: Possible to “artificially” introduce a margin in the Perceptron

\[y_n (w^T x_n + b) \leq \gamma \]

where \(\gamma > 0 \) is a pre-specified margin. For standard Perceptron, \(\gamma = 0 \)

Support Vector Machine (SVM) offers a more principled way of doing this by learning the maximum margin hyperplane.
Perceptron and (Lack of) Margins

- Perceptron learns a hyperplane (of many possible) that separates the classes

- Standard Perceptron doesn’t guarantee any “margin” around the hyperplane

- Note: Possible to “artificially” introduce a margin in the Perceptron
 - Simply change the Perceptron mistake condition to
 \[y_n(w^T x_n + b) \leq \gamma \]
 where \(\gamma > 0 \) is a pre-specified margin. For standard Perceptron, \(\gamma = 0 \)
Perceptron and (Lack of) Margins

- Perceptron learns a hyperplane (of many possible) that separates the classes.

- Standard Perceptron doesn’t guarantee any “margin” around the hyperplane.

- Note: Possible to “artificially” introduce a margin in the Perceptron.
 - Simply change the Perceptron mistake condition to
 \[y_n(w^T x_n + b) \leq \gamma \]
 where \(\gamma > 0 \) is a pre-specified margin. For standard Perceptron, \(\gamma = 0 \).

- **Support Vector Machine (SVM)** offers a more principled way of doing this by learning the maximum margin hyperplane.
Support Vector Machine (SVM)

- Learns a hyperplane such that the positive and negative class training examples are as far away as possible from it (ensures good generalization)

SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not specific to SVMs and is more generally applicable).

Reason behind the name “Support Vector Machine”? SVM finds the most important examples (called “support vectors”) in the training data. These examples also “balance” the margin boundaries (hence called “support”). Also, even if we throw away the remaining training data and re-learn the SVM classifier, we’ll get the same hyperplane.
Support Vector Machine (SVM)

- Learns a hyperplane such that the positive and negative class training examples are as far away as possible from it (ensures good generalization)

- SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not specific to SVMs and is more generally applicable)
Support Vector Machine (SVM)

- Learns a hyperplane such that the positive and negative class training examples are as far away as possible from it (ensures good generalization)

SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not specific to SVMs and is more generally applicable)

Reason behind the name “Support Vector Machine”? SVM finds the most important examples (called “support vectors”) in the training data. These examples also “balance” the margin boundaries (hence called “support”). Also, even if we throw away the remaining training data and re-learn the SVM classifier, we’ll get the same hyperplane.
Support Vector Machine (SVM)

- Learns a hyperplane such that the positive and negative class training examples are as far away as possible from it (ensures good generalization)

- SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not specific to SVMs and is more generally applicable)

- Reason behind the name “Support Vector Machine”? SVM finds the most important examples (called “support vectors”) in the training data
Support Vector Machine (SVM)

- Learns a hyperplane such that the positive and negative class training examples are as far away as possible from it (ensures good generalization)

- SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not specific to SVMs and is more generally applicable)

- Reason behind the name “Support Vector Machine”? SVM finds the most important examples (called “support vectors”) in the training data
 - These examples also “balance” the margin boundaries (hence called “support”).
Support Vector Machine (SVM)

- Learns a hyperplane such that the positive and negative class training examples are as far away as possible from it (ensures good generalization)

- SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not specific to SVMs and is more generally applicable)

- Reason behind the name “Support Vector Machine”? SVM finds the most important examples (called “support vectors”) in the training data
 - These examples also “balance” the margin boundaries (hence called “support”). Also, even if we throw away the remaining training data and re-learn the SVM classifier, we’ll get the same hyperplane
Suppose there exists a hyperplane $w^T x + b = 0$ such that

- $w^T x_n + b \geq 1$ for $y_n = +1$
- $w^T x_n + b \leq -1$ for $y_n = -1$
Suppose there exists a hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ such that

- $\mathbf{w}^T \mathbf{x}_n + b \geq 1$ for $y_n = +1$
- $\mathbf{w}^T \mathbf{x}_n + b \leq -1$ for $y_n = -1$

Equivalently, $y_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1 \quad \forall n \quad (\text{the margin condition})$
Suppose there exists a hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ such that

- $\mathbf{w}^T \mathbf{x}_n + b \geq 1$ for $y_n = +1$
- $\mathbf{w}^T \mathbf{x}_n + b \leq -1$ for $y_n = -1$
- Equivalently, $y_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1$ $\forall n$ (the margin condition)
- Also note that $\min_{1 \leq n \leq N} |\mathbf{w}^T \mathbf{x}_n + b| = 1$
Learning a Maximum Margin Hyperplane

Suppose there exists a hyperplane $w^T x + b = 0$ such that

- $w^T x_n + b \geq 1$ for $y_n = +1$
- $w^T x_n + b \leq -1$ for $y_n = -1$

Equivalently, $y_n (w^T x_n + b) \geq 1 \quad \forall n$ (the margin condition)

Also note that $\min_{1 \leq n \leq N} |w^T x_n + b| = 1$

Thus margin on each side: $\gamma = \min_{1 \leq n \leq N} \frac{|w^T x_n + b|}{||w||} = \frac{1}{||w||}$
Learning a Maximum Margin Hyperplane

Suppose there exists a hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ such that

- $\mathbf{w}^\top \mathbf{x}_n + b \geq 1$ for $y_n = +1$
- $\mathbf{w}^\top \mathbf{x}_n + b \leq -1$ for $y_n = -1$
- Equivalently, $y_n (\mathbf{w}^\top \mathbf{x}_n + b) \geq 1 \quad \forall n$ (the margin condition)
- Also note that $\min_{1 \leq n \leq N} |\mathbf{w}^\top \mathbf{x}_n + b| = 1$
- Thus margin on each side: $\gamma = \min_{1 \leq n \leq N} \frac{|\mathbf{w}^\top \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$
- Total margin $= 2\gamma = \frac{2}{||\mathbf{w}||}$
Learning a Maximum Margin Hyperplane

Suppose there exists a hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ such that:

- $\mathbf{w}^\top \mathbf{x}_n + b \geq 1$ for $y_n = +1$
- $\mathbf{w}^\top \mathbf{x}_n + b \leq -1$ for $y_n = -1$
- Equivalently, $y_n (\mathbf{w}^\top \mathbf{x}_n + b) \geq 1 \quad \forall n \quad (\text{the margin condition})$
- Also note that $\min_{1 \leq n \leq N} |\mathbf{w}^\top \mathbf{x}_n + b| = 1$
- Thus margin on each side: $\gamma = \min_{1 \leq n \leq N} |\mathbf{w}^\top \mathbf{x}_n + b| = \frac{1}{||\mathbf{w}||}$
- Total margin = $2\gamma = \frac{2}{||\mathbf{w}||}$

Want the hyperplane (\mathbf{w}, b) to have the largest possible margin
Large Margin = Good Generalization

- Large margins intuitively mean good generalization

Large margin $\gamma \propto \|w\|$

Large margin \Rightarrow small $\|w\|$, i.e., small ℓ_2 norm of w

Small $\|w\| \Rightarrow$ regularized/simple solutions (w's don't become too large)

Recall our discussion of regularization.

