Course Logistics and Introduction to Machine Learning

Piyush Rai

Machine Learning (CS771A)

July 28, 2016
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101

Machine Learning (CS771A) Course Logistics and Introduction to Machine Learning
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101
- **Course website:** http://goo.gl/IrN4N1. Please bookmark it.
- **Instructor:** Piyush Rai (Email: piyush@cse.iitk.ac.in)
- **Discussion site:** Use Piazza (https://goo.gl/Kkb0vX). Please register.

Background assumed: basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB).

Grading:

- 4 homework assignments: 40%
- Midterm exam: 20%
- Final exam: 20%
- Project: 20% (to be done in groups of 4-5; more details forthcoming)

Note: Exams will be closed-book (an A4 size cheat-sheet allowed)

Textbook:

- No official textbook required
- Required reading material will be provided on the class webpage

Auditing?

Please let me know your email id to be added to the mailing list.
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101
- **Course website:** http://goo.gl/IrN4N1. Please bookmark it.
- **Instructor:** Piyush Rai (Email: piyush@cse.iitk.ac.in)
- **Discussion site:** Use Piazza (https://goo.gl/Kkb0vX). Please register.
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB).
- **Grading:**
 - 4 homework assignments: 40%
 - Midterm exam: 20%
 - Final exam: 20%
 - Project: 20% (to be done in groups of 4-5; more details forthcoming)
 - Note: Exams will be closed-book (an A4 size cheat-sheet allowed)
- **Textbook:** No official textbook required
 - Required reading material will be provided on the class webpage
- **Auditing?** Please let me know your email id to be added to the mailing list.
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101
- **Course website:** http://goo.gl/IrN4N1. Please bookmark it.
- **Instructor:** Piyush Rai (Email: piyush@cse.iitk.ac.in)
- **Discussion site:** Use Piazza (https://goo.gl/Kkb0vX). Please register.
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB).

Grading:
- 4 homework assignments: 40%, Midterm exam: 20%, Final exam: 20%
- Project: 20% (to be done in groups of 4-5; more details forthcoming)

Note: Exams will be closed-book (an A4 size cheat-sheet allowed)

Textbook: No official textbook required. Required reading material will be provided on the class webpage.

Auditing? Please let me know your email id to be added to the mailing list.
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101
- **Course website:** http://goo.gl/IrN4N1. Please bookmark it.
- **Instructor:** Piyush Rai (Email: piyush@cse.iitk.ac.in)
- **Discussion site:** Use Piazza (https://goo.gl/Kkb0vX). Please register.
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB).
- **Grading:**
 - 4 homework assignments: 40%, Midterm exam: 20%, Final exam: 20%
 - Project: 20% (to be done in groups of 4-5; more details forthcoming)
 - Note: Exams will be closed-book (an A4 size cheat-sheet allowed)

Auditing? Please let me know your email id to be added to the mailing list.
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101
- **Course website:** http://goo.gl/IrN4N1. Please bookmark it.
- **Instructor:** Piyush Rai (Email: piyush@cse.iitk.ac.in)
- **Discussion site:** Use Piazza (https://goo.gl/Kkb0vX). Please register.
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB).
- **Grading:**
 - 4 homework assignments: 40%, Midterm exam: 20%, Final exam: 20%
 - Project: 20% (to be done in groups of 4-5; more details forthcoming)
 - Note: Exams will be closed-book (an A4 size cheat-sheet allowed)
- **Textbook:** No official textbook required
 - Required reading material will be provided on the class webpage
Course Logistics

- **Timing and Venue:** WF 6:00-7:30pm, RM 101
- **Course website:** http://goo.gl/IrN4N1. Please bookmark it.
- **Instructor:** Piyush Rai (Email: piyush@cse.iitk.ac.in)
- **Discussion site:** Use Piazza (https://goo.gl/Kkb0vX). Please register.
- **Background assumed:** basics of linear algebra, multivariate calculus, probability and statistics, optimization, programming (MATLAB).
- **Grading:**
 - 4 homework assignments: 40%, Midterm exam: 20%, Final exam: 20%
 - Project: 20% (to be done in groups of 4-5; more details forthcoming)
 - Note: Exams will be closed-book (an A4 size cheat-sheet allowed)
- **Textbook:** No official textbook required
 - Required reading material will be provided on the class webpage
- **Auditing?** Please let me know your email id to be added to the mailing list.
Intro to Machine Learning
Machine Learning

- Creating programs that can automatically learn rules from data

 "Field of study that gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)
Machine Learning

- Creating programs that can automatically **learn rules** from data

 "Field of study that gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

- Traditional algorithms vs Machine Learning algorithms:
 - Traditional: Write programs using hard-coded (fixed) rules

![Diagram showing hard-coded rules vs machine learning](image)
Machine Learning

• Creating programs that can automatically learn rules from data
 “Field of study that gives computers the ability to learn without being explicitly programmed” (Arthur Samuel, 1959)

• Traditional algorithms vs Machine Learning algorithms:
 • Traditional: Write programs using hard-coded (fixed) rules
 • Machine Learning (ML): Learn rules by looking at some training data

![Diagram showing hard-coded rules vs learned rules]
Machine Learning

- Creating programs that can automatically **learn rules** from data

 "Field of study that gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

- Traditional algorithms vs Machine Learning algorithms:
 - Traditional: Write programs using hard-coded (fixed) rules
 - Machine Learning (ML): **Learn rules** by looking at some training data

- Learned rules must generalize (do well) on future "test" data (idea of **generalization**; more later)
Machine Learning in the real-world

Broadly applicable in many domains (e.g., internet, robotics, healthcare and biology, computer vision, NLP, databases, computer systems, finance, etc.).

