Learning by Asking Questions: Decision Trees

Piyush Rai

Machine Learning (CS771A)

Aug 5, 2016

Machine Learning (CS771A)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

A Classification Problem

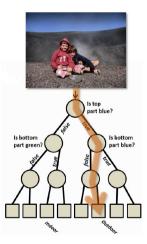
Indoor or Outdoor ?

Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

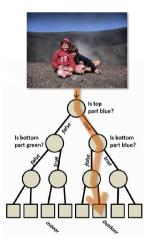
Machine Learning (CS771A)

Predicting by Asking Questions



Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

Predicting by Asking Questions



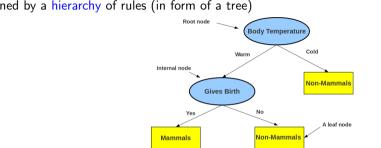
How can we learn this tree using labeled training data?

Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

Machine Learning (CS771A)

Learning by Asking Questions: Decision Trees

(日)((同))(日)((日))(日)

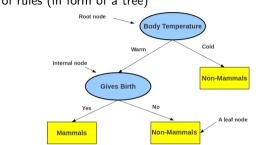


Defined by a hierarchy of rules (in form of a tree) ۲

- Rules form the **internal nodes** of the tree (topmost internal node = **root**) ۲
- Each internal node tests the value of some feature and "splits" data across the outgoing branches ۲

э.

¹Breiman, Leo: Friedman, J. H.: Olshen, R. A.: Stone, C. J. (1984), Classification and regression trees



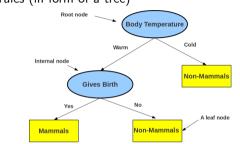
• Defined by a hierarchy of rules (in form of a tree)

- Rules form the internal nodes of the tree (topmost internal node = root)
- Each internal node tests the value of some feature and "splits" data across the outgoing branches
- Note: The tree need not be a binary tree

ъ.

イロト 不得下 イヨト イヨト

¹Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees



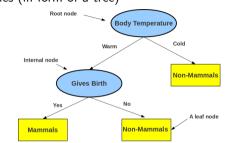
• Defined by a hierarchy of rules (in form of a tree)

- Rules form the internal nodes of the tree (topmost internal node = root)
- Each internal node tests the value of some feature and "splits" data across the outgoing branches
- Note: The tree need not be a binary tree
- (Labeled) Training data is used to construct the Decision Tree¹ (DT)

ъ.

イロト 不得下 イヨト イヨト

¹Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees



• Defined by a hierarchy of rules (in form of a tree)

- Rules form the internal nodes of the tree (topmost internal node = root)
- Each internal node tests the value of some feature and "splits" data across the outgoing branches
- Note: The tree need not be a binary tree
- (Labeled) Training data is used to construct the Decision Tree¹ (DT)
- The DT can then be used to predict label \mathbf{y} of a test example \mathbf{x}

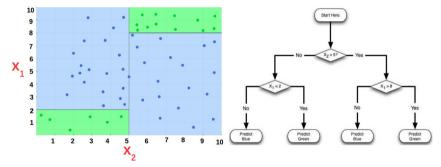
¹Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

Machine Learning (CS771A)

글 > : < 글 >

Decision Tree: An Example

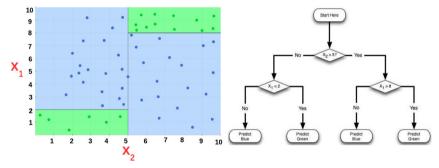
- Identifying the region blue or green a point lies in (binary classification)
 - Each point has 2 features: its co-ordinates $\{x_1, x_2\}$ on the 2D plane
 - Left: Training data, Right: A DT constructed using this data



э.

