Learning by Asking Questions: Decision Trees

Piyush Rai

Machine Learning (CS771A)

Aug 5, 2016
A Classification Problem

Indoor or Outdoor?

Predicting by Asking Questions

How can we learn this tree using labeled training data?

Pic credit: “Decision Forests: A Unified Framework” by Criminisi et al
Predicting by Asking Questions

How can we learn this tree using labeled training data?

Pic credit: “Decision Forests: A Unified Framework” by Criminisi et al
Decision Tree

- Defined by a hierarchy of rules (in form of a tree)

- Rules form the internal nodes of the tree (topmost internal node = root)

- Each internal node tests the value of some feature and “splits” data across the outgoing branches

Decision Tree

- Defined by a hierarchy of rules (in form of a tree)

- Rules form the **internal nodes** of the tree (topmost internal node = root)

- Each internal node tests the value of some feature and “splits” data across the outgoing branches

- Note: The tree need not be a binary tree

Decision Tree

- Defined by a hierarchy of rules (in form of a tree)

- Rules form the **internal nodes** of the tree (topmost internal node = root)
- Each internal node tests the value of some feature and “splits” data across the outgoing branches
- Note: The tree need not be a binary tree
- (Labeled) Training data is used to construct the Decision Tree\(^1\) (DT)

\(^1\) Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees
Decision Tree

- Defined by a hierarchy of rules (in form of a tree)
- Rules form the internal nodes of the tree (topmost internal node = root)
- Each internal node tests the value of some feature and “splits” data across the outgoing branches
- Note: The tree need not be a binary tree
- (Labeled) Training data is used to construct the Decision Tree\(^1\) (DT)
- The DT can then be used to predict label \(y\) of a test example \(x\)

\(^1\) Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees
Decision Tree: An Example

- Identifying the region - blue or green - a point lies in (binary classification)
 - Each point has 2 features: its co-ordinates \(\{x_1, x_2\} \) on the 2D plane
 - Left: Training data, Right: A DT constructed using this data

![Decision Tree Diagram](image-url)
Decision Tree: An Example

- Identifying the region - blue or green - a point lies in (binary classification)
 - Each point has 2 features: its co-ordinates \(\{x_1, x_2\} \) on the 2D plane
 - Left: Training data, Right: A DT constructed using this data

The DT can be used to predict the region (blue/green) of a new test point
 - By testing the features of the test point
 - In the order defined by the DT (first \(x_2 \) and then \(x_1 \))
Decision Tree: Another Example

- Deciding whether to play or not to play Tennis on a Saturday
 - A binary classification problem (play vs no-play)
 - Each input (a Saturday) has 4 features: Outlook, Temp., Humidity, Wind
Decision Tree: Another Example

- Deciding whether to play or not to play Tennis on a Saturday
 - A binary classification problem (play vs no-play)
 - Each input (a Saturday) has 4 features: Outlook, Temp., Humidity, Wind
 - Left: Training data, Right: A decision tree constructed using this data

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>
Decision Tree: Another Example

- Deciding whether to play or not to play Tennis on a Saturday
 - A binary classification problem (play vs no-play)
 - Each input (a Saturday) has 4 features: Outlook, Temp., Humidity, Wind
 - Left: Training data, Right: A decision tree constructed using this data

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

- The DT can be used to predict play vs no-play for a new Saturday
 - By testing the features of that Saturday
 - In the order defined by the DT

Pic credit: Tom Mitchell
Decision Tree Construction

- Now let’s look at the playing Tennis example

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

- Question: Why does it make more sense to test the feature “outlook” first?
Now let’s look at the playing Tennis example

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

Question: Why does it make more sense to test the feature “outlook” first?

Answer: Of all the 4 features, it’s most informative
Now let’s look at the playing Tennis example

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

Question: Why does it make more sense to test the feature “outlook” first?

Answer: Of all the 4 features, it’s most informative

We will see shortly how to quantity the informativeness
Now let’s look at the playing Tennis example

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

Question: Why does it make more sense to test the feature “outlook” first?

Answer: Of all the 4 features, it’s most informative

We will see shortly how to quantity the informativeness

Analogy: Playing the game 20 Questions (the most useful questions first)
Entropy

- **Entropy** is a measure of **randomness/uncertainty** of a set.