Simple solutions \Rightarrow good generalization on test data

Want to see an even more formal justification? :-)

Wait until we cover Learning Theory!
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{||w||}$

Small $||w||$ ⇒ regularized/simple solutions (w's don't become too large)

Recall our discussion of regularization.

Simple solutions ⇒ good generalization on test data

Want to see an even more formal justification? :-)

Wait until we cover Learning Theory!
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{||w||}$
- Large margin \Rightarrow small $||w||$, i.e., small ℓ_2 norm of w
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{||w||}$
- Large margin \Rightarrow small $||w||$, i.e., small ℓ_2 norm of w
- Small $||w||$ \Rightarrow regularized/simple solutions (w_i’s don’t become too large)

Recall our discussion of regularization.

Simple solutions \Rightarrow good generalization on test data

Want to see an even more formal justification? :-)

Wait until we cover Learning Theory!
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{||w||}$
- Large margin \Rightarrow small $||w||$, i.e., small ℓ_2 norm of w
- Small $||w||$ \Rightarrow regularized/simple solutions (w_i's don't become too large)
 - Recall our discussion of regularization..
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{||w||}$
- Large margin \Rightarrow small $||w||$, i.e., small ℓ_2 norm of w
- Small $||w|| \Rightarrow$ regularized/simple solutions (w_i’s don’t become too large)
 - Recall our discussion of regularization..
- Simple solutions \Rightarrow good generalization on test data
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{||w||}$
- Large margin \Rightarrow small $||w||$, i.e., small ℓ_2 norm of w
- Small $||w||$ \Rightarrow regularized/simple solutions (w_i’s don’t become too large)
 - Recall our discussion of regularization..
- Simple solutions \Rightarrow good generalization on test data
- Want to see an even more formal justification? :-)

Machine Learning (CS771A)
Large Margin = Good Generalization

- Large margins intuitively mean good generalization
- We saw that margin $\gamma \propto \frac{1}{\|w\|}$
- Large margin \Rightarrow small $\|w\|$, i.e., small ℓ_2 norm of w
- Small $\|w\|$ \Rightarrow regularized/simple solutions (w_i's don't become too large)
 - Recall our discussion of regularization..
- Simple solutions \Rightarrow good generalization on test data
- Want to see an even more formal justification? :-)
 - Wait until we cover Learning Theory!
Hard-Margin SVM

- Every training example has to fulfil the margin condition \(y_n(w^T x_n + b) \geq 1 \)
Hard-Margin SVM

- Every training example has to fulfil the margin condition \(y_n (w^T x_n + b) \geq 1 \)

- Also want to maximize the margin \(\gamma \propto \frac{1}{||w||} \)
Hard-Margin SVM

- Every training example has to fulfil the margin condition $y_n(w^T x_n + b) \geq 1$

- Also want to maximize the margin $\gamma \propto \frac{1}{||w||}$
 - Equivalent to minimizing $||w||^2$ or $\frac{||w||^2}{2}$
Hard-Margin SVM

- **Every** training example has to fulfil the margin condition $y_n(w^T x_n + b) \geq 1$

- Also want to maximize the margin $\gamma \propto \frac{1}{||w||}$

- Equivalent to minimizing $||w||^2$ or $\frac{||w||^2}{2}$

- The objective for hard-margin SVM

$$\min_{w, b} f(w, b) = \frac{||w||^2}{2}$$

subject to $y_n(w^T x_n + b) \geq 1, \quad n = 1, \ldots, N$
Hard-Margin SVM

- Every training example has to fulfil the margin condition $y_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1$

- Also want to maximize the margin $\gamma \propto \frac{1}{||\mathbf{w}||}$

- Equivalent to minimizing $||\mathbf{w}||^2$ or $\frac{||\mathbf{w}||^2}{2}$

- The objective for hard-margin SVM

\[
\min_{\mathbf{w}, b} \quad f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} \\
\text{subject to} \quad y_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1, \quad n = 1, \ldots, N
\]

- Thus the hard-margin SVM minimizes a convex objective function which is a Quadratic Program (QP) with N linear inequality constraints
Soft-Margin SVM (More Commonly Used)

- Allow some training examples to fall **within the margin region**, or be even **misclassified** (i.e., fall on the wrong side). Preferable **if training data is noisy**
Soft-Margin SVM (More Commonly Used)

- Allow some training examples to fall **within** the margin region, or be even **misclassified** (i.e., fall on the wrong side). Preferable if training data is noisy.

- Each training example \((x_n, y_n)\) given a “slack” \(\xi_n \geq 0\) (distance by which it “violates” the margin). If \(\xi_n > 1\) then \(x_n\) is totally on the wrong side.
Soft-Margin SVM (More Commonly Used)

- Allow some training examples to fall within the margin region, or be even misclassified (i.e., fall on the wrong side). Preferable if training data is noisy.

- Each training example \((x_n, y_n)\) given a “slack” \(\xi_n \geq 0\) (distance by which it “violates” the margin). If \(\xi_n > 1\) then \(x_n\) is totally on the wrong side.
 - Basically, we want a soft-margin condition: \(y_n (w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0\)
Soft-Margin SVM (More Commonly Used)

- Goal: Maximize the margin, while also minimizing the sum of slacks (don't want too many training examples violating the margin condition)

The primal objective for soft-margin SVM can thus be written as

\[
\min_w, b, \xi \quad f(w, b, \xi) = ||w||^2 + C \sum_{n=1}^{N} \xi_n
\]

subject to constraints

\[
y_n(w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N
\]

Thus the soft-margin SVM also minimizes a convex objective function which is a Quadratic Program (QP) with \(2N\) linear inequality constraints.

Param.

- \(C\) controls the trade-off between large margin vs small training error
Soft-Margin SVM (More Commonly Used)

- Goal: Maximize the margin, while also minimizing the sum of slacks (don't want too many training examples violating the margin condition)

- The primal objective for soft-margin SVM can thus be written as

\[
\min_{w, b, \xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n
\]
subject to constraints \(y_n(w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N \)
Soft-Margin SVM (More Commonly Used)

- Goal: Maximize the margin, while also minimizing the sum of slacks (don't want too many training examples violating the margin condition)

- The primal objective for soft-margin SVM can thus be written as

\[
\min_{w, b, \xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to constraints } y_n(w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N
\]

- Thus the soft-margin SVM also minimizes a **convex objective function** which is a **Quadratic Program (QP)** with \(2N\) linear inequality constraints
Soft-Margin SVM (More Commonly Used)

- Goal: Maximize the margin, while also minimizing the sum of slacks (don't want too many training examples violating the margin condition)

The primal objective for soft-margin SVM can thus be written as

\[
\min_{w, b, \xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n
\]

subject to constraints

\[
y_n(w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N
\]

Thus the soft-margin SVM also minimizes a convex objective function which is a Quadratic Program (QP) with \(2N\) linear inequality constraints.