Decision Tree: An Example

- Identifying the region blue or green a point lies in (binary classification)
 - Each point has 2 features: its co-ordinates $\{x_1, x_2\}$ on the 2D plane
 - Left: Training data, Right: A DT constructed using this data



- The DT can be used to predict the region (blue/green) of a new test point
 - By testing the features of the test point
 - In the order defined by the DT (first x_2 and then x_1)

Machine Learning (CS771A)

Decision Tree: Another Example

- Deciding whether to play or not to play Tennis on a Saturday
 - A binary classification problem (play vs no-play)
 - Each input (a Saturday) has 4 features: Outlook, Temp., Humidity, Wind

-

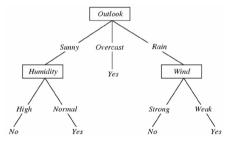
イロト イポト イヨト イヨト

Pic credit: Tom Mitchell

Decision Tree: Another Example

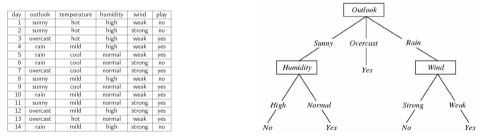
- Deciding whether to play or not to play Tennis on a Saturday
 - A binary classification problem (play vs no-play)
 - Each input (a Saturday) has 4 features: Outlook, Temp., Humidity, Wind
 - Left: Training data, Right: A decision tree constructed using this data

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



Decision Tree: Another Example

- Deciding whether to play or not to play Tennis on a Saturday
 - A binary classification problem (play vs no-play)
 - Each input (a Saturday) has 4 features: Outlook, Temp., Humidity, Wind
 - Left: Training data, Right: A decision tree constructed using this data



- The DT can be used to predict play vs no-play for a new Saturday
 - By testing the features of that Saturday
 - In the order defined by the DT

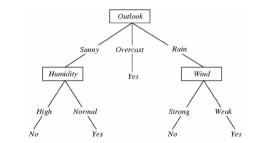
Pic credit: Tom Mitchell

Machine Learning (CS771A)

イロト 不得下 イヨト イヨト

• Now let's look at the playing Tennis example

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



イロト 不得下 不良下 不良下

• Question: Why does it make more sense to test the feature "outlook" first?

• Now let's look at the playing Tennis example

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

- Question: Why does it make more sense to test the feature "outlook" first?
- Answer: Of all the 4 features, it's most informative

Outlook

Overcast

Yes

Sunny

Normal

Yes

tv

Rain

Strong

No

Wind

イロト 不得下 イヨト イヨト

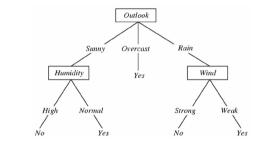
Weak

Yes

-

• Now let's look at the playing Tennis example

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

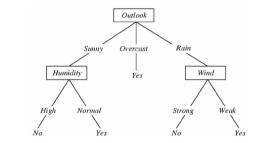


イロト イポト イヨト イヨト

- Question: Why does it make more sense to test the feature "outlook" first?
- Answer: Of all the 4 features, it's most informative
- We will see shortly how to quantity the informativeness

• Now let's look at the playing Tennis example

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



- Question: Why does it make more sense to test the feature "outlook" first?
- Answer: Of all the 4 features, it's most informative
- We will see shortly how to quantity the informativeness
- Analogy: Playing the game 20 Questions (the most useful questions first)

• • = • • = •

• Entropy is a measure of randomness/uncertainty of a set

・ロト ・御 ト ・ヨト ・ヨト 三日 -

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes

э.

イロト 不得下 不良下 不良下

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - ullet .. basically, the fraction of elements of S belonging to class c

-

イロト イポト イヨト イヨト

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - ullet ... basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \dots, p_C]$ is the class distribution of the set S

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - ullet ... basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \dots, p_C]$ is the class distribution of the set S
- Entropy of the set *S*

$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

・ロト ・御 ト ・ヨト ・ヨト 三日 -

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - ullet ... basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \dots, p_C]$ is the class distribution of the set S
- Entropy of the set *S*

$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

- If a set S of examples (or any subset of it) has..
 - Some dominant classes \Longrightarrow small entropy of the class distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - ullet ... basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \dots, p_C]$ is the class distribution of the set S
- Entropy of the set *S*

