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Recap: Feedforward Neural Network

Consists of an input layer, one or more hidden layers, and an output layer

A “macro” view of the above (note: x = [x1, . . . , xD ],h = [h1, . . . , hK ])
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Recap: Convolutional Neural Network

Special type of feedforward neural nets (local connectivity + weight sharing)

Each layer uses a set of “filters” (basically, weights to be learned) which can detect specific
features. Filters are like basis/dictionary (PCA analogy)

Each filter is convolved over entire input to produce a feature map

Nonlinearity and pooling and applied after each convolution layer

Last layer (one that connects to outputs) is fully connected
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Deep Neural Networks for Modeling Sequence Data
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Limitation of Feedforward Neural Nets

FFNN can’t take into account the sequential structure in the data

For a sequence of observations x1, . . . , xT , their corresponding hidden units (states) h1, . . . ,hT are
assumed independent of each other

Not idea for sequential data, e.g., sentence/paragraph/document (sequence of words), video
(sequence of frames), etc.

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 5



Limitation of Feedforward Neural Nets

FFNN can’t take into account the sequential structure in the data

For a sequence of observations x1, . . . , xT , their corresponding hidden units (states) h1, . . . ,hT are
assumed independent of each other

Not idea for sequential data, e.g., sentence/paragraph/document (sequence of words), video
(sequence of frames), etc.

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 5



Recurrent Neural Nets (RNN)

Hidden state at each step depends on the hidden state of the previous

Each hidden state is typically defined as
ht = f (Wx t + Uht−1)

where U is like a transition matrix and f is some nonlin. fn. (e.g., tanh)

Now ht acts as a memory. Helps us remember what happened up to step t

Note: Unlike sequence data models such as HMM where each state is discrete, RNN states are
continuous-valued (in that sense, RNNs are similar to Linear-Gaussian models like Kalman Filters
which have continuous states)

RNNs can also be extended to have more than one hidden layer
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Recurrent Neural Nets (RNN)

A more “micro” view of RNN (the transition matrix U connects the hidden states across
observations, propagating information along the sequence)
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RNN in Action..
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RNN: Applications

RNNs are widely applicable and are also very flexible.

E.g.,

Input, output, or both, can be sequences (possibly of different lengths)

Different inputs (and different outputs) need not be of the same length

Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input
sequence

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 9



RNN: Applications

RNNs are widely applicable and are also very flexible. E.g.,

Input, output, or both, can be sequences (possibly of different lengths)

Different inputs (and different outputs) need not be of the same length

Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input
sequence

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 9



RNN: Applications

RNNs are widely applicable and are also very flexible. E.g.,

Input, output, or both, can be sequences (possibly of different lengths)

Different inputs (and different outputs) need not be of the same length

Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input
sequence

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 9



RNN: Applications

RNNs are widely applicable and are also very flexible. E.g.,

Input, output, or both, can be sequences (possibly of different lengths)

Different inputs (and different outputs) need not be of the same length

Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input
sequence

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 9



RNN: Applications

RNNs are widely applicable and are also very flexible. E.g.,

Input, output, or both, can be sequences (possibly of different lengths)

Different inputs (and different outputs) need not be of the same length

Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input
sequence

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 9



Training RNN

Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then
backward propagate from end to step 1)

Think of the time-dimension as another hidden layer and then it is just like standard
backpropagation for feedforward neural nets

Black: Prediction, Yellow: Error, Orange: Gradients
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RNN: Vanishing/Exploding Gradients Problem

Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it
along the sequence (weak memory)

New inputs “overwrite” the activations of previous hidden states

Repeated multiplications can cause the gradients to vanish or explode
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Capturing Long-Range Dependencies

Idea: Augment the hidden states with gates (with parameters to be learned)

These gates can help us remember and forget information “selectively”

The hidden states have 3 type of gates

Input (bottom), Forget (left), Output (top)

Open gate denoted by ’o’, closed gate denoted by ’-’