Assume our data is a set S of examples with C many classes. p_c is the probability that a random element of S belongs to class c. Basically, the fraction of elements of S belonging to class c.

The probability vector $p = [p_1, p_2, \ldots, p_C]$ is the class distribution of the set S.

The entropy of the set S is:

$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

If a set S of examples (or any subset of it) has...

- Some dominant classes → small entropy of the class distribution.
- Equiprobable classes → high entropy of the class distribution.

We can assess informativeness of each feature by looking at how much it reduces the entropy of the class distribution.
Entropy

- **Entropy** is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
Entropy

- **Entropy** is a measure of *randomness/uncertainty* of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - .. basically, the fraction of elements of S belonging to class c
Entropy

- **Entropy** is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - .. basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \ldots, p_C]$ is the class distribution of the set S
Entropy

- **Entropy** is a measure of *randomness/uncertainty* of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - .. basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \ldots, p_C]$ is the *class distribution* of the set S
- Entropy of the set S

$$H(S) = - \sum_{c \in C} p_c \log_2 p_c$$
Entropy

- **Entropy** is a measure of *randomness/uncertainty* of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - .. basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \ldots, p_C]$ is the *class distribution* of the set S
- Entropy of the set S
 \[
 H(S) = -\sum_{c \in C} p_c \log_2 p_c
 \]
- If a set S of examples (or any subset of it) has..
 - Some dominant classes \implies small entropy of the class distribution
Entropy

- **Entropy** is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - .. basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \ldots, p_C]$ is the class distribution of the set S
- Entropy of the set S

 \[H(S) = - \sum_{c \in C} p_c \log_2 p_c \]
- If a set S of examples (or any subset of it) has..
 - Some dominant classes \implies small entropy of the class distribution
 - Equiprobable classes \implies high entropy of the class distribution
Entropy

- **Entropy** is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - .. basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \ldots , p_C]$ is the class distribution of the set S
- Entropy of the set S
 \[H(S) = -\sum_{c \in C} p_c \log_2 p_c \]
- If a set S of examples (or any subset of it) has..
 - Some dominant classes \implies small entropy of the class distribution
 - Equiprobable classes \implies high entropy of the class distribution
- We can assess informativeness of each feature by looking at how much it reduces the entropy of the class distribution
Information Gain

- Let’s assume each element of S has a set of features.
- **Information Gain** (IG) on knowing the value of some feature $'F'$.

\[
IG(S, F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)
\]

- S_f denotes the subset of elements of S for which feature F has value f.

Let’s assume each element of S has a set of features.

Information Gain (IG) on knowing the value of some feature F.

$$IG(S, F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

- S_f denotes the subset of elements of S for which feature F has value f.
- $IG(S, F) =$ entropy of S minus the weighted sum of entropy of its children.
Information Gain

- Let’s assume each element of S has a set of features
- Information Gain (IG) on knowing the value of some feature 'F'

\[
IG(S, F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)
\]

- S_f denotes the subset of elements of S for which feature F has value f
- $IG(S, F) = \text{entropy of } S \text{ minus the weighted sum of entropy of its children}$
- $IG(S, F)$: Increase in our certainty about S once we know the value of F
Information Gain

- Let’s assume each element of S has a set of features
- Information Gain (IG) on knowing the value of some feature 'F'

$$IG(S, F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

S_f denotes the subset of elements of S for which feature F has value f
- $IG(S, F) = \text{entropy of } S \text{ minus the weighted sum of entropy of its children}$
- $IG(S, F)$: Increase in our certainty about S once we know the value of F
- $IG(S, F)$ denotes the no. of bits saved while encoding S once we know the value of the feature F
Assume we have a 4-class problem. Each point has 2 features.
Entropy and Information Gain: Pictorially

Assume we have a 4-class problem. Each point has 2 features.
Which feature should we test (i.e., split on) first?

Entropy and Information Gain: Pictorially

Assume we have a 4-class problem. Each point has 2 features.
Which feature should we test (i.e., split on) first?

Entropy and Information Gain: Pictorially

Assume we have a 4-class problem. Each point has 2 features. Which feature should we test (i.e., split on) first?