$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

- If a set S of examples (or any subset of it) has..
 - Some dominant classes \implies small entropy of the class distribution
 - Equiprobable classes \implies high entropy of the class distribution

- Entropy is a measure of randomness/uncertainty of a set
- Assume our data is a set S of examples with C many classes
- p_c is the probability that a random element of S belongs to class c
 - ullet .. basically, the fraction of elements of S belonging to class c
- Probability vector $p = [p_1, p_2, \dots, p_C]$ is the class distribution of the set S
- Entropy of the set *S*

$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

- If a set S of examples (or any subset of it) has..
 - Some dominant classes \Longrightarrow small entropy of the class distribution
 - Equiprobable classes \implies high entropy of the class distribution
- We can assess informativeness of each feature by looking at how much it reduces the entropy of the class distribution

Machine Learning (CS771A)

- Let's assume each element of S has a set of features
- Information Gain (IG) on knowing the value of some feature 'F'

$$IG(S,F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

• S_f denotes the subset of elements of S for which feature F has value f

-

イロト 不得す 不良す 不良す

- Let's assume each element of S has a set of features
- Information Gain (IG) on knowing the value of some feature 'F'

$$IG(S,F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

- S_f denotes the subset of elements of S for which feature F has value f
- IG(S, F) = entropy of S minus the weighted sum of entropy of its children

・ロト ・御 ト ・ヨト ・ヨト 三日 -

- Let's assume each element of S has a set of features
- Information Gain (IG) on knowing the value of some feature 'F'

$$IG(S,F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

- S_f denotes the subset of elements of S for which feature F has value f
- IG(S, F) = entropy of S minus the weighted sum of entropy of its children
- IG(S, F): Increase in our certainty about S once we know the value of F

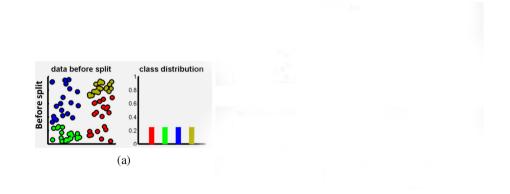
・ロト ・御 ト ・ヨト ・ヨト 三日 -

- Let's assume each element of S has a set of features
- Information Gain (IG) on knowing the value of some feature 'F'

$$IG(S,F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

- S_f denotes the subset of elements of S for which feature F has value f
- IG(S, F) = entropy of S minus the weighted sum of entropy of its children
- IG(S, F): Increase in our certainty about S once we know the value of F
- IG(S, F) denotes the no. of bits saved while encoding S once we know the value of the feature F

Assume we have a 4-class problem. Each point has 2 features

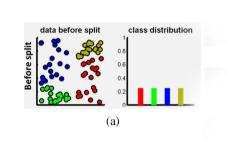


Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

< D > < P

글 > : < 글 >

Assume we have a 4-class problem. Each point has 2 features Which feature should we test (i.e., split on) first?

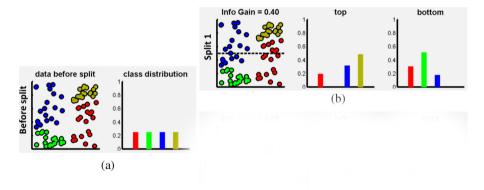


Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

글 > - < 글 >

Assume we have a 4-class problem. Each point has 2 features

Which feature should we test (i.e., split on) first?



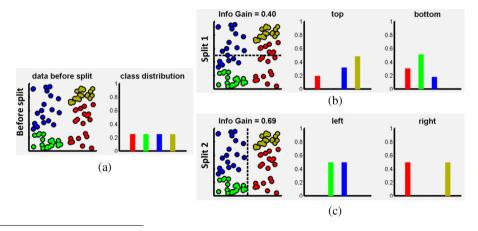
Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

< D > < P

(B)

Assume we have a 4-class problem. Each point has 2 features

Which feature should we test (i.e., split on) first?