- Param. \(C\) controls the trade-off between large margin vs small training error
Objective for the hard-margin SVM (unknowns are w and b)

\[
\min_{w, b} f(w, b) = \frac{||w||^2}{2}
\]
subject to constraints $y_n (w^T x_n + b) \geq 1, \quad n = 1, \ldots, N$

Objective for the soft-margin SVM (unknowns are w, b, and $\{\xi_n\}_{n=1}^N$)

\[
\min_{w, b, \xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n
\]
subject to $y_n (w^T x_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \quad n = 1, \ldots, N$

In either case, we have to solve constrained, convex optimization problem
Brief Detour: Solving Constrained Optimization Problems
Constrained Optimization via Lagrangian

Consider optimizing the following objective, subject to some constraints

$$\min_w f(w)$$

s.t.

$$g_n(w) \leq 0, \quad n = 1, \ldots, N$$

$$h_m(w) = 0, \quad m = 1, \ldots, M$$

Introduce Lagrange multipliers $$\alpha = \{\alpha_n\}^N_{n=1}, \alpha_n \geq 0,$$ and $$\beta = \{\beta_m\}^M_{m=1},$$ one for each constraint, and construct the following Lagrangian

$$L(w, \alpha, \beta) = f(w) + \sum_{n=1}^{N} \alpha_n g_n(w) + \sum_{m=1}^{M} \beta_m h_m(w)$$

Consider $$L^P(w) = \max \alpha, \beta L(w, \alpha, \beta).$$ Note that

$$L^P(w) = \infty$$ if $$w$$ violates any of the constraints ($$g$$'s or $$h$$'s)

$$L^P(w) = f(w)$$ if $$w$$ satisfies all the constraints ($$g$$'s and $$h$$'s)

Thus $$\min_w L^P(w) = \min_w \max_{\alpha \geq 0, \beta} L(w, \alpha, \beta)$$ solves the same problem as the original problem and will have the same solution. For convex $$f, g, h,$$ the order of min and max is interchangeable.

Karush-Kuhn-Tucker (KKT) Conditions: At the optimal solution, $$\alpha_n g_n(w) = 0$$ (note the max $$\alpha$$).
Constrained Optimization via Lagrangian

- Consider optimizing the following objective, subject to some constraints

\[
\min_w f(w) \\
\text{s.t } g_n(w) \leq 0, \quad n = 1, \ldots, N \\
\quad h_m(w) = 0, \quad m = 1, \ldots, M
\]

- Introduce Lagrange multipliers \(\alpha = \{\alpha_n\}_{n=1}^N \), \(\alpha_n \geq 0 \), and \(\beta = \{\beta_m\}_{m=1}^M \), one for each constraint, and construct the following Lagrangian

\[
L(w, \alpha, \beta) = f(w) + \sum_{n=1}^N \alpha_n g_n(w) + \sum_{m=1}^N \beta_n h_n(w)
\]
Constrained Optimization via Lagrangian

Consider optimizing the following objective, subject to some constraints

$$\min_w f(w)$$

s.t.

$$g_n(w) \leq 0, \quad n = 1, \ldots, N$$

$$h_m(w) = 0, \quad m = 1, \ldots, M$$

Introduce Lagrange multipliers $$\alpha = \{\alpha_n\}_{n=1}^N$$, $$\alpha_n \geq 0$$, and $$\beta = \{\beta_m\}_{m=1}^M$$, one for each constraint, and construct the following Lagrangian

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{n=1}^N \alpha_n g_n(w) + \sum_{m=1}^N \beta_n h_n(w)$$

Consider $$\mathcal{L}_P(w) = \max_{\alpha, \beta} \mathcal{L}(w, \alpha, \beta)$$. Note that
Constrained Optimization via Lagrangian

- Consider optimizing the following objective, subject to some constraints

\[
\begin{aligned}
\min_w & \quad f(w) \\
\text{s.t} & \quad g_n(w) \leq 0, \quad n = 1, \ldots, N \\
& \quad h_m(w) = 0, \quad m = 1, \ldots, M
\end{aligned}
\]

- Introduce Lagrange multipliers \(\alpha = \{\alpha_n\}_{n=1}^N \), \(\alpha_n \geq 0 \), and \(\beta = \{\beta_m\}_{m=1}^M \), one for each constraint, and construct the following Lagrangian

\[
L(w, \alpha, \beta) = f(w) + \sum_{n=1}^N \alpha_n g_n(w) + \sum_{m=1}^N \beta_n h_n(w)
\]

- Consider \(\mathcal{L}_P(w) = \max_{\alpha, \beta} L(w, \alpha, \beta) \). Note that
 - \(\mathcal{L}_P(w) = \infty \) if \(w \) violates any of the constraints (\(g \)'s or \(h \)'s)
Consider optimizing the following objective, subject to some constraints

\[
\min_w f(w) \\
\text{s.t } g_n(w) \leq 0, \quad n = 1, \ldots, N \\
\quad h_m(w) = 0, \quad m = 1, \ldots, M
\]

Introduce Lagrange multipliers \(\alpha = \{\alpha_n\}_{n=1}^N \), \(\alpha_n \geq 0 \), and \(\beta = \{\beta_m\}_{m=1}^M \), one for each constraint, and construct the following Lagrangian

\[
L(w, \alpha, \beta) = f(w) + \sum_{n=1}^N \alpha_n g_n(w) + \sum_{m=1}^N \beta_n h_n(w)
\]

Consider \(L_P(w) = \max_{\alpha, \beta} L(w, \alpha, \beta) \). Note that

\[
L_P(w) = \infty \text{ if } w \text{ violates any of the constraints (} g \text{'s or } h \text{'s)}
\]

\[
L_P(w) = f(w) \text{ if } w \text{ satisfies all the constraints (} g \text{'s and } h \text{'s)}
\]
Constrained Optimization via Lagrangian

Consider optimizing the following objective, subject to some constraints:

\[
\begin{align*}
\min_w & \quad f(w) \\
\text{s.t.} & \quad g_n(w) \leq 0, \quad n = 1, \ldots, N \\
& \quad h_m(w) = 0, \quad m = 1, \ldots, M
\end{align*}
\]

Introduce Lagrange multipliers \(\alpha = \{\alpha_n\}_{n=1}^N, \alpha_n \geq 0 \), and \(\beta = \{\beta_m\}_{m=1}^M \), one for each constraint, and construct the following Lagrangian:

\[
L(w, \alpha, \beta) = f(w) + \sum_{n=1}^N \alpha_n g_n(w) + \sum_{m=1}^N \beta_m h_m(w)
\]

