Practical Issues: Model/Feature Selection and Debugging Learning Algorithms

Piyush Rai

Machine Learning (CS771A)

Oct 19, 2016
Model Selection
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g., K-Nearest Neighbors: Different choices of K
- Decision Trees: Different choices of the number of levels/leaves
- Polynomial Regression: Polynomials with different degrees
- Kernel Methods: Different choices of kernels
- Regularized Models: Different choices of the regularization hyperparameter
- Different types of learning models (e.g., SVM, KNN, DT, etc.)

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., "how many clusters" when doing clustering)
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - Polynomial Regression: Polynomials with different degrees
 - Kernel Methods: Different choices of kernels
 - Regularized Models: Different choices of the regularization hyperparameter
 - Different types of learning models (e.g., SVM, KNN, DT, etc.)

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., “how many clusters” when doing clustering)
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., “how many clusters” when doing clustering).
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - Polynomial Regression: Polynomials with different degrees
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - Polynomial Regression: Polynomials with different degrees
 - Kernel Methods: Different choices of kernels

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., “how many clusters” when doing clustering).
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - Polynomial Regression: Polynomials with different degrees
 - Kernel Methods: Different choices of kernels
 - Regularized Models: Different choices of the regularization hyperparameter

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., “how many clusters” when doing clustering)
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - Polynomial Regression: Polynomials with different degrees
 - Kernel Methods: Different choices of kernels
 - Regularized Models: Different choices of the regularization hyperparameter

- Different types of learning models (e.g., SVM, KNN, DT, etc.)
What is Model Selection?

Given a set of models $\mathcal{M} = \{M_1, M_2, \ldots, M_R\}$, choose the model that is expected to do the best on the test data. The set \mathcal{M} may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - Polynomial Regression: Polynomials with different degrees
 - Kernel Methods: Different choices of kernels
 - Regularized Models: Different choices of the regularization hyperparameter

- Different types of learning models (e.g., SVM, KNN, DT, etc.)

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., “how many clusters” when doing clustering)
Set aside a fraction of the training data. This will be our held-out data.

Other names: validation/development data.
Held-out Data

- Set aside a fraction of the training data. This will be our held-out data.
 - Other names: validation/development data.

- **Remember:** Held-out data is NOT the test data. DO NOT peek into the test data during training.
Held-out Data

- Set aside a fraction of the training data. This will be our held-out data.
 - Other names: validation/development data.

- **Remember**: Held-out data is NOT the test data. **DO NOT** peek into the test data during training.
- Train each model using the remaining training data.
Held-out Data

- Set aside a fraction of the training data. This will be our held-out data.
 - Other names: validation/development data.

- **Remember**: Held-out data is NOT the test data. DO NOT peek into the test data during training.
- Train each model using the remaining training data.
- Evaluate error on the held-out data (**cross-validation**).
Held-out Data

- Set aside a fraction of the training data. This will be our held-out data.
 - Other names: validation/development data.

- **Remember**: Held-out data is NOT the test data. DO NOT peek into the test data during training.
- Train each model using the remaining training data.
- Evaluate error on the held-out data (**cross-validation**).
- Choose the model with the smallest held-out error.
Held-out Data

- Set aside a fraction of the training data. This will be our held-out data.
 - Other names: validation/development data.

- **Remember:** Held-out data is NOT the test data. **DO NOT** peek into the test data during training.
- Train each model using the remaining training data.
- Evaluate error on the held-out data (**cross-validation**).
- Choose the model with the smallest held-out error.

Problems:
- Wastes training data. Typically used when we have plenty of training data.
Held-out Data

- Set aside a fraction of the training data. This will be our held-out data.
 - Other names: validation/development data.

- **Remember:** Held-out data is NOT the test data. DO NOT peek into the test data during training.
- Train each model using the remaining training data.
- Evaluate error on the held-out data (**cross-validation**).
- Choose the model with the smallest held-out error.

