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Plan for today..

Survey of some other topics

Sparse Modeling

Time-series modeling

Reinforcement Learning

Multitask/Transfer Learning

Active Learning

Bayesian Learning

Conclusion and take-aways..
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Sparse Modeling
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Sparse Modeling

Many ML problems can be written in the following general form

y = Xw + ε

where y is N × 1, X is N × D, w is D × 1, and ε denotes observation noise

Often we expect/want w to be sparse (i.e., at most, say s � D, nonzeros)

Becomes especially important when D >> N

Examples: Sparse regression/classification, sparse matrix factorization, compressive sensing,
dictionary learning, and many others.
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Sparse Modeling

Ideally, our goal will be to solve the following problem

arg min
w
||y − Xw ||2 s.t. ||w ||0 ≤ s

Note: ||w ||0 is known as the `0 norm of w

In general, an NP-hard problem: Combinatorial optimization problem with
∑s

i=1

(
D
i

)
possible

locations of nonzeros in w

Also, the constraint ||w ||0 ≤ s is non-convex (figure on next slide).

A huge body of work on solving these problems. Primarily in two categories

Convex-ify the problem (e.g., replace the `0 norm by the `1 norm)

arg min
w
||y − Xw ||2 s.t. ||w ||1 ≤ t OR arg min

w
||y − Xw ||2 + λ||w ||1

(note: the `1 constraint makes the objective non-diff. at 0, but many ways to handle this)

Use non-convex optimization methods, e.g., iterative hard threholding (rough idea: use
gradient descent to solve for w and set D − s smallest entries to zero in every iteration;
basically a projected GD method)

†
See “Optimization Methods for `1 Regularization” by Schmidt et al (2009)
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Sparsity using `1 Norm

Why `1 norm gives sparsity? Many explanations. An informal one:

Chances of the error function contour meeting the constraint contour at the coordinate axes is
more likely in case of `1

Another explanation: Between `2 and `1 norms, `1 is “closer” to the `0 norm (in fact, `1 norm is
the closest convex approximation to `0 norm)
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Learning from Time-Series Data
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Modeling Time-Series Data

The input is a sequence of (non-i.i.d.) examples y 1, y 2, . . . , yT

The problem may be supervised or unsupervised, e.g.,

Forecasting: Predict yT+1, given y 1, y 2, . . . , yT

Cluster the examples or perform dimensionality reduction

Evolution of time-series data can be attributed to several factors

Teasing apart these factors of variation is also an important problem
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Auto-regressive Models

Auto-regressive (AR): Regress each example on p previous examples

y t = c +

p∑
i=1

wiy t−i + εt : An AR(p) model

Moving Average (MA): Regress each example on p previous stochastic errors

y t = c + εt +

p∑
i=1

wiεt−i : An MA(p) model

Auto-regressive Moving Average (ARMA): Regress each example of p previous examples and q
previous stochastic errors

y t = c + εt +

p∑
i=1

wiy t−i +

q∑
i=1

viεt−i : An ARMA(p, q) model
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State-Space Models

Assume that each observation y t in the time-series is generated by a low-dimensional latent factor
x t (one-hot or continuous)

Basically, a generative latent factor model: y t = g(x t) and x t = f (x t−1), where g and f are
probability distributions

Very similar to PPCA/FA, except that latent factor x t depends on x t−1

Some popular SSMs: Hidden Markov Models (one-hot latent factor x t), Kalman Filters
(real-valued latent factor x t)

Note: Models like RNN/LSTM are also similar, except that these are not generative (but can be
made generative)
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Reinforcement Learning
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Reinforcement Learning

A paradigm for interactive learning or “learning by doing”

Different from supervised learning. Supervision is “implicit”

The learner (agent) performs “actions” and gets “rewards”

Goal: Learn a policy that maximizes the agent’s cumulative expected reward (policy tells what action
the agent should take next)

Order in which data arrives matters (sequential, non i.i.d data)

Agent’s actions affect the subsequent data it receives

Many applications: Robotics and control, computer game playing (e.g., Atari, GO), online
advertising, financial trading, etc.
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Markov Decision Processes

Markov Decision Process (MDP) gives a way to formulate RL problems

MDP formulation assumes the agent knows the its state in the environment

Partially Observed MDP (POMDP) can be used when state is unknown

Assume there are K possible states and a set of actions at any state

A transition model p(st+1 = `|st = k, at = a) = Pa(k, `)

Each Pa is a K × K matrix of transition probabilites (one for each action a)

A reward function R(st = k, at = a)

Goal: Find a “policy” π(st = k) which returns the optimal action for st = k

(Pa,R) and π can be estimated in an alternating fashion

Estimating Pa and R requires some training data. Can be done even when the state space is
continuous (requires solving a function approximation problem)
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Multitask/Transfer Learning
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Multitask/Transfer Learning

An umbrella term to refer to settings when we want to learn multiple models that could potentially
benefit from sharing information with each other

Each learning problem is a “task”

Note: We rarely know how the different tasks are related with each other

Have to learn the relatedness structure as well

For M tasks, we will jointly learn M models, say w 1,w 2, . . . ,wM

Need to jointly regularize the models to make them similar to each other based on their degree/way of
relatedness with each other (to be learned)

