Deep Learning: Models for Sequence Data (RNN and LSTM)

Piyush Rai

Machine Learning (CS771A)

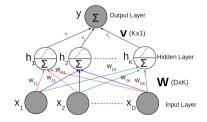
Nov 4, 2016

- -

イロン 不同と 不同と 不同と

Recap: Feedforward Neural Network

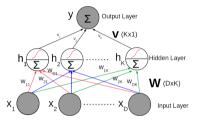
• Consists of an input layer, one or more hidden layers, and an output layer



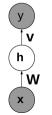
3

Recap: Feedforward Neural Network

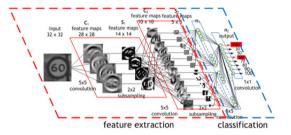
• Consists of an input layer, one or more hidden layers, and an output layer



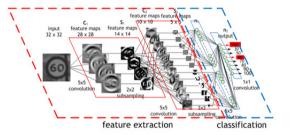
• A "macro" view of the above (note: $\mathbf{x} = [x_1, \dots, x_D], \mathbf{h} = [h_1, \dots, h_K]$)



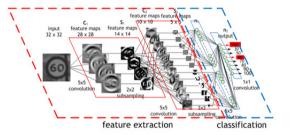
3



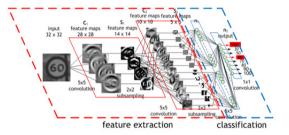
• Special type of feedforward neural nets (local connectivity + weight sharing)



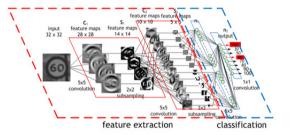
- Special type of feedforward neural nets (local connectivity + weight sharing)
- Each layer uses a set of "filters" (basically, weights to be learned) which can detect specific features. Filters are like basis/dictionary (PCA analogy)



- Special type of feedforward neural nets (local connectivity + weight sharing)
- Each layer uses a set of "filters" (basically, weights to be learned) which can detect specific features. Filters are like basis/dictionary (PCA analogy)
- Each filter is convolved over entire input to produce a feature map



- Special type of feedforward neural nets (local connectivity + weight sharing)
- Each layer uses a set of "filters" (basically, weights to be learned) which can detect specific features. Filters are like basis/dictionary (PCA analogy)
- Each filter is convolved over entire input to produce a feature map
- Nonlinearity and pooling and applied after each convolution layer



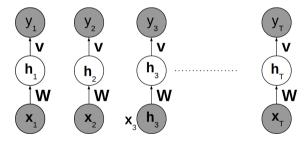
- Special type of feedforward neural nets (local connectivity + weight sharing)
- Each layer uses a set of "filters" (basically, weights to be learned) which can detect specific features. Filters are like basis/dictionary (PCA analogy)
- Each filter is convolved over entire input to produce a feature map
- Nonlinearity and pooling and applied after each convolution layer
- Last layer (one that connects to outputs) is fully connected

Machine Learning (CS771A)

Deep Neural Networks for Modeling Sequence Data

Limitation of Feedforward Neural Nets

- FFNN can't take into account the sequential structure in the data
- For a sequence of observations x_1, \ldots, x_T , their corresponding hidden units (states) h_1, \ldots, h_T are assumed independent of each other

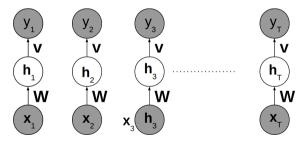


-

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

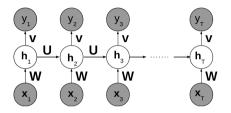
Limitation of Feedforward Neural Nets

- FFNN can't take into account the sequential structure in the data
- For a sequence of observations x_1, \ldots, x_T , their corresponding hidden units (states) h_1, \ldots, h_T are assumed independent of each other



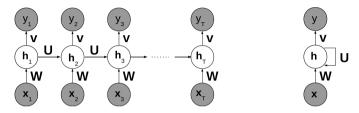
• Not idea for sequential data, e.g., sentence/paragraph/document (sequence of words), video (sequence of frames), etc.