Problems:
- Wastes training data. Typically used when we have plenty of training data.
- What if there was an unfortunate train/held-out split?
K-fold Cross-Validation

- Create K (e.g., 5 or 10) equal sized partitions of the training data
- Each partition has N/K examples
- Train using $K - 1$ partitions, validate on the remaining partition
- Repeat this K times, each with a different validation partition
K-fold Cross-Validation

- Create K (e.g., 5 or 10) equal sized partitions of the training data
- Each partition has N/K examples
- Train using $K - 1$ partitions, validate on the remaining partition
- Repeat this K times, each with a different validation partition

- Average the K validation errors
K-fold Cross-Validation

- Create K (e.g., 5 or 10) equal sized partitions of the training data
- Each partition has N/K examples
- Train using $K - 1$ partitions, validate on the remaining partition
- Repeat this K times, each with a different validation partition

- Average the K validation errors
- Choose the model that gives the smallest average validation error
Leave-One-Out (LOO) Cross-Validation

Special case of K-fold CV when $K = N$

- Each partition is now a single example
- Train using $N - 1$ examples, validate on the remaining example
- Repeat the same N times, each with a different validation example

![Diagram](image-url)
Leave-One-Out (LOO) Cross-Validation

Special case of K-fold CV when $K = N$

- Each partition is now a single example
- Train using $N - 1$ examples, validate on the remaining example
- Repeat the same N times, each with a different validation example

- Average the N validation errors. Choose the model with smallest error
Leave-One-Out (LOO) Cross-Validation

Special case of K-fold CV when $K = N$

- Each partition is now a single example
- Train using $N - 1$ examples, validate on the remaining example
- Repeat the same N times, each with a different validation example

- Average the N validation errors. Choose the model with smallest error
- Can be expensive in general, especially for large N
 - But very efficient when used for selecting the number of neighbors to consider in nearest neighbor methods
Leave-One-Out (LOO) Cross-Validation

Special case of K-fold CV when $K = N$

- Each partition is now a single example
- Train using $N - 1$ examples, validate on the remaining example
- Repeat the same N times, each with a different validation example

Average the N validation errors. Choose the model with smallest error

Can be expensive in general, especially for large N

- But very efficient when used for selecting the number of neighbors to consider in nearest neighbor methods (reason: NN methods require no training)
Random Subsampling based Cross-Validation

- Subsample a fixed fraction $\alpha N \ (0 < \alpha < 1)$ as examples as validation set

Train using the rest of the examples, calculate the validation error

Repeat K times, each with a different, randomly chosen validation set

Average the K validation errors. Choose the model with smallest error
Random Subsampling based Cross-Validation

- Subsample a fixed fraction $\alpha N \ (0 < \alpha < 1)$ as examples as validation set
- Train using the rest of the examples, calculate the validation error

Repeat K times, each with a different, randomly chosen validation set

Average the K validation errors. Choose the model with smallest error
Random Subsampling based Cross-Validation

- Subsample a fixed fraction αN ($0 < \alpha < 1$) as examples as validation set.
- Train using the rest of the examples, calculate the validation error.
- Repeat K times, each with a different, randomly chosen validation set.
Random Subsampling based Cross-Validation

- Subsample a fixed fraction αN ($0 < \alpha < 1$) as examples as validation set
- Train using the rest of the examples, calculate the validation error
- Repeat K times, each with a different, randomly chosen validation set

![Diagram showing random subsampling and cross-validation runs](image-url)
Random Subsampling based Cross-Validation

- Subsample a fixed fraction αN ($0 < \alpha < 1$) as examples as validation set
- Train using the rest of the examples, calculate the validation error
- Repeat K times, each with a different, randomly chosen validation set

Average the K validation errors. Choose the model with smallest error
The Bootstrap

- Idea: Given N examples, sample N elements \textit{with replacement}
 - An already chosen example could be picked again

\[\text{Fraction of examples not picked: } \left(1 - \frac{1}{N}\right)^N \approx e^{-1} \approx 0.368 \]

Training data is inherently small \Rightarrow error estimate may be pessimistic

Use the following equation to compute the expected model error

\[\text{err} = 0.632 \times \text{err}_{\text{test-examples}} + 0.368 \times \text{err}_{\text{training-examples}} \]
The Bootstrap

- Idea: Given N examples, sample N elements **with replacement**
 - An already chosen example could be picked again
- Use these N examples (with possible repeats) as the training data
The Bootstrap

- **Idea:** Given N examples, sample N elements *with replacement*
 - An already chosen example could be picked again

- Use these N examples (with possible repeats) as the training data

- Use the set of examples not selected as the validation data

For large N, training data consists of about only 63% unique examples.