Machine Learning in the real-world

Some real-world applications

- Information retrieval (text, visual, and multimedia searches)
- Machine Translation
- Question Answering
- Social networks
- Recommender systems (Amazon, Netflix, etc.)
- Speech/handwriting/object recognition
- Ad placement on websites
- Credit-card fraud detection
- Weather prediction
- Autonomous vehicles (self-driving cars)
- Healthcare and life-sciences
- .. and many more applications in sciences and engineering
Supervised Learning

- Given: Training data as labeled instances \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \)
- Goal: Learn a rule \(f : x \rightarrow y \) to predict outputs \(y \) for new inputs \(x \)
Supervised Learning

- Given: Training data as labeled instances \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \)
- Goal: Learn a rule \(f : x \rightarrow y \) to predict outputs \(y \) for new inputs \(x \)
- Real-valued outputs (e.g., price of a house): **Regression**

![Housing price prediction diagram]

Price ($) in 1000's

- Size in feet²

Machine Learning (CS771A)

Course Logistics and Introduction to Machine Learning
Supervised Learning

- Given: Training data as labeled instances \{ (x_1, y_1), \ldots, (x_N, y_N) \}
- Goal: Learn a rule \(f : x \rightarrow y \) to predict outputs \(y \) for new inputs \(x \)
- Real-valued outputs (e.g., price of a house): **Regression**

![Housing price prediction](image)

- Discrete-valued outputs (e.g., label of a hand-written digit): **Classification**

![Hand-written digit image](image)
Supervised Learning: Pictorially

- Regression: fitting a line/non-linear curve
Supervised Learning: Pictorially

- **Regression:** fitting a line/non-linear curve

- **Classification:** finding a linear/nonlinear separator
Supervised Learning: Pictorially

- **Regression**: fitting a line/non-linear curve

- **Classification**: finding a linear/nonlinear separator

- **Generalization** is crucial (must do well on test data)
Generalization

- The right model complexity?

![Graphs showing different model complexities](image-url)
Generalization

- The right model complexity?

- Desired: hypotheses that are not too simple, not too complex (to avoid overfitting on training data)
Unsupervised Learning

- Given: Training data in form of *unlabeled instances* \(\{x_1, \ldots, x_N\} \)
- Goal: Learn the *intrinsic latent structure* that summarizes/explains data
Unsupervised Learning

- Given: Training data in form of unlabeled instances \(\{x_1, \ldots, x_N\} \)
- Goal: Learn the intrinsic latent structure that summarizes/explains data
- Homogeneous groups as latent structure: **Clustering**
Unsupervised Learning

- Given: Training data in form of unlabeled instances \(\{x_1, \ldots, x_N\} \)
- Goal: Learn the intrinsic latent structure that summarizes/explains data
- Homogeneous groups as latent structure: **Clustering**

- Low-dimensional latent structure: **Dimensionality Reduction**
Unsupervised Learning: Some examples

- Clustering large collections of images

![Diagram](image_database_clustering.png)

Topic model picture courtesy: David Blei
Unsupervised Learning: Some examples

- Clustering large collections of images

- Topic discovery in large collections of text data
Unsupervised Learning: Some examples

- Clustering large collections of images

- Topic discovery in large collections of text data

- Also used as a preprocessing step for many supervised learning algorithms (e.g., to learn/extract good features, to speed up the algorithms, etc.)
Some Other Learning Paradigms

- **Online Learning**
 - Learning with one example (or a small minibatch of examples) at a time

![Diagram showing streaming of examples with a learning algorithm](image)
Some Other Learning Paradigms

- **Online Learning**
 - Learning with one example (or a small minibatch of examples) at a time

- **Reinforcement Learning**
 - Learning a “policy” by performing actions and getting rewards
Some Other Learning Paradigms

- **Online Learning**
 - Learning with one example (or a small minibatch of examples) at a time

- **Reinforcement Learning**
 - Learning a “policy” by performing actions and getting rewards

- **Transfer/Multitask Learning**
 - Leveraging knowledge of solving one problem to solve a new problem
(Tentative) List of topics

- Supervised Learning
 - nearest-neighbors methods, decision trees
 - linear/non-linear regression and classification

- Unsupervised Learning
 - Clustering and density estimation
 - Dimensionality reduction and manifold learning
 - Latent factor models and matrix factorization

- Online Learning

- Learning Theory

- Ensemble Methods

- Deep Learning

- Learning from time-series data
Course Goals

By the end of the semester, you should be able to:

- **Understand** how various machine learning algorithms work
- **Implement** them (and, hopefully, their variants/improvements) on your own
- Look at a real-world problem and **identify** if ML is an appropriate solution
- If so, identify what types of algorithms might be applicable
- Feel inspired to work on and **learn more** about Machine Learning :-)

This class is **not** about:

- Introduction to machine learning tools/softwares