Consider \(L_P(w) = \max_{\alpha, \beta} L(w, \alpha, \beta) \). Note that

- \(L_P(w) = \infty \) if \(w \) violates any of the constraints (\(g \)'s or \(h \)'s)
- \(L_P(w) = f(w) \) if \(w \) satisfies all the constraints (\(g \)'s and \(h \)'s)

Thus \(\min_w L_P(w) = \min_w \max_{\alpha \geq 0, \beta} L(w, \alpha, \beta) \) solves the same problem as the original problem and will have the same solution. For convex \(f, g, h \), the order of min and max is interchangeable.
Constrained Optimization via Lagrangian

- Consider optimizing the following objective, subject to some constraints

\[
\min_w f(w) \\
\text{s.t } g_n(w) \leq 0, \quad n = 1, \ldots, N \\
h_m(w) = 0, \quad m = 1, \ldots, M
\]

- Introduce Lagrange multipliers \(\alpha = \{\alpha_n\}_{n=1}^N \), \(\alpha_n \geq 0 \), and \(\beta = \{\beta_m\}_{m=1}^M \), one for each constraint, and construct the following Lagrangian

\[
\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{n=1}^N \alpha_n g_n(w) + \sum_{m=1}^N \beta_n h_n(w)
\]

- Consider \(\mathcal{L}_P(w) = \max_{\alpha, \beta} \mathcal{L}(w, \alpha, \beta) \). Note that
 - \(\mathcal{L}_P(w) = \infty \) if \(w \) violates any of the constraints (\(g \)'s or \(h \)'s)
 - \(\mathcal{L}_P(w) = f(w) \) if \(w \) satisfies all the constraints (\(g \)'s and \(h \)'s)

- Thus \(\min_w \mathcal{L}_P(w) = \min_w \max_{\alpha \geq 0, \beta} \mathcal{L}(w, \alpha, \beta) \) solves the same problem as the original problem and will have the same solution. For convex \(f, g, h \), the order of min and max is interchangeable.

- Karush-Kuhn-Tucker (KKT) Conditions: At the optimal solution, \(\alpha_n g_n(w) = 0 \) (note the max \(\alpha \))
Solving Hard-Margin SVM
Solving Hard-Margin SVM

- The hard-margin SVM optimization problem is:

\[
\begin{align*}
\min_{w,b} & \quad f(w, b) = \frac{||w||^2}{2} \\
\text{subject to} & \quad 1 - y_n(w^T x_n + b) \leq 0, \quad n = 1, \ldots, N
\end{align*}
\]

- A constrained optimization problem. Can solve using Lagrange’s method
Solving Hard-Margin SVM

- The hard-margin SVM optimization problem is:

$$\min_{w, b} \ f(w, b) = \frac{||w||^2}{2}$$
subject to $$1 - y_n(w^T x_n + b) \leq 0, \quad n = 1, \ldots, N$$

- A constrained optimization problem. Can solve using Lagrange’s method

- Introduce Lagrange Multipliers $$\alpha_n \ (n = \{1, \ldots, N\})$$, one for each constraint, and solve the following Lagrangian:

$$\min_{w, b} \ \max_{\alpha \geq 0} \ \mathcal{L}(w, b, \alpha) = \frac{||w||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b)\}$$

- Note: $$\alpha = [\alpha_1, \ldots, \alpha_N]$$ is the vector of Lagrange multipliers
Solving Hard-Margin SVM

- The hard-margin SVM optimization problem is:

\[
\min_{w, b} \quad f(w, b) = \frac{||w||^2}{2}
\]
subject to \(1 - y_n(w^T x_n + b) \leq 0, \quad n = 1, \ldots, N \)

- A constrained optimization problem. Can solve using Lagrange’s method

- Introduce Lagrange Multipliers \(\alpha_n \) \((n = \{1, \ldots, N\})\), one for each constraint, and solve the following Lagrangian:

\[
\min_{w, b} \quad \max_{\alpha \geq 0} \quad \mathcal{L}(w, b, \alpha) = \frac{||w||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b)\}
\]

- Note: \(\alpha = [\alpha_1, \ldots, \alpha_N] \) is the vector of Lagrange multipliers

- We will solve this Lagrangian by solving a dual problem (eliminate \(w \) and \(b \) and solve for the “dual variables” \(\alpha \))
Solving Hard-Margin SVM

The original Lagrangian is

\[
\min_{w, b} \max_{\alpha \geq 0} \mathcal{L}(w, b, \alpha) = \frac{w^T w}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n (w^T x_n + b)\}
\]

Take (partial) derivatives of \(\mathcal{L}\) w.r.t. \(w\), \(b\) and set them to zero

\[
\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} \alpha_n y_n x_n
\]

\[
\frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0
\]

Important: Note the form of the solution \(w\) - it is simply a weighted sum of all the training inputs \(x_1, \ldots, x_N\) (and \(\alpha_n\) is like the "importance" of \(x_n\)).

Substituting \(w = \sum_{n=1}^{N} \alpha_n y_n x_n\) in Lagrangian and also using \(\sum_{n=1}^{N} \alpha_n y_n = 0\)

\[
\max_{\alpha \geq 0} \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m, n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n + b)
\]
Solving Hard-Margin SVM

- The original Lagrangian is

\[
L(w, b, \alpha) = \frac{w^T w}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b)\}
\]

- Take (partial) derivatives of \(L\) w.r.t. \(w\), \(b\) and set them to zero

\[
\frac{\partial L}{\partial w} = 0 \implies w = \sum_{n=1}^{N} \alpha_n y_n x_n \quad \frac{\partial L}{\partial b} = 0 \implies \sum_{n=1}^{N} \alpha_n y_n = 0
\]
Solving Hard-Margin SVM

The original Lagrangian is

\[
\min_{w, b} \max_{\alpha \geq 0} L(w, b, \alpha) = \frac{w^T w}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n (w^T x_n + b)\}
\]

Take (partial) derivatives of \(L \) w.r.t. \(w \), \(b \) and set them to zero

\[
\frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} \alpha_n y_n x_n \\
\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0
\]

Important: Note the form of the solution \(w \) - it is simply a weighted sum of all the training inputs \(x_1, \ldots, x_N \) (and \(\alpha_n \) is like the “importance” of \(x_n \))

Substituting \(w = \sum_{n=1}^{N} \alpha_n y_n x_n \) in Lagrangian and also using \(\sum_{n=1}^{N} \alpha_n y_n = 0 \)

\[
\max_{\alpha \geq 0} L_D(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m, n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n) \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]
Solving Hard-Margin SVM

- Can write the objective more compactly in vector/matrix form as

\[
\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

where \(G \) is an \(N \times N \) matrix with \(G_{mn} = y_m y_n x_m^\top x_n \), and \(1 \) is a vector of 1s