Fraction of examples not picked:

$$\left(1 - \frac{1}{N}\right)^N \approx e^{-1} \approx 0.368$$

Training data is inherently small \Rightarrow error estimate may be pessimistic

Use the following equation to compute the expected model error

$$\text{err} = 0.632 \times \text{err}_{\text{test-examples}} + 0.368 \times \text{err}_{\text{training-examples}}$$
The Bootstrap

- Idea: Given \(N \) examples, sample \(N \) elements \textbf{with replacement}
 - An already chosen example could be picked again
- Use these \(N \) examples (with possible repeats) as the training data
- Use the set of examples not selected as the validation data
- For large \(N \), training data consists of about only 63% \textit{unique} examples

\[
\text{Fraction of examples not picked: } \left(1 - \frac{1}{N}\right)^N \approx e^{-1} \approx 0.368
\]

- Training data is \textit{inherently} small \(\Rightarrow \) error estimate may be \textbf{pessimistic}
The Bootstrap

- Idea: Given N examples, sample N elements **with replacement**
 - An already chosen example could be picked again
- Use these N examples (with possible repeats) as the training data
- Use the set of examples not selected as the validation data
- For large N, training data consists of about only 63% *unique* examples

Fraction of examples not picked: \[
\left(1 - \frac{1}{N}\right)^N \approx e^{-1} \approx 0.368
\]

- Training data is *inherently* small \Rightarrow error estimate may be **pessimistic**
- Use the following equation to compute the expected model error

\[
err = 0.632 \times err_{\text{test-examples}} + 0.368 \times err_{\text{training-examples}}
\]
Information Criteria based methods

- Akaike Information Criteria (AIC) \[AIC = 2k - 2 \log(L) \]
- Bayesian Information Criteria (BIC) \[BIC = k \log(N) - 2 \log(L) \]

- \(k \): # of model parameters
- \(L \): maximum value of the likelihood of the model

Applicable for probabilistic models (when likelihood is defined)

AIC/BIC penalize model complexity as measured by the number of model parameters

BIC penalizes the number of parameters more than AIC

Model with the lowest AIC/BIC will be chosen

Can be used even for model selection in unsupervised learning
Information Criteria based methods

- Akaike Information Criteria (AIC) \[AIC = 2k - 2 \log(\mathcal{L}) \]
- Bayesian Information Criteria (BIC) \[BIC = k \log(N) - 2 \log(\mathcal{L}) \]

- \(k \): # of model parameters
- \(\mathcal{L} \): maximum value of the likelihood of the model
- Applicable for probabilistic models (when likelihood is defined)
Information Criteria based methods

- Akaike Information Criteria (AIC)
 \[AIC = 2k - 2\log(\mathcal{L}) \]

- Bayesian Information Criteria (BIC)
 \[BIC = k \log(N) - 2\log(\mathcal{L}) \]

- \(k \): # of model parameters

- \(\mathcal{L} \): maximum value of the likelihood of the model

- Applicable for probabilistic models (when likelihood is defined)

- AIC/BIC penalize model complexity
 - .. as measured by the number of model parameters

BIC penalizes the number of parameters more than AIC

Model with the lowest AIC/BIC will be chosen

Can be used even for model selection in unsupervised learning
Information Criteria based methods

- Akaike Information Criteria (AIC)
 \[AIC = 2k - 2 \log(\mathcal{L}) \]

- Bayesian Information Criteria (BIC)
 \[BIC = k \log(N) - 2 \log(\mathcal{L}) \]

- \(k \): # of model parameters
- \(\mathcal{L} \): maximum value of the likelihood of the model
- Applicable for probabilistic models (when likelihood is defined)
- AIC/BIC penalize model complexity
 - .. as measured by the number of model parameters
 - BIC penalizes the number of parameters more than AIC
Information Criteria based methods