Pic credit: "Decision Forests: A Unified Framework" by Criminisi et al

Computing Information Gain

- Coming back to playing tennis..
- Let's begin with the root node of the DT and compute *IG* of each feature
- Consider feature

"wind" \in {weak,strong} and its *IG* w.r.t. the root node

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

3

イロン 不同と 不同と 不同と

Computing Information Gain

- Coming back to playing tennis..
- Let's begin with the root node of the DT and compute *IG* of each feature
- Consider feature

"wind" \in {weak,strong} and its IG w.r.t. the root node

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

• Root node: S = [9+, 5-] (all training data: 9 play, 5 no-play)

• Entropy: $H(S) = -(9/14)\log_2(9/14) - (5/14)\log_2(5/14) = 0.94$

イロト 不得 とくほと くほとう ほう

Computing Information Gain

- Coming back to playing tennis..
- Let's begin with the root node of the DT and compute *IG* of each feature
- Consider feature

"wind" \in {weak,strong} and its IG w.r.t. the root node

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

• Root node: S = [9+, 5-] (all training data: 9 play, 5 no-play)

• Entropy:
$$H(S) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.94$$

•
$$S_{weak} = [6+, 2-] \Longrightarrow H(S_{weak}) = 0.811$$

-

Computing Information Gain

- Coming back to playing tennis..
- Let's begin with the root node of the DT and compute *IG* of each feature
- Consider feature

"wind" \in {weak,strong} and its IG w.r.t. the root node

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

• Root node: S = [9+, 5-] (all training data: 9 play, 5 no-play)

• Entropy:
$$H(S) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.94$$

•
$$S_{weak} = [6+, 2-] \Longrightarrow H(S_{weak}) = 0.812$$

• $S_{strong} = [3+, 3-] \Longrightarrow H(S_{strong}) = 1$

イロン 不通 とうほう イロン しゅう

Computing Information Gain

- Coming back to playing tennis..
- Let's begin with the root node of the DT and compute *IG* of each feature
- Consider feature

"wind" \in {weak,strong} and its *IG* w.r.t. the root node

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

• Root node: S = [9+, 5-] (all training data: 9 play, 5 no-play)

• Entropy:
$$H(S) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14) = 0.94$$

•
$$S_{weak} = [6+, 2-] \Longrightarrow H(S_{weak}) = 0.812$$

• $S_{strong} = [3+, 3-] \Longrightarrow H(S_{strong}) = 1$

$$IG(S, wind) = H(S) - \frac{|S_{weak}|}{|S|} H(S_{weak}) - \frac{|S_{strong}|}{|S|} H(S_{strong})$$

= 0.94 - 8/14 * 0.811 - 6/14 * 1
= 0.048

-

Choosing the most informative feature

- At the root node, the information gains are:
 - IG(S, wind) = 0.048 (we already saw)
 - *IG*(*S*, outlook) = 0.246
 - *IG*(*S*, humidity) = 0.151
 - *IG*(*S*, temperature) = 0.029

-

イロン 不同と 不同と 不同と

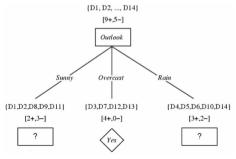
Choosing the most informative feature

- At the root node, the information gains are:
 - IG(S, wind) = 0.048 (we already saw)
 - *IG*(*S*, outlook) = 0.246
 - *IG*(*S*, humidity) = 0.151
 - *IG*(*S*, temperature) = 0.029
- \bullet "outlook" has the maximum $\mathit{IG} \Longrightarrow$ chosen as the root node

・ロト ・同ト ・ヨト ・ヨト ・ヨー

Choosing the most informative feature

- At the root node, the information gains are:
 - IG(S, wind) = 0.048 (we already saw)
 - *IG*(*S*, outlook) = 0.246
 - *IG*(*S*, humidity) = 0.151
 - *IG*(*S*, temperature) = 0.029
- "outlook" has the maximum $IG \Longrightarrow$ chosen as the root node



-

イロン 不同と イヨン イヨン

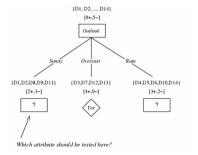
• How to decide which feature to test next ?