• Hidden state at each step depends on the hidden state of the previous



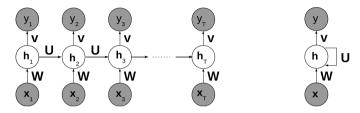
э.

• Hidden state at each step depends on the hidden state of the previous



3

• Hidden state at each step depends on the hidden state of the previous



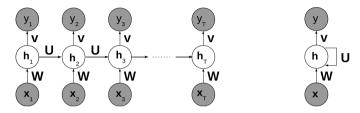
• Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\boldsymbol{\mathsf{W}}\boldsymbol{x}_t + \boldsymbol{\mathsf{U}}\boldsymbol{h}_{t-1})$$

where **U** is like a transition matrix and f is some nonlin. fn. (e.g., tanh)

3

• Hidden state at each step depends on the hidden state of the previous



• Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\boldsymbol{\mathsf{W}}\boldsymbol{x}_t + \boldsymbol{\mathsf{U}}\boldsymbol{h}_{t-1})$$

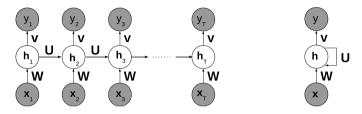
where \mathbf{U} is like a transition matrix and f is some nonlin. fn. (e.g., tanh)

• Now \boldsymbol{h}_t acts as a memory. Helps us remember what happened up to step t

3

A D F A B F A B F A B F

• Hidden state at each step depends on the hidden state of the previous



• Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\boldsymbol{\mathsf{W}}\boldsymbol{x}_t + \boldsymbol{\mathsf{U}}\boldsymbol{h}_{t-1})$$

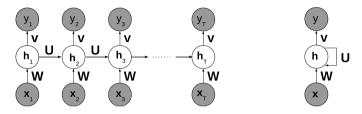
where \mathbf{U} is like a transition matrix and f is some nonlin. fn. (e.g., tanh)

- Now \boldsymbol{h}_t acts as a memory. Helps us remember what happened up to step t
- Note: Unlike sequence data models such as HMM where each state is discrete, RNN states are continuous-valued

э.

イロト 不得下 イヨト イヨト

• Hidden state at each step depends on the hidden state of the previous



• Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\boldsymbol{\mathsf{W}}\boldsymbol{x}_t + \boldsymbol{\mathsf{U}}\boldsymbol{h}_{t-1})$$

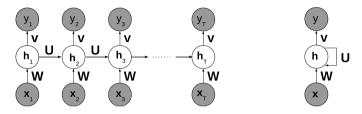
where **U** is like a transition matrix and f is some nonlin. fn. (e.g., tanh)

- Now \boldsymbol{h}_t acts as a memory. Helps us remember what happened up to step t
- Note: Unlike sequence data models such as HMM where each state is discrete, RNN states are continuous-valued (in that sense, RNNs are similar to Linear-Gaussian models like Kalman Filters which have continuous states)

3

イロト 不得下 イヨト イヨト

• Hidden state at each step depends on the hidden state of the previous



• Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\boldsymbol{\mathsf{W}}\boldsymbol{x}_t + \boldsymbol{\mathsf{U}}\boldsymbol{h}_{t-1})$$

where \mathbf{U} is like a transition matrix and f is some nonlin. fn. (e.g., tanh)

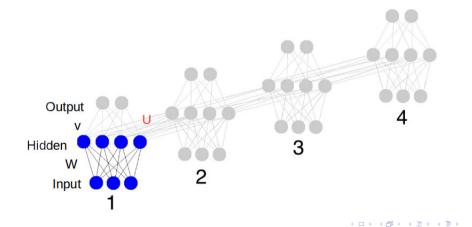
- Now \boldsymbol{h}_t acts as a memory. Helps us remember what happened up to step t
- Note: Unlike sequence data models such as HMM where each state is discrete, RNN states are continuous-valued (in that sense, RNNs are similar to Linear-Gaussian models like Kalman Filters which have continuous states)
- RNNs can also be extended to have more than one hidden layer