Some other related problem settings: Domain Adaptation, Covariate Shift
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Covariate Shift

Note: The input or the feature vector x is also known as “covariate”

Suppose training inputs come from distribution ptr (x)

Suppose test inputs come from distribution ptr (x) and ptr (x) 6= pte(x)

The following loss function can be used to handle this issue
N∑

n=1

pte(xn)

ptr (xn)
`(yn, f (xn)) + R(f )

Why will this work? Well, because

E(x,y)∼pte [`(y , x ,w)] = E(x,y)∼ptr

[
pte(x , y)

ptr (x , y)
`(y , x ,w)

]
If p(y |x) doesn’t change and only p(x) changes, then pte(x,y)

ptr (x,y) = pte(x)
ptr (x)

Can actually estimate the ratio without estimating the densities (a huge body of work on this
problem)
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Active Learning
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Active Learning

Allow the learner to ask for the most informative training examples
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Bayesian Learning
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Optimization vs Inference

Learning as Optimization

Parameter θ is a fixed unknown

Minimize a “loss” and find a point estimate (best answer) for θ, given data X

θ̂ = arg min
θ∈Θ

Loss(X; θ)

or arg max
θ

log p(X|θ)︸ ︷︷ ︸
Maximum Likelihood

or arg max
θ

log p(X|θ)p(θ)︸ ︷︷ ︸
Maximum-a-Posteriori Estimation

Learning as (Bayesian) Inference

Treat the parameter θ as a random variable with a prior distribution p(θ)

Infer a posterior distribution over the parameters using Bayes rule

p(θ|X) =
p(X|θ)p(θ)

p(X)
∝ Likelihood× Prior

Posterior becomes the new prior for next batch of observed data

No “fitting”, so no overfitting!
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Why be Bayesian?

Can capture/quantify the uncertainty (or “variance”) in θ via the posterior

Can make predictions by averaging over the posterior

p(y |x ,X ,Y )︸ ︷︷ ︸
predictive posterior

=

∫
p(y |x , θ)p(θ|X ,Y )dθ

Many other benefits (wait for next semester :) )
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Conclusion and Take-aways
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Conclusion and Take-aways

Most learning problems can be cast as optimizing a regularized loss function

Probabilistic viewpoint: Most learning problems can be cast as doing MLE/MAP on a probabilistic
model of the data

Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the
appropriate loss function/probability model for the data, and the appropriate regularizer/prior

Always start with simple models. Linear models can be really powerful given a good feature
representation.

Learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is “universally” good.

Machine Learning (CS771A) An Overview of Other Topics, Conclusions, and Perspectives 23



Conclusion and Take-aways

Most learning problems can be cast as optimizing a regularized loss function

Probabilistic viewpoint: Most learning problems can be cast as doing MLE/MAP on a probabilistic
model of the data

Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the
appropriate loss function/probability model for the data, and the appropriate regularizer/prior

Always start with simple models. Linear models can be really powerful given a good feature
representation.

Learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is “universally” good.

Machine Learning (CS771A) An Overview of Other Topics, Conclusions, and Perspectives 23



Conclusion and Take-aways

Most learning problems can be cast as optimizing a regularized loss function

Probabilistic viewpoint: Most learning problems can be cast as doing MLE/MAP on a probabilistic
model of the data

Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the
appropriate loss function/probability model for the data, and the appropriate regularizer/prior

Always start with simple models. Linear models can be really powerful given a good feature
representation.

Learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is “universally” good.

Machine Learning (CS771A) An Overview of Other Topics, Conclusions, and Perspectives 23



Conclusion and Take-aways

Most learning problems can be cast as optimizing a regularized loss function

Probabilistic viewpoint: Most learning problems can be cast as doing MLE/MAP on a probabilistic
model of the data

Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the
appropriate loss function/probability model for the data, and the appropriate regularizer/prior

Always start with simple models. Linear models can be really powerful given a good feature
representation.

Learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is “universally” good.

Machine Learning (CS771A) An Overview of Other Topics, Conclusions, and Perspectives 23



Conclusion and Take-aways

Most learning problems can be cast as optimizing a regularized loss function

Probabilistic viewpoint: Most learning problems can be cast as doing MLE/MAP on a probabilistic
model of the data

Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the
appropriate loss function/probability model for the data, and the appropriate regularizer/prior

Always start with simple models. Linear models can be really powerful given a good feature
representation.

Learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is “universally” good.

Machine Learning (CS771A) An Overview of Other Topics, Conclusions, and Perspectives 23



Conclusion and Take-aways

Most learning problems can be cast as optimizing a regularized loss function

Probabilistic viewpoint: Most learning problems can be cast as doing MLE/MAP on a probabilistic
model of the data

Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the
appropriate loss function/probability model for the data, and the appropriate regularizer/prior

Always start with simple models. Linear models can be really powerful given a good feature
representation.

Learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is “universally” good.

Machine Learning (CS771A) An Overview of Other Topics, Conclusions, and Perspectives 23



Thank You!
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