3

イロト 不得す 不良す 不良す

- How to decide which feature to test next ?
- Rule: Iterate for each child node, select the feature with the highest IG

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

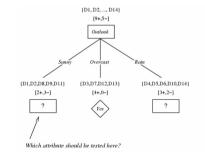


イロト 不得下 不良下 不良下

э.

- How to decide which feature to test next ?
- Rule: Iterate for each child node, select the feature with the highest IG

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



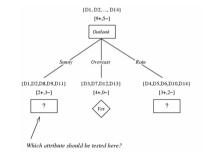
イロト 不得下 イヨト イヨト

- For level-2, left node: S = [2+, 3-] (days 1,2,8,9,11)
- Compute the Information Gain for each feature (except outlook)

-

- How to decide which feature to test next ?
- Rule: Iterate for each child node, select the feature with the highest IG

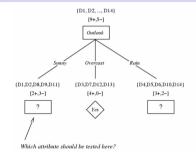
day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



- For level-2, left node: S = [2+, 3-] (days 1,2,8,9,11)
- Compute the Information Gain for each feature (except outlook)
- The feature with the highest Information Gain should be chosen for this node

イロト イポト イヨト イヨト

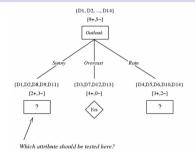
day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



• For this node (S = [2+, 3-]), the *IG* for the feature **temperature**: $IG(S, \text{temperature}) = H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

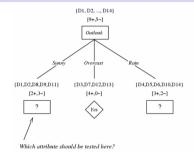
day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



• For this node (S = [2+, 3-]), the *IG* for the feature **temperature**: $IG(S, \text{temperature}) = H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$

• $S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



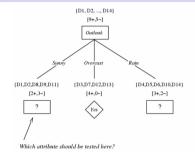
• For this node (S = [2+, 3-]), the *IG* for the feature temperature: $IG(S, \text{temperature}) = H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$

•
$$S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$$

•
$$S_{hot} = [0+, 2-] \Longrightarrow H(S_{hot}) = -0 * \log_2(0) - (2/2) * \log_2(2/2) = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



• For this node (S = [2+, 3-]), the *IG* for the feature **temperature**: $IG(S, \text{temperature}) = H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$

•
$$S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$$

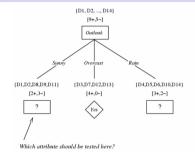
•
$$S_{hot} = [0+, 2-] \Longrightarrow H(S_{hot}) = -0 * \log_2(0) - (2/2) * \log_2(2/2) = 0$$

•
$$S_{mild} = [1+, 1-] \Longrightarrow H(S_{mild}) = -(1/2) * \log_2(1/2) - (1/2) * \log_2(1/2) = 1$$

Machine Learning (CS771A)

・ロト ・御 ト ・ヨト ・ヨト 三日 -

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



• For this node (S = [2+, 3-]), the *IG* for the feature temperature: $IG(S, \text{temperature}) = H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$

•
$$S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$$

•
$$S_{hot} = [0+, 2-] \Longrightarrow H(S_{hot}) = -0 * \log_2(0) - (2/2) * \log_2(2/2) = 0$$

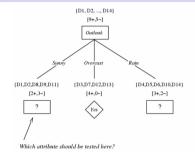
•
$$S_{mild} = [1+, 1-] \Longrightarrow H(S_{mild}) = -(1/2) * \log_2(1/2) - (1/2) * \log_2(1/2) = 1$$

•
$$S_{cool} = [1+, 0-] \Longrightarrow H(S_{cool}) = -(1/1) * \log_2(1/1) - (0/1) * \log_2(0/1) = 0$$