Pic credit: “Decision Forests: A Unified Framework” by Criminisi et al
Computing Information Gain

- Coming back to playing tennis..
- Let’s begin with the root node of the DT and compute IG of each feature
- Consider feature "wind" $\in \{\text{weak, strong}\}$ and its IG w.r.t. the root node

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>
Computing Information Gain

Coming back to playing tennis..

Let’s begin with the root node of the DT and compute IG of each feature

Consider feature “wind” $\in \{\text{weak}, \text{strong}\}$ and its IG w.r.t. the root node

Root node: $S = [9+, 5-]$ (all training data: 9 play, 5 no-play)

Entropy: $H(S) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.94$
Computing Information Gain

- Coming back to playing tennis..
- Let’s begin with the root node of the DT and compute IG of each feature
- Consider feature “wind” $\in \{\text{weak}, \text{strong}\}$ and its IG w.r.t. the root node

Root node: $S = [9+, 5-]$ (all training data: 9 play, 5 no-play)
- Entropy: $H(S) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.94$
- $S_{\text{weak}} = [6+, 2-] \implies H(S_{\text{weak}}) = 0.811$
Computing Information Gain

- Coming back to playing tennis..
- Let’s begin with the root node of the DT and compute IG of each feature
- Consider feature “wind” ∈ \{weak, strong\} and its IG w.r.t. the root node

Root node: \(S = [9+, 5–] \) (all training data: 9 play, 5 no-play)
Entropy: \(H(S) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.94 \)
\(S_{\text{weak}} = [6+, 2–] \implies H(S_{\text{weak}}) = 0.811 \)
\(S_{\text{strong}} = [3+, 3–] \implies H(S_{\text{strong}}) = 1 \)
Computing Information Gain

- Coming back to playing tennis..
- Let’s begin with the root node of the DT and compute IG of each feature
- Consider feature “wind” $\in \{\text{weak, strong}\}$ and its IG w.r.t. the root node

Root node: $S = [9+, 5-]$ (all training data: 9 play, 5 no-play)
Entropy: $H(S) = -(9/14) \log_2 (9/14) - (5/14) \log_2 (5/14) = 0.94$
$S_{\text{weak}} = [6+, 2-] \implies H(S_{\text{weak}}) = 0.811$
$S_{\text{strong}} = [3+, 3-] \implies H(S_{\text{strong}}) = 1$

$$IG(S, \text{wind}) = H(S) - \frac{|S_{\text{weak}}|}{|S|} H(S_{\text{weak}}) - \frac{|S_{\text{strong}}|}{|S|} H(S_{\text{strong}})$$
$$= 0.94 - 8/14 \times 0.811 - 6/14 \times 1$$
$$= 0.048$$
Choosing the most informative feature

- At the root node, the information gains are:
 - $IG(S, \text{wind}) = 0.048$ (we already saw)
 - $IG(S, \text{outlook}) = 0.246$
 - $IG(S, \text{humidity}) = 0.151$
 - $IG(S, \text{temperature}) = 0.029$
Choosing the most informative feature

- At the root node, the information gains are:
 - $IG(S, \text{wind}) = 0.048$ (we already saw)
 - $IG(S, \text{outlook}) = 0.246$
 - $IG(S, \text{humidity}) = 0.151$
 - $IG(S, \text{temperature}) = 0.029$
- “outlook” has the maximum $IG \implies$ chosen as the root node
Choosing the most informative feature

- At the root node, the information gains are:
 - $IG(S, \text{wind}) = 0.048$ (we already saw)
 - $IG(S, \text{outlook}) = 0.246$
 - $IG(S, \text{humidity}) = 0.151$
 - $IG(S, \text{temperature}) = 0.029$

- “outlook” has the maximum $IG \implies$ chosen as the root node
Growing The Tree

• How to decide which feature to test next?