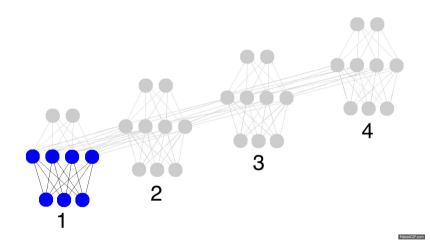
Machine Learning (CS771A)

э.

イロン 不同と イヨン イヨン

• A more "micro" view of RNN (the transition matrix **U** connects the hidden states across observations, propagating information along the sequence)

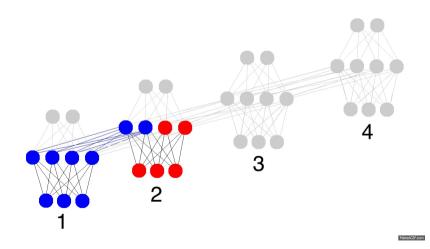




Machine Learning (CS771A)

3

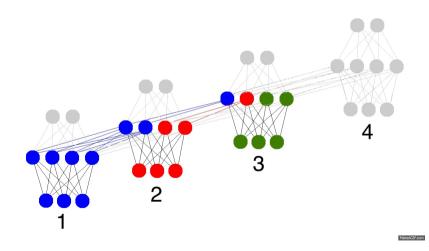
イロト 不得下 不良下 不良下



Machine Learning (CS771A)

E nar

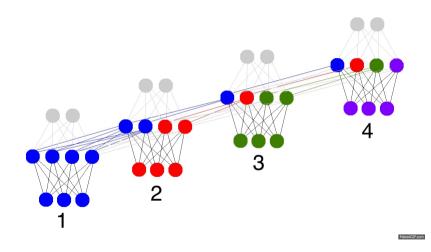
イロト 不得下 不良下 不良下



Machine Learning (CS771A)

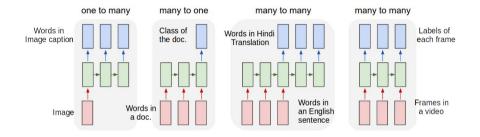
∃ <2 <</p>

イロト 不得下 不良下 不良下



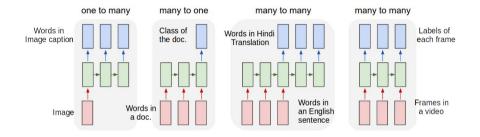
Machine Learning (CS771A)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○



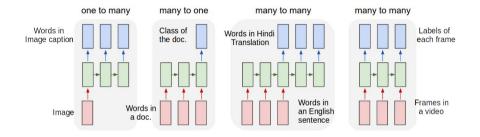
• RNNs are widely applicable and are also very flexible.

э

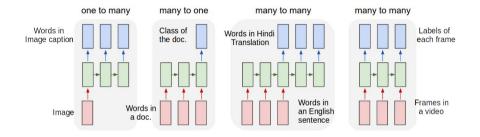


• RNNs are widely applicable and are also very flexible. E.g.,

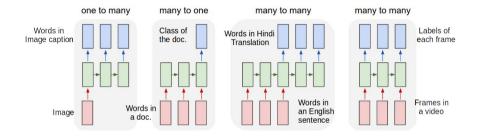
э



- RNNs are widely applicable and are also very flexible. E.g.,
 - Input, output, or both, can be sequences (possibly of different lengths)



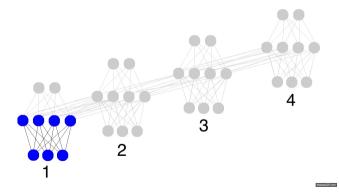
- RNNs are widely applicable and are also very flexible. E.g.,
 - Input, output, or both, can be sequences (possibly of different lengths)
 - Different inputs (and different outputs) need not be of the same length



- RNNs are widely applicable and are also very flexible. E.g.,
 - Input, output, or both, can be sequences (possibly of different lengths)
 - Different inputs (and different outputs) need not be of the same length
 - Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input sequence

э.