- Akaike Information Criteria (AIC)
 \[AIC = 2k - 2 \log(\mathcal{L}) \]
- Bayesian Information Criteria (BIC)
 \[BIC = k \log(N) - 2 \log(\mathcal{L}) \]

- \(k \): # of model parameters
- \(\mathcal{L} \): maximum value of the likelihood of the model
- Applicable for probabilistic models (when likelihood is defined)
- AIC/BIC penalize model complexity
 - .. as measured by the number of model parameters
 - BIC penalizes the number of parameters more than AIC
- Model with the lowest AIC/BIC will be chosen

Can be used even for model selection in unsupervised learning
Information Criteria based methods

- Akaike Information Criteria (AIC) \[AIC = 2k - 2\log(L) \]
- Bayesian Information Criteria (BIC) \[BIC = k \log(N) - 2\log(L) \]

- \(k \): # of model parameters
- \(L \): maximum value of the likelihood of the model
- Applicable for probabilistic models (when likelihood is defined)
- AIC/BIC penalize model complexity
 - .. as measured by the number of model parameters
 - BIC penalizes the number of parameters more than AIC
- Model with the lowest AIC/BIC will be chosen
- Can be used even for model selection in unsupervised learning
Feature Selection
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

- Some algorithms scale poorly with increased dimension (# of features)
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization

Note:

Feature Selection is different from Feature Extraction

The latter transforms original features to get a small set of new features (e.g., PCA or other dimensionality reduction methods)
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

Some algorithms scale poorly with increased dimension (# of features)
Irrelevant features can confuse some algorithms
Redundant features adversely affect regularization

Feature selection can help reduce data set size and resulting model size

Note:
Feature Selection is different from Feature Extraction
The latter transforms original features to get a small set of new features (e.g., PCA or other dimensionality reduction methods)
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

- Some algorithms scale poorly with increased dimension (\# of features)
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

- Some algorithms scale poorly with increased dimension (# of features)
- Irrelevant features can confuse some algorithms

Note:

Feature Selection is different from Feature Extraction

The latter transforms original features to get a small set of new features (e.g., PCA or other dimensionality reduction methods)
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

- Some algorithms scale poorly with increased dimension (number of features)
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization

Note: Feature Selection is different from Feature Extraction.
The latter transforms original features to get a small set of new features (e.g., PCA or other dimensionality reduction methods).
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

- Some algorithms scale poorly with increased dimension (# of features)
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Feature selection can help reduce data set size and resulting model size

Note:

Feature Selection is different from Feature Extraction
The latter transforms original features to get a small set of new features (e.g., PCA or other dimensionality reduction methods)
Feature Selection

Selecting a useful subset of features from all the features

Why Feature Selection?

- Some algorithms scale poorly with increased dimension (number of features)
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Feature selection can help reduce data set size and resulting model size

Note: Feature Selection is different from Feature Extraction

- The latter transforms original features to get a small set of new features (e.g., PCA or other dimensionality reduction methods)
Feature Selection Methods

- Methods agnostic to the learning algorithm
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
 - Filter Feature Selection methods
 - Use some **ranking criteria** to rank features
 - Select the **top ranking features**
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
 - Filter Feature Selection methods
 - Use some **ranking criteria** to rank features
 - Select the **top ranking features**
- Wrapper Methods (keep the learning algorithm in the loop)
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it's ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
 - Filter Feature Selection methods
 - Use some **ranking criteria** to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
 - Can be **computationally expensive**
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
 - Filter Feature Selection methods
 - Use some **ranking criteria** to rank features
 - Select the **top ranking features**

- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
 - Can be **computationally expensive**

- Learning algorithms that can identify the relevant features (e.g., sparse models with ℓ_1 regularization on the weight vector)
Feature Selection Methods

- Methods **agnostic** to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if it’s ON in very few or most examples
 - In general, features that have low variance across examples can be discarded
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
 - Can be **computationally expensive**
- Learning algorithms that can identify the relevant features (e.g., sparse models with ℓ_1 regularization on the weight vector)

(Also see: “An Introduction to Variable and Feature Selection” by Guyon and Elisseeff)
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria:

\[R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d) \text{var}(Y)}} \]