Machine Learning (CS771A)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



• For this node (S = [2+, 3-]), the *IG* for the feature **temperature**: IG(S, temperature) = H(S) -

$$-\sum_{v\in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$$

•
$$S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$$

•
$$S_{hot} = [0+, 2-] \Longrightarrow H(S_{hot}) = -0 * \log_2(0) - (2/2) * \log_2(2/2) = 0$$

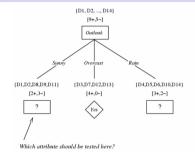
•
$$S_{mild} = [1+, 1-] \Longrightarrow H(S_{mild}) = -(1/2) * \log_2(1/2) - (1/2) * \log_2(1/2) = 1$$

•
$$S_{cool} = [1+, 0-] \Longrightarrow H(S_{cool}) = -(1/1) * \log_2(1/1) - (0/1) * \log_2(0/1) = 0$$

• IG(S, temperature) = 0.971 - 2/5 * 0 - 2/5 * 1 - 1/5 * 0 = 0.570

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



. . .

イロト 不得 とくほと くほど

• For this node (S = [2+, 3-]), the *IG* for the feature **temperature**: IG(S, temperature) = H(S) -

$$= H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|S_v|}{|S|} H(S_v)$$

•
$$S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$$

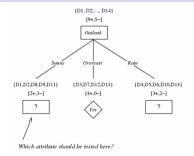
•
$$S_{hot} = [0+, 2-] \Longrightarrow H(S_{hot}) = -0 * \log_2(0) - (2/2) * \log_2(2/2) = 0$$

•
$$S_{mild} = [1+, 1-] \Longrightarrow H(S_{mild}) = -(1/2) * \log_2(1/2) - (1/2) * \log_2(1/2) = 1$$

•
$$S_{cool} = [1+, 0-] \Longrightarrow H(S_{cool}) = -(1/1) * \log_2(1/1) - (0/1) * \log_2(0/1) = 0$$

- IG(S, temperature) = 0.971 2/5 * 0 2/5 * 1 1/5 * 0 = 0.570
- Likewise we can compute: IG(S, humidity) = 0.970, IG(S, wind) = 0.019

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



S.I

• For this node (S = [2+, 3-]), the *IG* for the feature **temperature**:

$$IG(S, \text{temperature}) = H(S) - \sum_{v \in \{hot, mild, cool\}} \frac{|vv|}{|S|} H(S_v)$$

•
$$S = [2+, 3-] \Longrightarrow H(S) = -(2/5) * \log_2(2/5) - (3/5) * \log_2(3/5) = 0.971$$

•
$$S_{hot} = [0+, 2-] \Longrightarrow H(S_{hot}) = -0 * \log_2(0) - (2/2) * \log_2(2/2) = 0$$

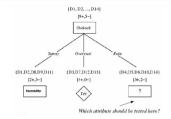
•
$$S_{mild} = [1+, 1-] \Longrightarrow H(S_{mild}) = -(1/2) * \log_2(1/2) - (1/2) * \log_2(1/2) = 1$$

•
$$S_{cool} = [1+, 0-] \Longrightarrow H(S_{cool}) = -(1/1) * \log_2(1/1) - (0/1) * \log_2(0/1) = 0$$

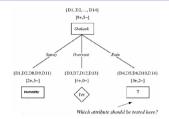
- IG(S, temperature) = 0.971 2/5 * 0 2/5 * 1 1/5 * 0 = 0.570
- Likewise we can compute: IG(S, humidity) = 0.970, IG(S, wind) = 0.019
- Therefore, we choose "humidity" (with highest IG = 0.970) for the level-2 left node

Machine Learning (CS771A)

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
-4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



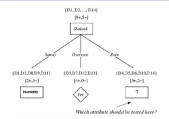
day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
- 4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



• Level-2, middle node: no need to grow (already a leaf)

・ロト ・御 ト ・ヨト ・ヨト 三日 -

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
-4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

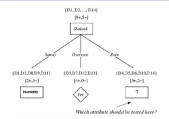


- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!