Rule:
Iterate - for each child node, select the feature with the highest IG

For level-2, left node:
\[S = \{2+, 3-\} \] (days 1, 2, 8, 9, 11)

Compute the Information Gain for each feature (except outlook)
The feature with the highest Information Gain should be chosen for this node.
Growing The Tree

- How to decide which feature to test next?
- **Rule:** Iterate - for each child node, select the feature with the highest IG

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>
Growing The Tree

- How to decide which feature to test next?
- **Rule:** Iterate - for each child node, select the feature with the highest IG

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

- For level-2, left node: \(S = [2+, 3-] \) (days 1,2,8,9,11)
- Compute the Information Gain for each feature (except **outlook**)

Machine Learning (CS771A)
Learning by Asking Questions: Decision Trees
Growing The Tree

- How to decide which feature to test next?
 - **Rule:** Iterate - for each child node, select the feature with the highest IG

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

For level-2, left node: \(S = [2+, 3–] \) (days 1, 2, 8, 9, 11)

- Compute the Information Gain for each feature (except **outlook**)
- The feature with the highest Information Gain should be chosen for this node
Growing The Tree

For this node \((S = [2+, 3-])\), the IG for the feature temperature:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot}, \text{mild}, \text{cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

\[
S = [2+, 3-] = \Rightarrow H(S) = -\frac{2}{5} \times \log_2 \left(\frac{2}{5}\right) - \frac{3}{5} \times \log_2 \left(\frac{3}{5}\right) = 0.971
\]

\[
S_{\text{hot}} = [0+, 2-] = \Rightarrow H(S_{\text{hot}}) = -0 \times \log_2 (0) - \frac{2}{2} \times \log_2 \left(\frac{2}{2}\right) = 0
\]

\[
S_{\text{mild}} = [1+, 1-] = \Rightarrow H(S_{\text{mild}}) = -\frac{1}{2} \times \log_2 \left(\frac{1}{2}\right) - \frac{1}{2} \times \log_2 \left(\frac{1}{2}\right) = 1
\]

\[
S_{\text{cool}} = [1+, 0-] = \Rightarrow H(S_{\text{cool}}) = -\frac{1}{1} \times \log_2 \left(\frac{1}{1}\right) - \frac{0}{1} \times \log_2 \left(\frac{0}{1}\right) = 0
\]

\[
IG(S, \text{temperature}) = 0.971 - 2/5 \times 0 - 3/5 \times 1 - 1/5 \times 0 = 0.570
\]

Likewise we can compute:

\[
IG(S, \text{humidity}) = 0.970, \quad IG(S, \text{wind}) = 0.019
\]

Therefore, we choose “humidity” (with highest \(IG = 0.970\)) for the level-2 left node.
Growing The Tree

For this node \(S = [2+, 3-] \), the \(IG \) for the feature \textbf{temperature}:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot, mild, cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

\(S = [2+, 3-] \implies H(S) = -(2/5) \log_2(2/5) - (3/5) \log_2(3/5) = 0.971 \)
Growing The Tree

For this node \((S = [2+, 3-])\), the IG for the feature temperature:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot, mild, cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

\(S = [2+, 3-] \implies H(S) = -(2/5) \cdot \log_2(2/5) - (3/5) \cdot \log_2(3/5) = 0.971\)

\(S_{\text{hot}} = [0+, 2-] \implies H(S_{\text{hot}}) = -0 \cdot \log_2(0) - (2/2) \cdot \log_2(2/2) = 0\)
For this node \((S = [2+, 3-])\), the IG for the feature temperature:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot, mild, cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

\(S = [2+, 3-] \implies H(S) = -(2/5) \times \log_2(2/5) - (3/5) \times \log_2(3/5) = 0.971
\)

\(S_{\text{hot}} = [0+, 2-] \implies H(S_{\text{hot}}) = -0 \times \log_2(0) - (2/2) \times \log_2(2/2) = 0
\)

\(S_{\text{mild}} = [1+, 1-] \implies H(S_{\text{mild}}) = -(1/2) \times \log_2(1/2) - (1/2) \times \log_2(1/2) = 1
\)
For this node \((S = [2+, 3-])\), the IG for the feature temperature:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot}, \text{mild}, \text{cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

- \(S = [2+, 3-] \implies H(S) = -(2/5) \times \log_2(2/5) - (3/5) \times \log_2(3/5) = 0.971\)
- \(S_{\text{hot}} = [0+, 2-] \implies H(S_{\text{hot}}) = -0 \times \log_2(0) - (2/2) \times \log_2(2/2) = 0\)
- \(S_{\text{mild}} = [1+, 1-] \implies H(S_{\text{mild}}) = -(1/2) \times \log_2(1/2) - (1/2) \times \log_2(1/2) = 1\)
- \(S_{\text{cool}} = [1+, 0-] \implies H(S_{\text{cool}}) = -(1/1) \times \log_2(1/1) - (0/1) \times \log_2(0/1) = 0\)
For this node \((S = [2+, 3-])\), the \(IG\) for the feature \(\text{temperature}\):