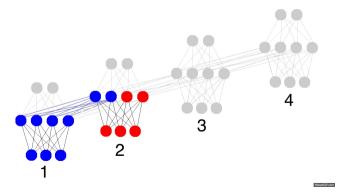
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

글 > - - - 글 >

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets

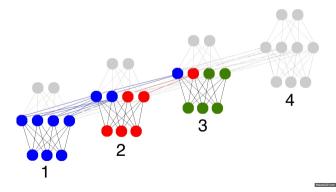


• Black: Prediction, Yellow: Error, Orange: Gradients

Machine Learning (CS771A)

글 > - - - 글 >

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets

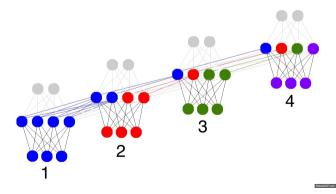


• Black: Prediction, Yellow: Error, Orange: Gradients

Machine Learning (CS771A)

A D F A B F A B F A B F

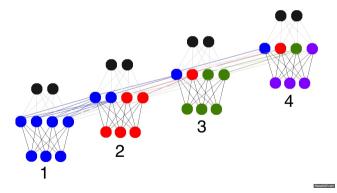
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

A D F A B F A B F A B F

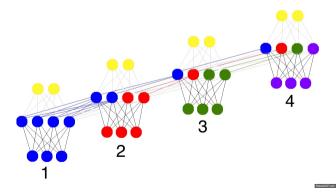
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

Machine Learning (CS771A)

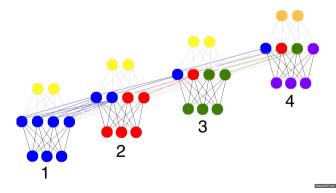
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

A D F A B F A B F A B F

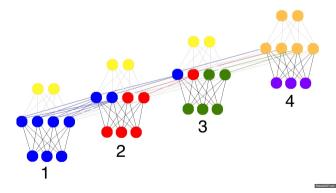
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

A D F A B F A B F A B F

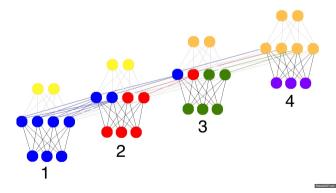
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

< ロ > < 同 > < 回 > < 回 >

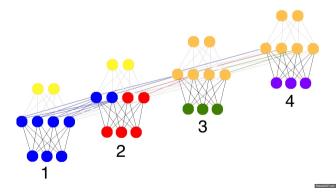
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

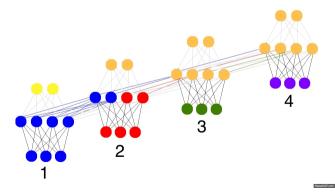
Machine Learning (CS771A)

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



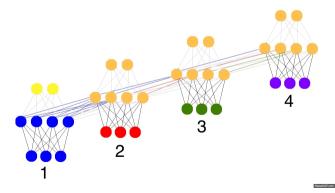
• Black: Prediction, Yellow: Error, Orange: Gradients

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



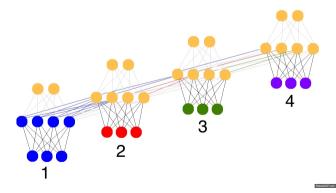
• Black: Prediction, Yellow: Error, Orange: Gradients