Mutual Information Criteria:

\[\text{MI}(X_d, Y) = \sum_{X_d \in \{0, 1\}} \sum_{Y \in \{0, 1\}} P(X_d, Y) \log \frac{P(X_d, Y)}{P(X_d)P(Y)} \]

High mutual information mean high relevance of that feature

Note: These probabilities can be easily estimated from the data
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria:

$$R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d)} \sqrt{\text{var}(Y)}}$$

Mutual Information Criteria:

$$\text{MI}(X_d, Y) = \sum_{X_d \in \{0, 1\}} \sum_{Y \in \{0, 1\}} P(X_d, Y) \log \frac{P(X_d, Y)}{P(X_d)P(Y)}$$

High mutual information means high relevance of that feature.

Note: These probabilities can be easily estimated from the data.
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria: Rank features in order of their correlation with labels

\[
R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d) \text{var}(Y)}}
\]

High mutual information means high relevance of that feature

Note: These probabilities can be easily estimated from the data

Various other statistical tests exist, e.g., χ^2 test
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria: Rank features in order of their correlation with labels

\[
R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d)\text{var}(Y)}}
\]

Mutual Information Criteria:

\[
MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{0,1\}} P(X_d, Y) \log \frac{P(X_d, Y)}{P(X_d)P(Y)}
\]

High mutual information means high relevance of that feature

Note: These probabilities can be easily estimated from the data
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria: Rank features in order of their correlation with labels

\[
R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d)\text{var}(Y)}}
\]

Mutual Information Criteria:

\[
\text{MI}(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{0,1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d)P(Y)}
\]

- High mutual information mean high relevance of that feature
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria: Rank features in order of their correlation with labels

\[R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d)\text{var}(Y)}} \]

Mutual Information Criteria:

\[MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{0,1\}} P(X_d, Y) \log \frac{P(X_d, Y)}{P(X_d)P(Y)} \]

- High mutual information mean high relevance of that feature
- Note: These probabilities can be easily estimated from the data
Filter Feature Selection

- Uses statistical tests to measure relevance of each feature individually

Correlation Criteria: Rank features in order of their correlation with labels

\[R(X_d, Y) = \frac{\text{cov}(X_d, Y)}{\sqrt{\text{var}(X_d)\text{var}(Y)}} \]

Mutual Information Criteria:

\[MI(X_d, Y) = \sum_{X_d \in \{0,1\}} \sum_{Y \in \{0,1\}} P(X_d, Y) \frac{\log P(X_d, Y)}{P(X_d)P(Y)} \]

- High mutual information mean high relevance of that feature
- Note: These probabilities can be easily estimated from the data

- Various other statistical tests exist, e.g., χ^2 test
Wrapper Methods

- **Forward Search**
 - Let $\mathcal{F} = \{\}$

- **Backward Search**
 - Let $\mathcal{F} = \{\text{all features}\}$

In practice, these methods can be expensive. Also myopic and sub-optimal because the adding/removing of features is greedy.
Wrapper Methods

- **Forward Search**
 - Let $\mathcal{F} = \{\}$
 - While not selected desired number of features
 - For each unused feature f:
 - Estimate model's error on feature set $\mathcal{F} \cup f$ (using cross-validation)
 - Add f with lowest error to \mathcal{F}

- **Backward Search**
 - Let $\mathcal{F} = \{\text{all features}\}$
 - While not reduced to desired number of features
 - For each feature $f \in \mathcal{F}$:
 - Estimate model's error on feature set $\mathcal{F} \setminus f$ (using cross-validation)
 - Remove f with lowest error from \mathcal{F}

In practice, these methods can be expensive. Also myopic and sub-optimal because the adding/removing of features is greedy.
Wrapper Methods

Forward Search

- Let $\mathcal{F} = \{\}$
- While not selected desired number of features
- For each unused feature f:
 - Estimate model's error on feature set $\mathcal{F} \cup f$ (using cross-validation)

Backward Search

- Let $\mathcal{F} = \{\text{all features}\}$
- While not reduced to desired number of features
- For each feature $f \in \mathcal{F}$:
 - Estimate model's error on feature set $\mathcal{F} \setminus f$ (using cross-validation)
 - Remove f with lowest error from \mathcal{F}