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Can write the objective more compactly in vector/matrix form as

\[
\begin{align*}
\max_{\alpha \geq 0} & \quad \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \\
\text{s.t.} & \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\end{align*}
\]

where \(G\) is an \(N \times N\) matrix with \(G_{mn} = y_m y_n x_m^\top x_n\), and \(1\) is a vector of 1s

Good news: This is maximizing a concave function (or minimizing a convex function - verify that the Hessian is \(G\), which is p.s.d.). Note that our original primal SVM objective was also convex

\[\text{If interested in more details of the solver, see: "Support Vector Machine Solvers" by Bottou and Lin}\]
Can write the objective more compactly in vector/matrix form as

$$
\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
$$

where \mathbf{G} is an $N \times N$ matrix with $G_{mn} = y_m y_n x_m^\top x_n$, and $\mathbf{1}$ is a vector of 1s

- **Good news:** This is maximizing a concave function (or minimizing a convex function - verify that the Hessian is \mathbf{G}, which is p.s.d.). Note that our original primal SVM objective was also convex

- **Important:** Inputs x‘s only appear as inner products (helps to “kernelize”)

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Can write the objective more compactly in vector/matrix form as

\[
\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

where \(G \) is an \(N \times N \) matrix with \(G_{mn} = y_m y_n x_m^\top x_n \), and \(1 \) is a vector of 1s

Good news: This is maximizing a concave function (or minimizing a convex function - verify that the Hessian is \(G \), which is p.s.d.). Note that our original primal SVM objective was also convex

Important: Inputs \(x \)'s only appear as inner products (helps to “kernelize”)

Can solve† the above objective function for \(\alpha \) using various methods, e.g.,

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Solving Hard-Margin SVM

- Can write the objective more compactly in vector/matrix form as

\[
\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

where \(G\) is an \(N \times N\) matrix with \(G_{mn} = y_m y_n x_m^\top x_n\), and \(1\) is a vector of 1s

- **Good news:** This is maximizing a concave function (or minimizing a convex function - verify that the Hessian is \(G\), which is p.s.d.). Note that our original primal SVM objective was also convex

- **Important:** Inputs \(x\)'s only appear as inner products (helps to “kernelize”)

- Can solve† the above objective function for \(\alpha\) using various methods, e.g.,
 - Treating the objective as a **Quadratic Program** (QP) and running some off-the-shelf QP solver such as quadprog (MATLAB), CVXOPT, CPLEX, etc.

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Solving Hard-Margin SVM

- Can write the objective more compactly in vector/matrix form as

\[
\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

where \(G \) is an \(N \times N \) matrix with \(G_{mn} = y_m y_n x_m^\top x_n \), and \(1 \) is a vector of 1s

- **Good news:** This is maximizing a concave function (or minimizing a convex function - verify that the Hessian is \(G \), which is p.s.d.). Note that our original primal SVM objective was also convex

- **Important:** Inputs \(x \)'s only appear as inner products (helps to "kernelize")

- Can solve\(^\dagger\) the above objective function for \(\alpha \) using various methods, e.g.,

 - Treating the objective as a Quadratic Program (QP) and running some off-the-shelf QP solver such as quadprog (MATLAB), CVXOPT, CPLEX, etc.

 - Using (projected) gradient methods (projection needed because the \(\alpha \)'s are constrained). Gradient methods will usually be much faster than QP methods.

\(^\dagger\) If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Once we have the α_n's, \mathbf{w} and b can be computed as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

$$b = -\frac{1}{2} \left(\min_{n:y_n=+1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n=-1} \mathbf{w}^T \mathbf{x}_n \right)$$
Hard-Margin SVM: The Solution

- Once we have the α_n's, w and b can be computed as:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

$$b = -\frac{1}{2} \left(\min_{n:y_n=+1} w^T x_n + \max_{n:y_n=-1} w^T x_n \right)$$

- **A nice property:** Most α_n's in the solution will be zero (sparse solution)

- Reason: Karush-Kuhn-Tucker (KKT) conditions
Hard-Margin SVM: The Solution

- Once we have the α_n's, w and b can be computed as:

 $$w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

 $$b = -\frac{1}{2} \left(\min_{n:y_n=+1} w^T x_n + \max_{n:y_n=-1} w^T x_n \right)$$

- **A nice property:** Most α_n's in the solution will be zero (sparse solution)

 - Reason: Karush-Kuhn-Tucker (KKT) conditions
 - For the optimal α_n's

 $$\alpha_n \{1 - y_n (w^T x_n + b)\} = 0$$
Hard-Margin SVM: The Solution

- Once we have the α_n’s, w and b can be computed as:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

$$b = -\frac{1}{2} \left(\min_{n:y_n=+1} w^T x_n + \max_{n:y_n=-1} w^T x_n \right)$$

- A nice property: Most α_n’s in the solution will be zero (sparse solution)

 - Reason: Karush-Kuhn-Tucker (KKT) conditions
 - For the optimal α_n’s

$$\alpha_n \{1 - y_n (w^T x_n + b)\} = 0$$

- α_n is non-zero only if x_n
Once we have the α_n’s, w and b can be computed as:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

$$b = -\frac{1}{2} \left(\min_{n:y_n=+1} w^T x_n + \max_{n:y_n=-1} w^T x_n \right)$$

A nice property: Most α_n’s in the solution will be zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal α_n’s

$$\alpha_n \{1 - y_n(w^T x_n + b)\} = 0$$

α_n is non-zero only if x_n lies on one of the two margin boundaries, i.e., for which $y_n(w^T x_n + b) = 1$
Once we have the α_n’s, w and b can be computed as:

$$ w = \sum_{n=1}^{N} \alpha_n y_n x_n $$

$$ b = -\frac{1}{2} \left(\min_{n:y_n=+1} w^T x_n + \max_{n:y_n=-1} w^T x_n \right) $$

A nice property: Most α_n’s in the solution will be zero (sparse solution)

- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_n’s

$$ \alpha_n \{1 - y_n (w^T x_n + b)\} = 0 $$

- α_n is non-zero only if x_n lies on one of the two margin boundaries, i.e., for which $y_n (w^T x_n + b) = 1$
- These examples are called support vectors
Hard-Margin SVM: The Solution

Once we have the α_n's, w and b can be computed as:

$$ w = \sum_{n=1}^{N} \alpha_n y_n x_n $$

$$ b = -\frac{1}{2} \left(\min_{n:y_n=+1} w^T x_n + \max_{n:y_n=-1} w^T x_n \right) $$

A nice property: Most α_n's in the solution will be zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal α_n's

$$ \alpha_n \{1 - y_n(w^T x_n + b)\} = 0 $$

α_n is non-zero only if x_n lies on one of the two margin boundaries, i.e., for which $y_n(w^T x_n + b) = 1$