LSTM (Hochreiter and Schmidhuber, mid-90s): Long Short-Term Memory is one such idea
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Long Short-Term Memory (LSTM)

Essentially an RNN, except that the hidden states are computed differently

Recall that RNN computes the hidden states as
ht = tanh(Wx t + Uht−1)

For RNN: State update is multiplicative (weak memory and gradient issues)

In contrast, LSTM maintains a “context” Ct and computes hidden states as

Ĉt = tanh(Wcx t + Ucht−1) (“local” context, only up to immediately preceding state)

it = σ(Wix t + Uiht−1) (how much to take in the local context)

ft = σ(Wf x t + Uf ht−1) (how much to forget the previous context)

ot = σ(Wox t + Uoht−1) (how much to output)

Ct = Ct−1 � ft + Ĉt � it (a modulated additive update for context)

ht = tanh(Ct) � ot (transform context into state and selectively output)

Note: � represents elementwise vector product. Also, state updates now additive, not
multiplicative. Training using backpropagation through time.

Many variants of LSTM exists, e.g., using Ct−1 in local computations, Gated Recurrent Units
(GRU), etc. Mostly minor variations of basic LSTM above
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Ct = Ct−1 � ft + Ĉt � it (a modulated additive update for context)

ht = tanh(Ct) � ot (transform context into state and selectively output)

Note: � represents elementwise vector product. Also, state updates now additive, not
multiplicative. Training using backpropagation through time.

Many variants of LSTM exists, e.g., using Ct−1 in local computations, Gated Recurrent Units
(GRU), etc. Mostly minor variations of basic LSTM above

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 13



Long Short-Term Memory (LSTM)

Essentially an RNN, except that the hidden states are computed differently

Recall that RNN computes the hidden states as
ht = tanh(Wx t + Uht−1)

For RNN: State update is multiplicative (weak memory and gradient issues)

In contrast, LSTM maintains a “context” Ct and computes hidden states as
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Ct = Ct−1 � ft + Ĉt � it (a modulated additive update for context)

ht = tanh(Ct) � ot (transform context into state and selectively output)

Note: � represents elementwise vector product. Also, state updates now additive, not
multiplicative. Training using backpropagation through time.

Many variants of LSTM exists, e.g., using Ct−1 in local computations, Gated Recurrent Units
(GRU), etc. Mostly minor variations of basic LSTM above

Machine Learning (CS771A) Deep Learning: Models for Sequence Data (RNN and LSTM) 13



Long Short-Term Memory (LSTM)

Essentially an RNN, except that the hidden states are computed differently

Recall that RNN computes the hidden states as
ht = tanh(Wx t + Uht−1)

For RNN: State update is multiplicative (weak memory and gradient issues)

In contrast, LSTM maintains a “context” Ct and computes hidden states as
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Neural Nets for Unsupervised Learning
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Autoencoder

A neural net for unsupervised feature extraction

Basic principle: Learns an encoding of the inputs so as to recover the original input from the
encodings as well as possible

Also used to initialize deep learning models (layer-by-layer pre-training)
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Autoencoder: An Example

Real-valued inputs, binary-valued encodings

Sigmoid encoder (parameter matrix W ), linear decoder (parameter matrix D), learned via:

arg min
D,W

E (D,W ) =
N∑

n=1

||Dzn − xn||2 =
N∑

n=1

||Dσ(W xn)− xn||2

If encoder is also linear, then autoencoder is equivalent to PCA
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Denoising Autoencoders

Idea: introduce stochastic corruption to the input; e.g.:

Hide some features
Add gaussian noise
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Summary

Looked at feedforward neural networks and extensions such as CNN

Looked at (deep) neural nets (RNN/LSTM) for learning from sequential data

Methods like RNN and LSTM are widely used for learning from such data

Modeling and retaining context is important when modeling sequential data (desirable to have a
“memory module” of some sort as in LSTMs)

Looked at Autoencoder - Neural network for unsupervised feature extraction

Didn’t discuss some other popular methods, e.g., deep generative models, but these are based on
similar underlying principles
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