3

イロト 不得す 不良す 不良す

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
- 4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!
 - Compute *IG* for each feature (except outlook)

3

イロト 不得 とくほと くほど

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
- 4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!
 - Compute *IG* for each feature (except outlook)
 - Exercise: Verify that wind has the highest IG for this node

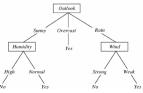
3

イロト イポト イヨト イヨト

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
- 4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



- Level-2, middle node: no need to grow (already a leaf)
- Level-2, right node: repeat the same exercise!
 - Compute *IG* for each feature (except outlook)
 - Exercise: Verify that wind has the highest IG for this node
- Level-2 expansion gives us the following tree:

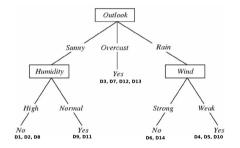


Machine Learning (CS771A)

Learning by Asking Questions: Decision Trees

イロト 不得下 イヨト イヨト

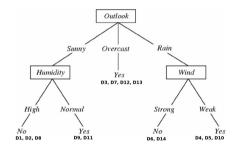
day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



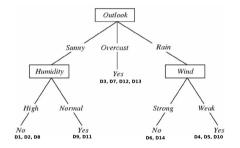
・ロト ・御 ト ・ヨト ・ヨト 三日 -

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

• Stop expanding a node further when:



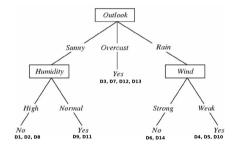
day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



・ロト ・ 同ト ・ ヨト ・ ヨト

- Stop expanding a node further when:
 - It consist of examples all having the same label (the node becomes "pure")

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no



- Stop expanding a node further when:
 - It consist of examples all having the same label (the node becomes "pure")
 - Or we run out of features to test!

A recursive algorithm: DT(*Examples*, *Labels*, *Features*):

3

イロト 不得 とくほと くほど

A recursive algorithm:

- DT(*Examples*, *Labels*, *Features*):
 - If all examples are positive, return a single node tree Root with label = +

3

イロト 不得 とくほと くほど

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -

-

イロト 不得下 イヨト イヨト

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label

ъ.

イロト 不得下 イヨト イヨト

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root \leftarrow F

-

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root \leftarrow F
- For each possible value f of F

-

イロト イポト イヨト イヨト

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root \leftarrow F
- For each possible value f of F
 - Add a tree branch below Root corresponding to the test F = f

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root \leftarrow F
- For each possible value f of F
 - Add a tree branch below Root corresponding to the test F = f
 - Let Examples_f be the set of examples with feature F having value f
 - Let Labels_f be the corresponding labels

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root \leftarrow F
- For each possible value f of F
 - Add a tree branch below Root corresponding to the test F = f
 - Let Examples_f be the set of examples with feature F having value f
 - Let *Labels*_f be the corresponding labels
 - If $Examples_f$ is empty, add a leaf node below this branch with label = most common label in Examples

Decision Tree Learning Algorithm

A recursive algorithm:

DT(*Examples*, *Labels*, *Features*):

- If all examples are positive, return a single node tree Root with label = +
- If all examples are negative, return a single node tree Root with label = -
- If all features exhausted, return a single node tree Root with majority label
- Otherwise, let F be the feature having the highest information gain
- Root \leftarrow F
- For each possible value f of F
 - Add a tree branch below *Root* corresponding to the test F = f
 - Let Examples_f be the set of examples with feature F having value f
 - Let Labels_f be the corresponding labels
 - If Examples_f is empty, add a leaf node below this branch with label = most common label in Examples
 - Otherwise, add the following subtree below this branch:

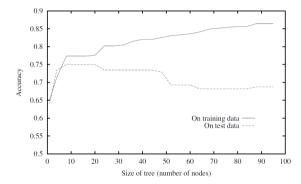
DT(Examples_f, Labels_f, Features - {F})

• Note: Features - {F} removes feature F from the feature set Features

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Overfitting in Decision Trees

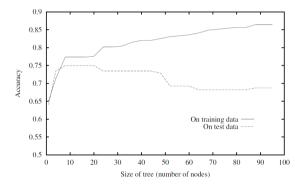
• Overfitting Illustration



3

Overfitting in Decision Trees

• Overfitting Illustration



• High training accuracy doesn't necessarily imply high test accuracy

A D F A R F A B F A B F

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches

-

イロト 不得下 不良下 不良下

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)

ъ.