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



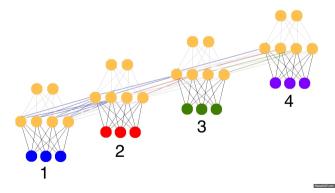
• Black: Prediction, Yellow: Error, Orange: Gradients

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



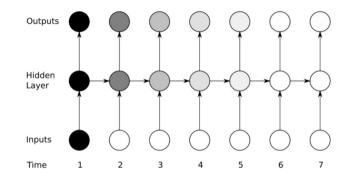
• Black: Prediction, Yellow: Error, Orange: Gradients

- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



• Black: Prediction, Yellow: Error, Orange: Gradients

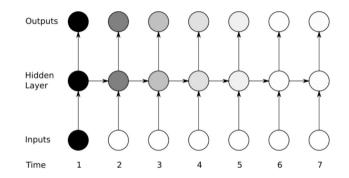
RNN: Vanishing/Exploding Gradients Problem



• Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it along the sequence (weak memory)

くぼう くほう くほう

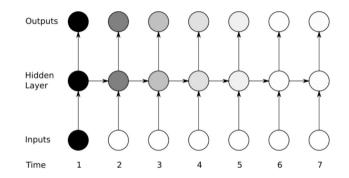
RNN: Vanishing/Exploding Gradients Problem



- Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it along the sequence (weak memory)
- New inputs "overwrite" the activations of previous hidden states

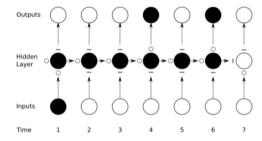
글 > : < 글 >

RNN: Vanishing/Exploding Gradients Problem



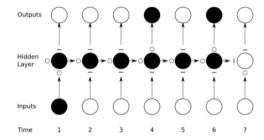
- Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it along the sequence (weak memory)
- New inputs "overwrite" the activations of previous hidden states
- Repeated multiplications can cause the gradients to vanish or explode

- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



伺下 イヨト イヨト

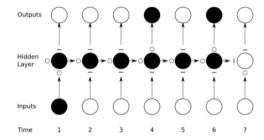
- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



- The hidden states have 3 type of gates
 - Input (bottom), Forget (left), Output (top)

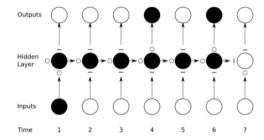
E> < E>

- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



- The hidden states have 3 type of gates
 - Input (bottom), Forget (left), Output (top)
- Open gate denoted by 'o', closed gate denoted by '-'

- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



- The hidden states have 3 type of gates
 - Input (bottom), Forget (left), Output (top)
- Open gate denoted by 'o', closed gate denoted by '-'
- LSTM (Hochreiter and Schmidhuber, mid-90s): Long Short-Term Memory is one such idea

• Essentially an RNN, except that the hidden states are computed differently

э.

イロト 不得下 不良下 不良下

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \mathrm{tanh}(\mathbf{W}\boldsymbol{x}_t + \mathbf{U}\boldsymbol{h}_{t-1})$

3

イロン 不同と 不同と 不同と

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \tanh(\boldsymbol{\mathsf{W}}\boldsymbol{x}_t + \boldsymbol{\mathsf{U}}\boldsymbol{h}_{t-1})$

• For RNN: State update is multiplicative (weak memory and gradient issues)

-

イロン 不同と 不同と 不同と

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \mathrm{tanh}(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

-

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \tanh(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

 $\hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1})$ ("local" context, only up to immediately preceding state)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \tanh(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

$$\hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1})$$
 ("local" context, only up to immediately preceding state)

$$i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1})$$
 (how much to take in the local context)

-

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \tanh(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

$$\begin{aligned} \hat{C}_t &= \tanh(\mathsf{W}^c \mathbf{x}_t + \mathsf{U}^c \mathbf{h}_{t-1}) & (\text{``local'' context, only up to immediately preceding state}) \\ i_t &= \sigma(\mathsf{W}^i \mathbf{x}_t + \mathsf{U}^i \mathbf{h}_{t-1}) & (\text{how much to take in the local context}) \\ f_t &= \sigma(\mathsf{W}^f \mathbf{x}_t + \mathsf{U}^f \mathbf{h}_{t-1}) & (\text{how much to forget the previous context}) \end{aligned}$$