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot, mild, cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

- \(S = [2+, 3-] \Rightarrow H(S) = -(2/5) \times \log_2(2/5) - (3/5) \times \log_2(3/5) = 0.971\)
- \(S_{\text{hot}} = [0+, 2-] \Rightarrow H(S_{\text{hot}}) = -0 \times \log_2(0) - (2/2) \times \log_2(2/2) = 0\)
- \(S_{\text{mild}} = [1+, 1-] \Rightarrow H(S_{\text{mild}}) = -(1/2) \times \log_2(1/2) - (1/2) \times \log_2(1/2) = 1\)
- \(S_{\text{cool}} = [1+, 0-] \Rightarrow H(S_{\text{cool}}) = -(1/1) \times \log_2(1/1) - (0/1) \times \log_2(0/1) = 0\)
- \(IG(S, \text{temperature}) = 0.971 - 2/5 \times 0 - 2/5 \times 1 - 1/5 \times 0 = 0.570\)
Growing The Tree

For this node \((S = [2+, 3-])\), the IG for the feature temperature:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot}, \text{mild}, \text{cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

\(S = [2+, 3-] \implies H(S) = -(2/5) \times \log_2(2/5) - (3/5) \times \log_2(3/5) = 0.971\)

\(S_{\text{hot}} = [0+, 2-] \implies H(S_{\text{hot}}) = -0 \times \log_2(0) - (2/2) \times \log_2(2/2) = 0\)

\(S_{\text{mild}} = [1+, 1-] \implies H(S_{\text{mild}}) = -(1/2) \times \log_2(1/2) - (1/2) \times \log_2(1/2) = 1\)

\(S_{\text{cool}} = [1+, 0-] \implies H(S_{\text{cool}}) = -(1/1) \times \log_2(1/1) - (0/1) \times \log_2(0/1) = 0\)

\(IG(S, \text{temperature}) = 0.971 - 2/5 \times 0 - 2/5 \times 1 - 1/5 \times 0 = 0.570\)

Likewise we can compute: \(IG(S, \text{humidity}) = 0.970\), \(IG(S, \text{wind}) = 0.019\)
Growing The Tree

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

For this node \((S = [2+, 3–])\), the \(IG\) for the feature \textit{temperature}:

\[
IG(S, \text{temperature}) = H(S) - \sum_{v \in \{\text{hot, mild, cool}\}} \frac{|S_v|}{|S|} H(S_v)
\]

\(S = [2+, 3–] \implies H(S) = -(2/5) \ast \log_2(2/5) - (3/5) \ast \log_2(3/5) = 0.971\)

\(S_{\text{hot}} = [0+, 2–] \implies H(S_{\text{hot}}) = -0 \ast \log_2(0) - (2/2) \ast \log_2(2/2) = 0\)

\(S_{\text{mild}} = [1+, 1–] \implies H(S_{\text{mild}}) = -(1/2) \ast \log_2(1/2) - (1/2) \ast \log_2(1/2) = 1\)

\(S_{\text{cool}} = [1+, 0–] \implies H(S_{\text{cool}}) = -(1/1) \ast \log_2(1/1) - (0/1) \ast \log_2(0/1) = 0\)

\(IG(S, \text{temperature}) = 0.971 - 2/5 \ast 0 - 2/5 \ast 1 - 1/5 \ast 0 = 0.570\)

Likewise we can compute: \(IG(S, \text{humidity}) = 0.970\), \(IG(S, \text{wind}) = 0.019\)

Therefore, we choose “humidity” (with highest \(IG = 0.970\)) for the level-2 left node.
Growing The Tree

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

Level-2, middle node: no need to grow (already a leaf)

Level-2, right node: repeat the same exercise!