In practice, these methods can be expensive. Also myopic and sub-optimal because the adding/removing of features is greedy.
Wrapper Methods

- **Forward Search**
 - Let $\mathcal{F} = \{\}$
 - While not selected desired number of features
 - For each unused feature f:
 - Estimate model’s error on feature set $\mathcal{F} \cup f$ (using cross-validation)
 - Add f with lowest error to \mathcal{F}

- **Backward Search**
 - Let $\mathcal{F} = \{\text{all features}\}$
Wrapper Methods

- **Forward Search**
 - Let $\mathcal{F} = \{\}$
 - While not selected desired number of features
 - For each unused feature f:
 - Estimate model’s error on feature set $\mathcal{F} \cup f$ (using cross-validation)
 - Add f with lowest error to \mathcal{F}

- **Backward Search**
 - Let $\mathcal{F} = \{\text{all features}\}$
 - While not reduced to desired number of features
 - For each feature $f \in \mathcal{F}$:
Wrapper Methods

- **Forward Search**
 - Let $\mathcal{F} = \{\}$
 - While not selected desired number of features
 - For each unused feature f:
 - Estimate model’s error on feature set $\mathcal{F} \cup f$ (using cross-validation)
 - Add f with lowest error to \mathcal{F}

- **Backward Search**
 - Let $\mathcal{F} = \{\text{all features}\}$
 - While not reduced to desired number of features
 - For each feature $f \in \mathcal{F}$:
 - Estimate model’s error on feature set $\mathcal{F} \setminus f$ (using cross-validation)
Wrapper Methods

- **Forward Search**
 - Let $\mathcal{F} = \{\}$
 - While not selected desired number of features
 - For each unused feature f:
 - Estimate model’s error on feature set $\mathcal{F} \cup f$ (using cross-validation)
 - Add f with lowest error to \mathcal{F}

- **Backward Search**
 - Let $\mathcal{F} = \{\text{all features}\}$
 - While not reduced to desired number of features
 - For each feature $f \in \mathcal{F}$:
 - Estimate model’s error on feature set $\mathcal{F} \setminus f$ (using cross-validation)
 - Remove f with lowest error from \mathcal{F}

In practice, these methods can be expensive. Also myopic and sub-optimal because the adding/removing of features is greedy.
Debugging Learning Algorithms
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?

- Use more training examples to train the model?
- Use a smaller number of features?
- Introduce new features (can be combinations of existing features)?
- Try tuning the regularization parameter?
- Run (the iterative) optimizer longer, i.e., for more iterations?
- Change the optimization algorithm (e.g., GD to SGD or Newton..)?
- Give up and switch to a different model (e.g., SVM)?

How to know what might be going wrong and how to debug?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn't doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
 - Run (the iterative) optimizer longer, i.e., for more iterations?
 - Change the optimization algorithm (e.g., GD to SGD or Newton..)?
 - Give up and switch to a different model (e.g., SVM)?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven
- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
A notoriously hard problem in general

- Note that code for ML algorithms is not procedural but data-driven

What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?

- Use more training examples to train the model?
- Use a smaller number of features?
- Introduce new features (can be combinations of existing features)?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
 - Run (the iterative) optimizer longer, i.e., for more iterations?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
 - Run (the iterative) optimizer longer, i.e., for more iterations?
 - Change the optimization algorithm (e.g., GD to SGD or Newton..)?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
 - Run (the iterative) optimizer longer, i.e., for more iterations?
 - Change the optimization algorithm (e.g., GD to SGD or Newton..)?
 - Give up and switch to a different model (e.g., SVM)?
Debugging Learning Algorithms

- A notoriously hard problem in general
 - Note that code for ML algorithms is not procedural but data-driven

- What to do when our model (say logistic regression) isn’t doing well (i.e., giving an acceptable level of test accuracy) but you are confident that your implementation is otherwise correct?
 - Use more training examples to train the model?
 - Use a smaller number of features?
 - Introduce new features (can be combinations of existing features)?
 - Try tuning the regularization parameter?
 - Run (the iterative) optimizer longer, i.e., for more iterations?
 - Change the optimization algorithm (e.g., GD to SGD or Newton..)?
 - Give up and switch to a different model (e.g., SVM)?