-

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \mathrm{tanh}(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

\hat{C}_t	=	$tanh(\mathbf{W}^{c}m{x}_{t}+\mathbf{U}^{c}m{h}_{t-1})$	("local" context, only up to immediately preceding state)
i _t	=	$\sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1})$	(how much to take in the local context)
f_t	=	$\sigma(\mathbf{W}^{f} \mathbf{x}_{t} + \mathbf{U}^{f} \mathbf{h}_{t-1})$	(how much to forget the previous context)
o_t	=	$\sigma(\boldsymbol{W}^{o}\boldsymbol{x}_{t}+\boldsymbol{U}^{o}\boldsymbol{h}_{t-1})$	(how much to output)

-

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \mathrm{tanh}(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

\hat{C}_t	=	$tanh(\mathbf{W}^{c}m{x}_{t}+\mathbf{U}^{c}m{h}_{t-1})$	("local" context, only up to immediately preceding state)
i _t	=	$\sigma(\mathbf{W}^{i} \mathbf{x}_{t} + \mathbf{U}^{i} \mathbf{h}_{t-1})$	(how much to take in the local context)
f_t	=	$\sigma(\mathbf{W}^{f} \mathbf{x}_{t} + \mathbf{U}^{f} \mathbf{h}_{t-1})$	(how much to forget the previous context)
o_t	=	$\sigma(\mathbf{W}^{o}\mathbf{x}_{t}+\mathbf{U}^{o}\mathbf{h}_{t-1})$	(how much to output)
C_t	=	$C_{t-1} \odot \frac{f_t}{f_t} + \hat{C}_t \odot \frac{i_t}{f_t}$	(a modulated additive update for context)

-

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \mathrm{tanh}(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

\hat{C}_t	=	$tanh(\mathbf{W}^{c}m{x}_{t}+\mathbf{U}^{c}m{h}_{t-1})$	("local" context, only up to immediately preceding state)
i_t	=	$\sigma(\mathbf{W}^{i} \mathbf{x}_{t} + \mathbf{U}^{i} \mathbf{h}_{t-1})$	(how much to take in the local context)
f_t	=	$\sigma(\mathbf{W}^{f} \mathbf{x}_{t} + \mathbf{U}^{f} \mathbf{h}_{t-1})$	(how much to forget the previous context)
o_t	=	$\sigma(\boldsymbol{W}^{o}\boldsymbol{x}_{t}+\boldsymbol{U}^{o}\boldsymbol{h}_{t-1})$	(how much to output)
C_t	=	$C_{t-1} \odot \frac{f_t}{f_t} + \hat{C}_t \odot \frac{i_t}{i_t}$	(a modulated additive update for context)
h_t	=	$tanh(\mathit{C}_t) \odot \mathit{o}_t$	(transform context into state and selectively output)

-

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \mathrm{tanh}(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

 $\begin{aligned} \hat{C}_t &= \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) & (\text{"local" context, only up to immediately preceding state}) \\ i_t &= \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) & (\text{how much to take in the local context}) \\ f_t &= \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) & (\text{how much to forget the previous context}) \\ o_t &= \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) & (\text{how much to output}) \\ C_t &= C_{t-1} \odot f_t + \hat{C}_t \odot i_t & (\text{a modulated additive update for context}) \\ h_t &= \tanh(C_t) \odot o_t & (\text{transform context into state and selectively output}) \end{aligned}$

 Note: ⊙ represents elementwise vector product. Also, state updates now additive, not multiplicative. Training using backpropagation through time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