Compute IG for each feature (except outlook)

Exercise: Verify that wind has the highest IG for this node

Level-2 expansion gives us the following tree:

```
  Outlook
    /   \
   Sun    Overcast
  /   \      /   \
 Sun   Overcast Rule
 / \    / \     / \  
Yes Yes ? ?
```

Which attribute should be tested here?
Growing The Tree

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

- Level-2, middle node: no need to grow (already a leaf)

Compute IG for each feature (except outlook)

Exercise: Verify that wind has the highest IG for this node

Level-2 expansion gives us the following tree:

Which attribute should be tested here?
Growing The Tree

- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>
Growing The Tree

- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!
 - Compute IG for each feature (except outlook)
Growing The Tree

- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!
 - Compute IG for each feature (except outlook)
 - Exercise: Verify that wind has the highest IG for this node
Growing The Tree

- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!
 - Compute IG for each feature (except outlook)
 - Exercise: Verify that wind has the highest IG for this node
- Level-2 expansion gives us the following tree:
Growing The Tree: Stopping Criteria

- It consists of examples all having the same label (the node becomes "pure").
- We run out of features to test!
Growing The Tree: Stopping Criteria

- Stop expanding a node further when:

<table>
<thead>
<tr>
<th>day</th>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rain</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>
Growing The Tree: Stopping Criteria

Stop expanding a node further when:

- It consist of examples all having the same label (the node becomes “pure”)
Growing The Tree: Stopping Criteria

- Stop expanding a node further when:
 - It consist of examples all having the same label (the node becomes “pure”)
 - Or we run out of features to test!
Decision Tree Learning Algorithm

A recursive algorithm:

\[\text{DT}(\text{Examples, Labels, Features}): \]

If all examples are positive, return a single node tree Root with label = +

If all examples are negative, return a single node tree Root with label = -

If all features exhausted, return a single node tree Root with majority label

Otherwise, let \(F \) be the feature having the highest information gain

Root $\leftarrow F$

For each possible value \(f \) of \(F \)

Add a tree branch below Root corresponding to the test \(F = f \)

Let \(\text{Examples}_f \) be the set of examples with feature \(F \) having value \(f \)

Let \(\text{Labels}_f \) be the corresponding labels

If \(\text{Examples}_f \) is empty, add a leaf node below this branch with label = most common label in \(\text{Examples} \)

Otherwise, add the following subtree below this branch:

\[\text{DT}(\text{Examples}_f, \text{Labels}_f, \text{Features} - \{ F \}) \]

Note: \(\text{Features} - \{ F \} \) removes feature \(F \) from the feature set
Decision Tree Learning Algorithm

A recursive algorithm:
\[\text{DT}(\text{Examples}, \text{Labels}, \text{Features}) : \]
- If all examples are positive, return a single node tree \emph{Root} with label $= +$
Decision Tree Learning Algorithm

A recursive algorithm:

\[\text{DT(Examples, Labels, Features):} \]

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
Decision Tree Learning Algorithm

A recursive algorithm:
\[
\text{DT}(\text{Examples, Labels, Features}) : \\
\quad \text{If all examples are positive, return a single node tree } \text{Root} \text{ with label } = + \\
\quad \text{If all examples are negative, return a single node tree } \text{Root} \text{ with label } = - \\
\quad \text{If all features exhausted, return a single node tree } \text{Root} \text{ with majority label}
\]
Decision Tree Learning Algorithm

A recursive algorithm:
\[\text{DT}(\text{Examples, Labels, Features}) : \]
- If all examples are positive, return a single node tree \(\text{Root} \) with label \(= + \)
- If all examples are negative, return a single node tree \(\text{Root} \) with label \(= - \)
- If all features exhausted, return a single node tree \(\text{Root} \) with majority label
- Otherwise, let \(F \) be the feature having the highest information gain
 - \(\text{Root} \leftarrow F \)
Decision Tree Learning Algorithm

A recursive algorithm:
\[\text{DT}(\text{Examples}, \text{Labels}, \text{Features}) : \]
- If all examples are positive, return a single node tree \(\text{Root} \) with label \(= + \)
- If all examples are negative, return a single node tree \(\text{Root} \) with label \(= - \)
- If all features exhausted, return a single node tree \(\text{Root} \) with majority label
- Otherwise, let \(F \) be the feature having the highest information gain
 - \(\text{Root} \leftarrow F \)
- For each possible value \(f \) of \(F \)
Decision Tree Learning Algorithm

A recursive algorithm:

\[DT(\text{Examples, Labels, Features}) : \]