- How to know what might be going wrong and how to debug?
Bias-Variance Decomposition

- For some model $y = f(x) + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$, given its estimate \hat{f} learned by a “learner” using a finite training set, the following decomposition holds

$$
\mathbb{E}[(y - \hat{f}(x))^2] = \text{Bias}[\hat{f}(x)]^2 + \text{Var}[\hat{f}(x)] + \sigma^2
$$

- Note: The above expectation is over all choices of training sets
Bias-Variance Decomposition

- For some model $y = f(x) + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$, given its estimate \hat{f} learned by a “learner” using a finite training set, the following decomposition holds:

$$\mathbb{E}[(y - \hat{f}(x))^2] = \text{Bias}[\hat{f}(x)]^2 + \text{Var}[\hat{f}(x)] + \sigma^2$$

- Note: The above expectation is over all choices of training sets.

- $\text{Bias}[\hat{f}(x)] = \mathbb{E}[\hat{f}(x) - f(x)]:$ Error due to wrong (perhaps too simple) model.
Bias-Variance Decomposition

- For some model $y = f(x) + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$, given its estimate \hat{f} learned by a “learner” using a finite training set, the following decomposition holds

$$\mathbb{E}[(y - \hat{f}(x))^2] = \text{Bias}[\hat{f}(x)]^2 + \text{Var}[\hat{f}(x)] + \sigma^2$$

- Note: The above expectation is over all choices of training sets

- $\text{Bias}[\hat{f}(x)] = \mathbb{E}[\hat{f}(x) - f(x)]:$ Error due to wrong (perhaps too simple) model

- $\text{Var}[\hat{f}(x)] = \mathbb{E}[\hat{f}(x)^2] - \mathbb{E}[\hat{f}(x)]^2:$ Learner’s sensitivity to choice of training set
For some model $y = f(x) + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$, given its estimate \hat{f} learned by a “learner” using a finite training set, the following decomposition holds:

$$E[(y - \hat{f}(x))^2] = \text{Bias}[\hat{f}(x)]^2 + \text{Var}[\hat{f}(x)] + \sigma^2$$

- Note: The above expectation is over all choices of training sets
- $\text{Bias}[\hat{f}(x)] = E[\hat{f}(x) - f(x)]:$ Error due to wrong (perhaps too simple) model
- $\text{Var}[\hat{f}(x)] = E[\hat{f}(x)^2] - E[\hat{f}(x)]^2:$ Learner’s sensitivity to choice of training set
- The proof (note that $E[y] = f(x)$):

$$E[(y - \hat{f})^2] = E[y^2 + \hat{f}^2 - 2y\hat{f}]$$

$$= E[y^2] + E[\hat{f}^2] - E[2y\hat{f}]$$

$$= E[y^2] + E[\hat{f}^2] - 2E[y]E[\hat{f}]$$

$$= Var[y] + E[y]^2 + Var[\hat{f}] + E[\hat{f}]^2 - 2fE[\hat{f}]$$

$$= Var[y] + Var[\hat{f}] + (f - E[\hat{f}])^2$$

$$= Var[y] + Var[\hat{f}] + E[f - \hat{f}]^2$$

$$= \sigma^2 + Var[\hat{f}] + \text{Bias}[\hat{f}]^2$$
Bias-Variance Trade-off

- Simple models have high bias and small variance, complex models have small bias and high variance.

Underfitting: you have an overly simple model
- Bias: High
- Variance: Low
- Complexity: Low
- Flexibility: Low
- Generalizability: High

Overfitting: your model is modelling the noise
- Bias: Low
- Variance: High
- Complexity: High
- Flexibility: High
- Generalizability: Low
Bias-Variance Trade-off

- Simple models have high bias and small variance, complex models have small bias and high variance.

- If you modified a model to reduce its bias (e.g., by increasing the model’s complexity), you are likely to increase its variance, and vice-versa (if both increase then you might be doing it wrong!)

(Pic courtesy: Scott Fortmann-Roe, Latysheva and Ravarani)
High Bias or High Variance?