 $\boldsymbol{h}_t = \tanh(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1})$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

$$\begin{split} \hat{C}_t &= \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) & (\text{"local" context, only up to immediately preceding state}) \\ i_t &= \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) & (\text{how much to take in the local context}) \\ f_t &= \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) & (\text{how much to forget the previous context}) \\ o_t &= \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) & (\text{how much to output}) \\ C_t &= C_{t-1} \odot f_t + \hat{C}_t \odot i_t & (\text{a modulated additive update for context}) \\ h_t &= \tanh(C_t) \odot o_t & (\text{transform context into state and selectively output}) \end{split}$$

- Note: ⊙ represents elementwise vector product. Also, state updates now additive, not multiplicative. Training using backpropagation through time.
- Many variants of LSTM exists, e.g., using C_{t-1} in local computations, Gated Recurrent Units (GRU), etc. Mostly minor variations of basic LSTM above

Machine Learning (CS771A)

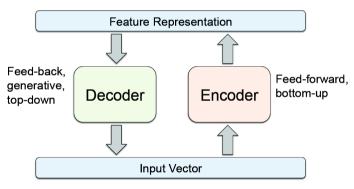
Neural Nets for Unsupervised Learning

-

イロト イポト イヨト イヨト

Autoencoder

- A neural net for unsupervised feature extraction
- Basic principle: Learns an encoding of the inputs so as to recover the original input from the encodings as well as possible



• Also used to initialize deep learning models (layer-by-layer pre-training)

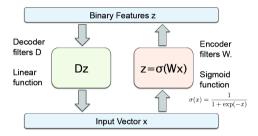
Machine Learning (CS771A)

-

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Autoencoder: An Example

• Real-valued inputs, binary-valued encodings



- Sigmoid encoder (parameter matrix W), linear decoder (parameter matrix D), learned via: $\arg\min_{D,W} E(D,W) = \sum_{n=1}^{N} ||D\mathbf{z}_n - \mathbf{x}_n||^2 = \sum_{n=1}^{N} ||D\sigma(W\mathbf{x}_n) - \mathbf{x}_n||^2$
- If encoder is also linear, then autoencoder is equivalent to PCA

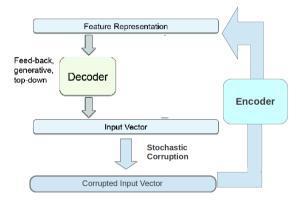
Machine Learning (CS771A)

-

イロト 不得 トイヨト イヨト

Denoising Autoencoders

- Idea: introduce stochastic corruption to the input; e.g.:
 - Hide some features
 - Add gaussian noise



3

イロト 不得下 不良下 不良下

• Looked at feedforward neural networks and extensions such as CNN

3

イロト 不得下 不良下 不良下

- Looked at feedforward neural networks and extensions such as CNN
- Looked at (deep) neural nets (RNN/LSTM) for learning from sequential data
 - Methods like RNN and LSTM are widely used for learning from such data
 - Modeling and retaining context is important when modeling sequential data (desirable to have a "memory module" of some sort as in LSTMs)

-

イロト イポト イヨト イヨト

- Looked at feedforward neural networks and extensions such as CNN
- Looked at (deep) neural nets (RNN/LSTM) for learning from sequential data
 - Methods like RNN and LSTM are widely used for learning from such data
 - Modeling and retaining context is important when modeling sequential data (desirable to have a "memory module" of some sort as in LSTMs)
- Looked at Autoencoder Neural network for unsupervised feature extraction

-

- Looked at feedforward neural networks and extensions such as CNN
- Looked at (deep) neural nets (RNN/LSTM) for learning from sequential data
 - Methods like RNN and LSTM are widely used for learning from such data
 - Modeling and retaining context is important when modeling sequential data (desirable to have a "memory module" of some sort as in LSTMs)
- Looked at Autoencoder Neural network for unsupervised feature extraction
- Didn't discuss some other popular methods, e.g., deep generative models, but these are based on similar underlying principles