- If all examples are positive, return a single node tree \(\text{Root} \) with label = +
- If all examples are negative, return a single node tree \(\text{Root} \) with label = -
- If all features exhausted, return a single node tree \(\text{Root} \) with majority label
- Otherwise, let \(F \) be the feature having the highest information gain
 - \(\text{Root} \leftarrow F \)
 - For each possible value \(f \) of \(F \)
 - Add a tree branch below \(\text{Root} \) corresponding to the test \(F = f \)

Note: \(\text{Features} - \{F\} \) removes feature \(F \) from the feature set.
Decision Tree Learning Algorithm

A recursive algorithm:

\[DT(Examples, Labels, Features): \]
- If all examples are positive, return a single node tree \(Root \) with label = +
- If all examples are negative, return a single node tree \(Root \) with label = -
- If all features exhausted, return a single node tree \(Root \) with majority label
- Otherwise, let \(F \) be the feature having the highest information gain
 - \(Root \) ← \(F \)
 - For each possible value \(f \) of \(F \)
 - Add a tree branch below \(Root \) corresponding to the test \(F = f \)
 - Let \(Examples_f \) be the set of examples with feature \(F \) having value \(f \)
 - Let \(Labels_f \) be the corresponding labels

Note: \(Features - \{ F \} \) removes feature \(F \) from the feature set
Decision Tree Learning Algorithm

A recursive algorithm:
\(\text{DT(Examples, Labels, Features)}: \)

- If all examples are positive, return a single node tree \(\text{Root} \) with label = +
- If all examples are negative, return a single node tree \(\text{Root} \) with label = -
- If all features exhausted, return a single node tree \(\text{Root} \) with majority label
- Otherwise, let \(F \) be the feature having the highest information gain
 - \(\text{Root} \leftarrow F \)
 - For each possible value \(f \) of \(F \)
 - Add a tree branch below \(\text{Root} \) corresponding to the test \(F = f \)
 - Let \(\text{Examples}_f \) be the set of examples with feature \(F \) having value \(f \)
 - Let \(\text{Labels}_f \) be the corresponding labels
 - If \(\text{Examples}_f \) is empty, add a leaf node below this branch with label = most common label in \(\text{Examples} \)
Decision Tree Learning Algorithm

A recursive algorithm:

\[\text{DT(Examples, Labels, Features)}: \]

- If all examples are positive, return a single node tree \(\text{Root} \) with label \(= + \)
- If all examples are negative, return a single node tree \(\text{Root} \) with label \(= - \)
- If all features exhausted, return a single node tree \(\text{Root} \) with majority label
- Otherwise, let \(F \) be the feature having the highest information gain
- \(\text{Root} \leftarrow F \)
- For each possible value \(f \) of \(F \)
 - Add a tree branch below \(\text{Root} \) corresponding to the test \(F = f \)
 - Let \(\text{Examples}_f \) be the set of examples with feature \(F \) having value \(f \)
 - Let \(\text{Labels}_f \) be the corresponding labels
 - If \(\text{Examples}_f \) is empty, add a leaf node below this branch with label \(= \) most common label in \(\text{Examples} \)
 - Otherwise, add the following subtree below this branch:
 \[\text{DT(Examples}_f, \text{Labels}_f, \text{Features} - \{F\}) \]
 - Note: \(\text{Features} - \{F\} \) removes feature \(F \) from the feature set \(\text{Features} \)
Overfitting in Decision Trees

- Overfitting Illustration

![Graph showing accuracy vs. size of tree (number of nodes)](image-url)

On training data ————
On test data ————

High training accuracy doesn’t necessarily imply high test accuracy.
Overfitting in Decision Trees

- Overfitting Illustration

![Graph showing accuracy vs. tree size (number of nodes)](image)

- High training accuracy doesn’t necessarily imply high test accuracy
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches

- Prune while building the tree (stopping early)
- Prune after building the tree (post-pruning)

Criteria for judging which nodes could potentially be pruned:
- Use a validation set (separate from the training set)
- Prune each possible node that doesn’t hurt the accuracy on the validation set
- Greedily remove the node that improves the validation accuracy the most
- Stop when the validation set accuracy starts worsening

Minimum Description Length (MDL): more details when we cover Model Selection
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (**stopping early**)
 - Prune after building the tree (**post-pruning**)