These examples are called support vectors

Recall the support vectors “support” the margin boundaries
Solving Soft-Margin SVM
Recall the soft-margin SVM optimization problem:

\[
\min_{w, b, \xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to } 1 \leq y_n(w^T x_n + b) + \xi_n, \quad -\xi_n \leq 0 \quad n = 1, \ldots, N
\]

Note: \(\xi = [\xi_1, \ldots, \xi_N] \) is the vector of slack variables
Recall the soft-margin SVM optimization problem:

\[
\min_{w, b, \xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to } 1 \leq y_n(w^T x_n + b) + \xi_n, \quad -\xi_n \leq 0 \quad n = 1, \ldots, N
\]

Note: \(\xi = [\xi_1, \ldots, \xi_N] \) is the vector of slack variables

Introduce Lagrange Multipliers \(\alpha_n, \beta_n \) \((n = \{1, \ldots, N\})\), for constraints, and solve the Lagrangian:

\[
\min_{w, b, \xi} \max_{\alpha \geq 0, \beta \geq 0} \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]
Solving Soft-Margin SVM

- Recall the soft-margin SVM optimization problem:

\[
\min_{w,b,\xi} f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n
\]

subject to \[1 \leq y_n(w^T x_n + b) + \xi_n, \quad -\xi_n \leq 0 \quad n = 1, \ldots, N \]

Note: \(\xi = [\xi_1, \ldots, \xi_N] \) is the vector of slack variables

- Introduce Lagrange Multipliers \(\alpha_n, \beta_n \) \((n = \{1, \ldots, N\}) \), for constraints, and solve the Lagrangian:

\[
\min_{w,b,\xi} \max_{\alpha \geq 0, \beta \geq 0} \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]

Note: The terms in red above were not present in the hard-margin SVM
Solving Soft-Margin SVM

- Recall the soft-margin SVM optimization problem:

\[
\begin{align*}
\min_{w, b, \xi} & \quad f(w, b, \xi) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n \\
\text{subject to} & \quad 1 \leq y_n(w^T x_n + b) + \xi_n, \quad -\xi_n \leq 0 \quad n = 1, \ldots, N
\end{align*}
\]

Note: \(\xi = [\xi_1, \ldots, \xi_N]\) is the vector of slack variables

- Introduce Lagrange Multipliers \(\alpha_n, \beta_n\) \((n = \{1, \ldots, N\})\), for constraints, and solve the Lagrangian:

\[
\begin{align*}
\min_{w, b, \xi} \max_{\alpha \geq 0, \beta \geq 0} \quad L(w, b, \xi, \alpha, \beta) = \frac{||w||^2}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\end{align*}
\]

Note: The terms in red above were not present in the hard-margin SVM

- Two sets of dual variables \(\alpha = [\alpha_1, \ldots, \alpha_N]\) and \(\beta = [\beta_1, \ldots, \beta_N]\). We'll eliminate the primal variables \(w, b, \xi\) to get dual problem containing the dual variables (just like in the hard margin case)
Solving Soft-Margin SVM

- The Lagrangian problem to solve

\[
\min_{w, b, \xi} \max_{\alpha \geq 0, \beta \geq 0} \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{w^T w}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]
Solving Soft-Margin SVM

- The Lagrangian problem to solve

\[
\min_{w,b,\xi} \; \max_{\alpha \geq 0, \beta \geq 0} \quad \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{w^T w}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n (w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]

- Take (partial) derivatives of \(\mathcal{L} \) w.r.t. \(w, b, \xi_n \) and set them to zero

\[
\frac{\partial \mathcal{L}}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{n=1}^{N} \alpha_n y_n x_n,
\quad \frac{\partial \mathcal{L}}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} \alpha_n y_n = 0,
\quad \frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \quad \Rightarrow \quad C - \alpha_n - \beta_n = 0
\]
Solving Soft-Margin SVM

• The Lagrangian problem to solve

\[
\min_{w,b,\xi} \max_{\alpha,\beta \geq 0} \mathcal{L}(w,b,\xi,\alpha,\beta) = \frac{w^T w}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n (w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]

• Take (partial) derivatives of \(\mathcal{L} \) w.r.t. \(w, b, \xi_n \) and set them to zero

\[
\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} \alpha_n y_n x_n, \quad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0, \quad \frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0
\]

• Note: Solution of \(w \) again has the same form as in the hard-margin case (weighted sum of all inputs with \(\alpha_n \) being the importance of input \(x_n \))
Solving Soft-Margin SVM

- The Lagrangian problem to solve

\[
\min_{w,b,\xi} \max_{\alpha \geq 0, \beta \geq 0} \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{w^T w}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n (w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]

- Take (partial) derivatives of \(\mathcal{L} \) w.r.t. \(w, b, \xi_n \) and set them to zero

\[
\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} \alpha_n y_n x_n, \quad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0, \quad \frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0
\]

- Note: Solution of \(w \) again has the same form as in the hard-margin case (weighted sum of all inputs with \(\alpha_n \) being the importance of input \(x_n \))

- Note: Using \(C - \alpha_n - \beta_n = 0 \) and \(\beta_n \geq 0 \Rightarrow \alpha_n \leq C \) (recall that, for the hard-margin case, \(\alpha \geq 0 \))
Solving Soft-Margin SVM

The Lagrangian problem to solve

\[
\min_{w, b, \xi} \max_{\alpha \geq 0, \beta \geq 0} \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{w^T w}{2} + C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n
\]

Take (partial) derivatives of \(\mathcal{L}\) w.r.t. \(w, b, \xi_n\) and set them to zero

\[
\frac{\partial \mathcal{L}}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} \alpha_n y_n x_n, \quad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0, \quad \frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0
\]

Note: Solution of \(w\) again has the same form as in the hard-margin case (weighted sum of all inputs with \(\alpha_n\) being the importance of input \(x_n\))

Note: Using \(C - \alpha_n - \beta_n = 0\) and \(\beta_n \geq 0 \Rightarrow \alpha_n \leq C\) (recall that, for the hard-margin case, \(\alpha \geq 0\))

Substituting these in the Lagrangian \(\mathcal{L}\) gives the Dual problem

\[
\max_{\alpha \leq C, \beta \geq 0} \mathcal{L}_D(\alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n) \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]
Solving Soft-Margin SVM

- Interestingly, the dual variables β don’t appear in the objective!

\[\text{max} \quad \alpha \leq C \quad L D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \]
\[\text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0 \]

Where G is an $N \times N$ matrix with $G_{mn} = y_m y_n x^\top_m x_n$, and 1 is a vector of 1s.

Like hard-margin case, solving the dual requires concave maximization (or convex minimization). Can be solved the same way as hard-margin SVM (except that $\alpha \leq C$).

Can solve for α using QP solvers or (projected) gradient methods.

Given α, the solution for w, b has the same form as hard-margin case.