The bad performance (low accuracy on test data) could be due either
- High Bias (Underfitting)
- High Variance (Overfitting)

Looking at the training and test error can tell which of the two is the case
- High Bias: Both training and test errors are large
- High Variance: Small training error, large test error (and huge gap)

(Pic courtesy: Latysheva and Ravarani)
High Bias or High Variance?

- The bad performance (low accuracy on test data) could be due either
 - High Bias (Underfitting)
 - High Variance (Overfitting)

- Looking at the training and test error can tell which of the two is the case

![Graph showing the relationship between prediction error and model complexity.](Pic courtesy: Latysheva and Ravarani)
The bad performance (low accuracy on test data) could be due either
- High Bias (Underfitting)
- High Variance (Overfitting)

Looking at the training and test error can tell which of the two is the case

- High Bias: Both training and test errors are large
- High Variance: Small training error, large test error (and huge gap)

(Pic courtesy: Latysheva and Ravarani)
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

Suppose you have learned two models w_{LR} and w_{SVM} (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?

Is it because the optimizer for LR didn’t do a good job at finding the optima?

Is my model choice (choosing LR over SVM) wrong for this data set?

Looking at the value of the LR loss function L can give some insights. If $L(w_{SVM}) < L(w_{LR})$ then improving the LR optimizer might help. If $L(w_{LR}) < L(w_{SVM})$ then LR isn’t a good model for this problem.
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

- Suppose you have learned two models w_{LR} and w_{SVM} (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?

 - Is it because the optimizer for LR didn’t do a good job at finding the optima?
 - Is my model choice (choosing LR over SVM) wrong for this data set?
 - Looking at the value of the LR loss function $L(w_{LR})$ can give some insights. If $L(w_{SVM}) < L(w_{LR})$ then improving the LR optimizer might help. If $L(w_{LR}) < L(w_{SVM})$ then LR isn’t a good model for this problem.

Machine Learning (CS771A)
Model Selection and Feature Selection
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

- Suppose you have learned two models \(w_{LR} \) and \(w_{SVM} \) (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?
 - Is it because the optimizer for LR didn’t do a good job at finding the optima?
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

- Suppose you have learned two models w_{LR} and w_{SVM} (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?
 - Is it because the optimizer for LR didn’t do a good job at finding the optima?
 - Is my model choice (choosing LR over SVM) wrong for this data set?
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

- Suppose you have learned two models w_{LR} and w_{SVM} (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?

 - Is it because the optimizer for LR didn’t do a good job at finding the optima?
 - Is my model choice (choosing LR over SVM) wrong for this data set?
 - Looking at the value of the LR loss function \mathcal{L} can give some insights.
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

- Suppose you have learned two models w_{LR} and w_{SVM} (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?

 - Is it because the optimizer for LR didn’t do a good job at finding the optima?
 - Is my model choice (choosing LR over SVM) wrong for this data set?
 - Looking at the value of the LR loss function \mathcal{L} can give some insights

 - If $\mathcal{L}(w_{SVM}) < \mathcal{L}(w_{LR})$ then improving the LR optimizer might help
Some Guidelines for Debugging Learning Algorithms

- Adding more training examples won’t usually bring the bias down. If your model has a high bias, try making the model richer (e.g., adding more features or using a more sophisticated model).

- Using more training data can help bring the variance down. If your model has a high variance, try adding more training examples or make model simpler (e.g., use fewer features or regularize more).

- Suppose you have learned two models w_{LR} and w_{SVM} (LR and SVM, respectively) using the same training data, and SVM gives higher test accuracy. How do I know why LR does worse and what could I improve it?
 - Is it because the optimizer for LR didn’t do a good job at finding the optima?
 - Is my model choice (choosing LR over SVM) wrong for this data set?
 - Looking at the value of the LR loss function \mathcal{L} can give some insights
 - If $\mathcal{L}(w_{SVM}) < \mathcal{L}(w_{LR})$ then improving the LR optimizer might help
 - If $\mathcal{L}(w_{LR}) < \mathcal{L}(w_{SVM})$ then LR isn’t a good model for this problem
Next Class: Ensemble Methods