Criteria for judging which nodes could potentially be pruned

- Use a validation set (separate from the training set)
- Prune each possible node that doesn’t hurt the accuracy on the validation set
- Greedily remove the node that improves the validation accuracy the most
- Stop when the validation set accuracy starts worsening

Minimum Description Length (MDL): more details when we cover Model Selection
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (**stopping early**)
 - Prune after building the tree (**post-pruning**)

- Criteria for judging which nodes could potentially be pruned
 - Use a **validation set** (separate from the training set)
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)

- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn’t hurt the accuracy on the validation set
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (**stopping early**)
 - Prune after building the tree (**post-pruning**)

- Criteria for judging which nodes could potentially be pruned
 - Use a **validation set** (separate from the training set)
 - Prune each possible node that doesn’t hurt the accuracy on the validation set
 - **Greedily remove** the node that improves the validation accuracy the most
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)

- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn’t hurt the accuracy on the validation set
 - Greedily remove the node that improves the validation accuracy the most
 - Stop when the validation set accuracy starts worsening
Avoiding Overfitting: Decision Tree Pruning

- Desired: a DT that is not too big in size, yet fits the training data reasonably

- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)

- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn’t hurt the accuracy on the validation set
 - Greedily remove the node that improves the validation accuracy the most
 - Stop when the validation set accuracy starts worsening
 - Minimum Description Length (MDL): more details when we cover Model Selection
Decision Tree Extensions

- **Real-valued features** can be dealt with using thresholding

Decision Tree Extensions

- **Real-valued features** can be dealt with using thresholding

- **Real-valued labels** (Regression Trees\(^2\)) by re-defining entropy or using other criteria (how similar to each other are the \(y\)'s at any node)

Real-valued features can be dealt with using thresholding.

Real-valued labels (Regression Trees\(^2\)) by re-defining entropy or using other criteria (how similar to each other are the \(y\)'s at any node).

Other criteria for judging feature informativeness:

- Gini-index, misclassification rate

Decision Tree Extensions

- **Real-valued features** can be dealt with using thresholding.

- **Real-valued labels** (*Regression Trees*\(^2\)) by re-defining entropy or using other criteria (how similar to each other are the \(y\)’s at any node).

- Other criteria for judging feature informativeness:
 - Gini-index, misclassification rate.

- More sophisticated decision rules at the internal nodes (anything that splits the data into homogeneous groups; e.g., a machine learning classifier).

Decision Tree Extensions

- **Real-valued features** can be dealt with using thresholding.

- **Real-valued labels** (Regression Trees\(^2\)) by re-defining entropy or using other criteria (how similar to each other are the \(y\)'s at any node).

- Other criteria for judging feature informativeness:
 - Gini-index, misclassification rate

- **More sophisticated decision rules** at the internal nodes (anything that splits the data into homogeneous groups; e.g., a machine learning classifier)

- Handling features with differing costs

Some Aspects about Decision Trees

Some key strengths:

- Simple and each to interpret
- Do not make any assumption about distribution of data
- Easily handle different types of features (real, categorical/nominal, etc.)
- Very fast at test time (just need to check the features, starting the root node and following the DT until you reach a leaf node)
- Multiple DTs can be combined via ensemble methods (e.g., Decision Forest)
 - Each DT can be constructed using a (random) small subset of features

Some key weaknesses:

- Learning the optimal DT is NP-Complete. The existing algorithms are heuristics (e.g., greedy selection of features)
- Can be unstable if some labeled examples are noisy
- Can sometimes become very complex unless some pruning is applied
Some Aspects about Decision Trees

Some key strengths:

- Simple and each to interpret
- Do not make any assumption about distribution of data
- Easily handle different types of features (real, categorical/nominal, etc.)
- Very fast at test time (just need to check the features, starting the root node and following the DT until you reach a leaf node)
- Multiple DTs can be combined via ensemble methods (e.g., Decision Forest)
 - Each DT can be constructed using a (random) small subset of features

Some key weaknesses:

- Learning the optimal DT is NP-Complete. The existing algorithms are heuristics (e.g., greedy selection of features)
- Can be unstable if some labeled examples are noisy
- Can sometimes become very complex unless some pruning is applied
Next Class:
Learning as Optimization