Note: α is again sparse. Nonzero α_n’s correspond to the support vectors.

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin.
Solving Soft-Margin SVM

- Interestingly, the dual variables β don’t appear in the objective!
- Just like the hard-margin case, we can write the dual more compactly as

$$\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0$$

where G is an $N \times N$ matrix with $G_{mn} = y_m y_n x_m^\top x_n$, and 1 is a vector of 1s.

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Solving Soft-Margin SVM

- Interestingly, the dual variables β don’t appear in the objective!
- Just like the hard-margin case, we can write the dual more compactly as

$$\max_{\alpha \leq C} L_D(\alpha) = \alpha^T 1 - \frac{1}{2} \alpha^T G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0$$

where G is an $N \times N$ matrix with $G_{mn} = y_m y_n x_m^T x_n$, and 1 is a vector of 1s
- Like hard-margin case, solving the dual requires concave maximization (or convex minimization)

\[^\dagger\text{If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin}\]
Solving Soft-Margin SVM

- Interestingly, the dual variables β don’t appear in the objective!
- Just like the hard-margin case, we can write the dual more compactly as

$$\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha$$

s.t. $\sum_{n=1}^{N} \alpha_n y_n = 0$

where G is an $N \times N$ matrix with $G_{mn} = y_m y_n x_m^\top x_n$, and 1 is a vector of 1s

- Like hard-margin case, solving the dual requires concave maximization (or convex minimization)
- Can be solved† the same way as hard-margin SVM (except that $\alpha \leq C$)
 - Can solve for α using QP solvers or (projected) gradient methods

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Solving Soft-Margin SVM

- Interestingly, the dual variables β don’t appear in the objective!
- Just like the hard-margin case, we can write the dual more compactly as
 \[
 \max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
 \]

 where G is an $N \times N$ matrix with $G_{mn} = y_m y_n x_m^\top x_n$, and 1 is a vector of 1s
- Like hard-margin case, solving the dual requires concave maximization (or convex minimization)
- Can be solved \dagger the same way as hard-margin SVM (except that $\alpha \leq C$)
 - Can solve for α using QP solvers or (projected) gradient methods
- Given α, the solution for w, b has the same form as hard-margin case

\dagger If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Solving Soft-Margin SVM

- Interestingly, the dual variables β don’t appear in the objective!
- Just like the hard-margin case, we can write the dual more compactly as

$$\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0$$

where \mathbf{G} is an $N \times N$ matrix with $G_{mn} = y_m y_n \mathbf{x}_m^\top \mathbf{x}_n$, and $\mathbf{1}$ is a vector of 1s
- Like hard-margin case, solving the dual requires concave maximization (or convex minimization)
- Can be solved† the same way as hard-margin SVM (except that $\alpha \leq C$)
 - Can solve for α using QP solvers or (projected) gradient methods
- Given α, the solution for \mathbf{w}, b has the same form as hard-margin case
- **Note:** α is again sparse. Nonzero α_n’s correspond to the support vectors

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - .. ones that lie on the margin boundaries $w^T x + b = -1$ and $w^T x + b = +1$

- The soft-margin SVM solution has three types of support vectors
 1. Lying on the margin boundaries $w^T x + b = -1$ and $w^T x + b = +1$ ($\xi_n = 0$)
 2. Lying within the margin region ($0 < \xi_n < 1$) but still on the correct side
 3. Lying on the wrong side of the hyperplane ($\xi_n \geq 1$)
Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - ones that lie on the margin boundaries $w^T x + b = -1$ and $w^T x + b = +1$

- The soft-margin SVM solution has three types of support vectors:
 1. Lying on the margin boundaries $w^T x + b = -1$ and $w^T x + b = +1$ ($\xi_n = 0$)
 2. Lying within the margin region ($0 < \xi_n < 1$) but still on the correct side
 3. Lying on the wrong side of the hyperplane ($\xi_n \geq 1$)
Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - .. ones that lie on the margin boundaries $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = +1$

- The soft-margin SVM solution has three types of support vectors
 1. Lying on the margin boundaries $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = +1$ ($\xi_n = 0$)
 2. Lying within the margin region ($0 < \xi_n < 1$) but still on the correct side
 3. Lying on the wrong side of the hyperplane ($\xi_n \geq 1$)

- Lying on the margin boundaries $\mathbf{w}^T \mathbf{x} + b = -1$ and $\mathbf{w}^T \mathbf{x} + b = +1$ ($\xi_n = 0$)
Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - ones that lie on the margin boundaries \(w^T x + b = -1 \) and \(w^T x + b = +1 \)

- The soft-margin SVM solution has three types of support vectors
 1. Lying on the margin boundaries \(w^T x + b = -1 \) and \(w^T x + b = +1 \) (\(\xi_n = 0 \))
 2. Lying within the margin region (\(0 < \xi_n < 1 \)) but still on the correct side

Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - ones that lie on the margin boundaries $w^T x + b = -1$ and $w^T x + b = +1$

- The soft-margin SVM solution has three types of support vectors

1. Lying on the margin boundaries $w^T x + b = -1$ and $w^T x + b = +1$ ($\xi_n = 0$)
2. Lying within the margin region ($0 < \xi_n < 1$) but still on the correct side
3. Lying on the wrong side of the hyperplane ($\xi_n \geq 1$)
Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM:

\[\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha \]

subject to

\[\sum_{n=1}^{N} \alpha_n y_n = 0 \]

Soft-Margin SVM:

\[\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha \]

subject to

\[\sum_{n=1}^{N} \alpha_n y_n = 0 \]

† See: “Support Vector Machine Solvers” by Bottou and Lin
Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM:
\[
\max_{\alpha \geq 0} \quad \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top G \alpha \\
\text{s.t.} \quad \sum_{n=1}^N \alpha_n y_n = 0
\]

Soft-Margin SVM:
\[
\max_{\alpha \leq C} \quad \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top G \alpha \\
\text{s.t.} \quad \sum_{n=1}^N \alpha_n y_n = 0
\]

The dual formulation is nice due to two primary reasons:

- Allows conveniently handling the margin based constraint (via Lagrangians). The dual problem has only one constraint that is non-trivial \((\sum_{n=1}^N \alpha_n y_n = 0)\). The original Primal formulation of SVM had many more (depends on \(N\)).

\[†\] See: “Support Vector Machine Solvers” by Bottou and Lin
Recall the final dual objectives for hard-margin and soft-margin SVM:

Hard-Margin SVM:
\[
\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

Soft-Margin SVM:
\[
\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top 1 - \frac{1}{2} \alpha^\top G \alpha \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

The dual formulation is nice due to two primary reasons:

- Allows conveniently handling the margin based constraint (via Lagrangians). The dual problem has **only one constraint that is non-trivial** \((\sum_{n=1}^{N} \alpha_n y_n = 0)\). The original Primal formulation of SVM had many more (depends on \(N\)).