イロン 不同と イヨン イヨン

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)

ъ.

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)
- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)

ъ.

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)
- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn't hurt the accuracy on the validation set

-

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)
- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn't hurt the accuracy on the validation set
 - Greedily remove the node that improves the validation accuracy the most

-

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)
- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn't hurt the accuracy on the validation set
 - Greedily remove the node that improves the validation accuracy the most
 - Stop when the validation set accuracy starts worsening

-

- Desired: a DT that is not too big in size, yet fits the training data reasonably
- Mainly two approaches
 - Prune while building the tree (stopping early)
 - Prune after building the tree (post-pruning)
- Criteria for judging which nodes could potentially be pruned
 - Use a validation set (separate from the training set)
 - Prune each possible node that doesn't hurt the accuracy on the validation set
 - Greedily remove the node that improves the validation accuracy the most
 - Stop when the validation set accuracy starts worsening
 - Minimum Description Length (MDL): more details when we cover Model Selection

-

• Real-valued features can be dealt with using thresholding

ъ.

 $^{^2\}textsc{Breiman}$, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

- Real-valued features can be dealt with using thresholding
- Real-valued labels (Regression Trees²) by re-defining entropy or using other criteria (how similar to each other are the **y**'s at any node)

²Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

- Real-valued features can be dealt with using thresholding
- Real-valued labels (Regression Trees²) by re-defining entropy or using other criteria (how similar to each other are the **y**'s at any node)
- Other criteria for judging feature informativeness
 - Gini-index, misclassification rate

²Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

- Real-valued features can be dealt with using thresholding
- Real-valued labels (Regression Trees²) by re-defining entropy or using other criteria (how similar to each other are the **y**'s at any node)
- Other criteria for judging feature informativeness
 - Gini-index, misclassification rate
- More sophisticated decision rules at the internal nodes (anything that splits the data into homogeneous groups; e.g., a machine learning classifier)

²Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

- Real-valued features can be dealt with using thresholding
- Real-valued labels (Regression Trees²) by re-defining entropy or using other criteria (how similar to each other are the **y**'s at any node)
- Other criteria for judging feature informativeness
 - Gini-index, misclassification rate
- More sophisticated decision rules at the internal nodes (anything that splits the data into homogeneous groups; e.g., a machine learning classifier)
- Handling features with differing costs

²Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

Some Aspects about Decision Trees

Some key strengths:

- Simple and each to interpret
- Do not make any assumption about distribution of data
- Easily handle different types of features (real, categorical/nominal, etc.)
- Very fast at test time (just need to check the features, starting the root node and following the DT until you reach a leaf node)
- Multiple DTs can be combined via ensemble methods (e.g., Decision Forest)
 - Each DT can be constructed using a (random) small subset of features

- -

イロン 不同と 不同と 不同と

Some Aspects about Decision Trees

Some key strengths:

- Simple and each to interpret
- Do not make any assumption about distribution of data
- Easily handle different types of features (real, categorical/nominal, etc.)
- Very fast at test time (just need to check the features, starting the root node and following the DT until you reach a leaf node)
- Multiple DTs can be combined via ensemble methods (e.g., Decision Forest)
 - Each DT can be constructed using a (random) small subset of features

Some key weaknesses:

- Learning the optimal DT is NP-Complete. The existing algorithms are heuristics (e.g., greedy selection of features)
- Can be unstable if some labeled examples are noisy
- Can sometimes become very complex unless some pruning is applied

Machine Learning (CS771A)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Next Class: Learning as Optimization

-

イロト 不得下 不良下 不良下