- **Important:** Allows learning nonlinear separators by replacing inner products (e.g., \(G_{mn} = y_m y_n x_m^\top x_n\)) by kernelized similarities (kernelized SVMs)

\[†\] See: “Support Vector Machine Solvers” by Bottou and Lin
Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM:
\[
\max_{\alpha \geq 0} \quad L_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top G \alpha \\
\text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

Soft-Margin SVM:
\[
\max_{\alpha \leq C} \quad L_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top G \alpha \\
\text{s.t.} \quad \sum_{n=1}^{N} \alpha_n y_n = 0
\]

The dual formulation is nice due to two primary reasons:

- Allows conveniently handling the margin based constraint (via Lagrangians). The dual problem has only one constraint that is non-trivial \((\sum_{n=1}^{N} \alpha_n y_n = 0)\). The original Primal formulation of SVM had many more (depends on \(N\)).

- **Important:** Allows learning nonlinear separators by replacing inner products (e.g., \(G_{mn} = y_m y_n x_m^\top x_n\)) by kernelized similarities (kernelized SVMs)

- However, the dual formulation can be expensive if \(N\) is large. Have to solve for \(N\) variables \(\alpha = [\alpha_1, \ldots, \alpha_N]\), and also need to store an \(N \times N\) matrix \(G\)

† See: “Support Vector Machine Solvers” by Bottou and Lin
SVMs via Dual Formulation: Some Comments

- Recall the final dual objectives for hard-margin and soft-margin SVM

<table>
<thead>
<tr>
<th>Hard-Margin SVM:</th>
<th>max (\alpha \geq 0) (\mathcal{L}D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha) s.t. (\sum{n=1}^{N} \alpha_n y_n = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft-Margin SVM:</td>
<td>max (\alpha \leq C) (\mathcal{L}D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha) s.t. (\sum{n=1}^{N} \alpha_n y_n = 0)</td>
</tr>
</tbody>
</table>

- The dual formulation is nice due to two primary reasons:
 - Allows conveniently handling the margin based constraint (via Lagrangians). The dual problem has only one constraint that is non-trivial \(\sum_{n=1}^{N} \alpha_n y_n = 0 \). The original Primal formulation of SVM had many more (depends on \(N \)).
 - Important: Allows learning nonlinear separators by replacing inner products (e.g., \(G_{mn} = y_m y_n x_m^\top x_n \)) by kernelized similarities (kernelized SVMs)

- However, the dual formulation can be expensive if \(N \) is large. Have to solve for \(N \) variables \(\alpha = [\alpha_1, \ldots, \alpha_N] \), and also need to store an \(N \times N \) matrix \(\mathbf{G} \)

- A lot of work\(^\dagger\) has gone into speeding up optimization in these settings

\(^\dagger\) See: “Support Vector Machine Solvers” by Bottou and Lin
Convex Hull Interpretation\(^\dagger\): Solving the SVM dual is equivalent to finding the shortest line connecting the convex hulls of both classes (the SVM’s hyperplane will be the perpendicular bisector of this line)

\(^\dagger\) See: “Duality and Geometry in SVM Classifiers” by Bennett and Bredensteiner
Recall, we want for each training example: \(y_n(w^T x_n + b) \geq 1 - \xi_n \)
Loss Function Minimization View of SVM

- Recall, we want for each training example: $y_n(w^T x_n + b) \geq 1 - \xi_n$
- Can think of our loss as basically the sum of the slacks $\xi_n \geq 0$, which is

\[
\ell(w, b) = \sum_{n=1}^{N} \ell_n(w, b) = \sum_{n=1}^{N} \xi_n = \sum_{n=1}^{N} \max\{0, 1 - y_n(w^T x_n + b)\}
\]
Loss Function Minimization View of SVM

- Recall, we want for each training example: \(y_n(w^T x_n + b) \geq 1 - \xi_n \)
- Can think of our loss as basically the sum of the slacks \(\xi_n \geq 0 \), which is

\[
\ell(w, b) = \sum_{n=1}^{N} \ell_n(w, b) = \sum_{n=1}^{N} \xi_n = \sum_{n=1}^{N} \max\{0, 1 - y_n(w^T x_n + b)\}
\]

- This is called "Hinge Loss". Can also learn SVMs by minimizing this loss via stochastic sub-gradient descent (can also add a regularizer on \(w \), e.g., \(\ell_2 \))
Recall, we want for each training example:
\[y_n(w^T x_n + b) \geq 1 - \xi_n \]

Can think of our loss as basically the sum of the slacks \(\xi_n \geq 0 \), which is

\[
\ell(w, b) = \sum_{n=1}^{N} \ell_n(w, b) = \sum_{n=1}^{N} \xi_n = \sum_{n=1}^{N} \max\{0, 1 - y_n(w^T x_n + b)\}
\]

This is called “Hinge Loss”. Can also learn SVMs by minimizing this loss via stochastic sub-gradient descent (can also add a regularizer on \(w \), e.g., \(\ell_2 \))

Recall that, Perceptron also minimizes a sort of similar loss function

\[
\ell(w, b) = \sum_{n=1}^{N} \ell_n(w, b) = \sum_{n=1}^{N} \max\{0, -y_n(w^T x_n + b)\}
\]
Loss Function Minimization View of SVM

- Recall, we want for each training example: \(y_n(w^T x_n + b) \geq 1 - \xi_n \)
- Can think of our loss as basically the sum of the slacks \(\xi_n \geq 0 \), which is

\[
\ell(w, b) = \sum_{n=1}^{N} \ell_n(w, b) = \sum_{n=1}^{N} \xi_n = \sum_{n=1}^{N} \max\{0, 1 - y_n(w^T x_n + b)\}
\]

- This is called “Hinge Loss”. Can also learn SVMs by minimizing this loss via stochastic sub-gradient descent (can also add a regularizer on \(w \), e.g., \(\ell_2 \))

- Recall that, Perceptron also minimizes a sort of similar loss function

\[
\ell(w, b) = \sum_{n=1}^{N} \ell_n(w, b) = \sum_{n=1}^{N} \max\{0, 1 - y_n(w^T x_n + b)\}
\]

- Perceptron, SVM, Logistic Reg., all minimize convex approximations of the 0-1 loss (optimizing which is NP-hard; moreover it’s non-convex/non-smooth)
SVM: Some Notes

- A hugely (perhaps the most!) popular classification algorithm
- Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is more popular than various other competing algorithms)
 - Some popular ones: libSVM, LIBLINEAR, SVMStruct, Vowpal Wabbit, etc.
- Lots of work on scaling up SVMs† (both large \(N \) and large \(D \))
- Extensions beyond binary classification (e.g., multiclass, structured outputs)
- Can even be used for regression problems (Support Vector Regression)
- Nonlinear extensions possible via kernels

† See: “Support Vector Machine Solvers” by Bottou and Lin