
PCA (Wrap-up) and Nonlinear Dimensionality
Reduction via Kernel PCA

Piyush Rai

Machine Learning (CS771A)

Sept 7, 2016

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 1



Recap/Wrap-up of PCA

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 2



Principal Component Analysis (PCA)

PCA basically does the following

Learns the most important directions (new basis vectors) in the data

Re-represents data using the new basis vectors (change of basis)

Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

PCA uses “amount of data variance captured” to define important directions

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 3



Principal Component Analysis (PCA)

PCA basically does the following

Learns the most important directions (new basis vectors) in the data

Re-represents data using the new basis vectors (change of basis)

Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

PCA uses “amount of data variance captured” to define important directions

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 3



Principal Component Analysis (PCA)

PCA basically does the following

Learns the most important directions (new basis vectors) in the data

Re-represents data using the new basis vectors (change of basis)

Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

PCA uses “amount of data variance captured” to define important directions

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 3



Principal Component Analysis (PCA)

PCA basically does the following

Learns the most important directions (new basis vectors) in the data

Re-represents data using the new basis vectors (change of basis)

Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

PCA uses “amount of data variance captured” to define important directions

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 3



Principal Component Analysis (PCA)

PCA basically does the following

Learns the most important directions (new basis vectors) in the data

Re-represents data using the new basis vectors (change of basis)

Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

PCA uses “amount of data variance captured” to define important directions

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 3



Principal Component Analysis (PCA)

PCA basically does the following

Learns the most important directions (new basis vectors) in the data

Re-represents data using the new basis vectors (change of basis)

Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

PCA uses “amount of data variance captured” to define important directions

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 3



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



Principal Component Analysis (PCA)

How does PCA find the “maximum variance” directions (last class)?

Using eigen-decomposition of the covariance matrix of data

Each eigenvector represents one such direction

First (top) eigenvector is the direction that captures the largest variance

Each subsequent eigenvector is the next best as per this criterion

Steps in Principal Component Analysis

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigen-decomposition of S. This will give D eigenvectors.

Take top K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

U = [u1 . . . uK ] is D × K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 4



PCA as Linear Projection

Can use U to linearly project each xn ∈ RD to a K -dim subspace as

zn = U>xn = [u>1 xn u>2 xn . . . u>K xn]>

zn ∈ RK is also called low-dimensional “embedding” of xn ∈ RD

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 5



PCA as Linear Projection

Can use U to linearly project each xn ∈ RD to a K -dim subspace as

zn = U>xn = [u>1 xn u>2 xn . . . u>K xn]>

zn ∈ RK is also called low-dimensional “embedding” of xn ∈ RD

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 5



PCA as Linear Projection

Z = [z1 z2 . . . zn] is the K × N matrix of embeddings of all the N examples

Z can also be thought of as a new, compact feature representation of X

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 6



PCA based Embeddings of Handwritten Digits

Shown below are 2-dim embeddings of PCA on a set of handwritten digits (each digit image was
originally 8× 8, i.e., 64 dimensional)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 7



PCA: Data as Combination of Basis Vectors

PCA to K -dims is also akin to saying xn ≈
∑K

k=1 znkuk . Thus

X ≈ UZ (matrix factorization)

Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

Can thus approximately reconstruct the matrix X using UZ: Do PCA on the N ×D data matrix X,
keep U (D × K ) and Z (K × N) and throw away X

Substantial storage saving if K � D

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 8



PCA: Data as Combination of Basis Vectors

PCA to K -dims is also akin to saying xn ≈
∑K

k=1 znkuk . Thus

X ≈ UZ (matrix factorization)

Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

Can thus approximately reconstruct the matrix X using UZ: Do PCA on the N ×D data matrix X,
keep U (D × K ) and Z (K × N) and throw away X

Substantial storage saving if K � D

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 8



PCA: Data as Combination of Basis Vectors

PCA to K -dims is also akin to saying xn ≈
∑K

k=1 znkuk . Thus

X ≈ UZ (matrix factorization)

Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

Can thus approximately reconstruct the matrix X using UZ: Do PCA on the N ×D data matrix X,
keep U (D × K ) and Z (K × N) and throw away X

Substantial storage saving if K � D

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 8



PCA: Data as Combination of Basis Vectors

PCA to K -dims is also akin to saying xn ≈
∑K

k=1 znkuk . Thus

X ≈ UZ (matrix factorization)

Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

Can thus approximately reconstruct the matrix X using UZ: Do PCA on the N ×D data matrix X,
keep U (D × K ) and Z (K × N) and throw away X

Substantial storage saving if K � D

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 8



PCA: Data as Combination of Basis Vectors

Consider doing PCA on a (words × documents) matrix X

Each entry Xdn in X is the frequency of word d in document n

PCA on X will give us eigenvectors that correspond to “topics” or concepts

Each document is like a weighted combination of these topics

This is similar to “Latent Semantic Analysis” (LSA), a well-known document dimensionality
reduction technique in information retrieval (basically, LSA does SVD on X, which is equivalent to
doing PCA on X)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 9



PCA: Data as Combination of Basis Vectors

Consider doing PCA on a (words × documents) matrix X

Each entry Xdn in X is the frequency of word d in document n

PCA on X will give us eigenvectors that correspond to “topics” or concepts

Each document is like a weighted combination of these topics

This is similar to “Latent Semantic Analysis” (LSA), a well-known document dimensionality
reduction technique in information retrieval (basically, LSA does SVD on X, which is equivalent to
doing PCA on X)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 9



PCA: Data as Combination of Basis Vectors

Consider doing PCA on a (words × documents) matrix X

Each entry Xdn in X is the frequency of word d in document n

PCA on X will give us eigenvectors that correspond to “topics” or concepts

Each document is like a weighted combination of these topics

This is similar to “Latent Semantic Analysis” (LSA), a well-known document dimensionality
reduction technique in information retrieval (basically, LSA does SVD on X, which is equivalent to
doing PCA on X)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 9



PCA: Data as Combination of Basis Vectors

Consider doing PCA on a (words × documents) matrix X

Each entry Xdn in X is the frequency of word d in document n

PCA on X will give us eigenvectors that correspond to “topics” or concepts

Each document is like a weighted combination of these topics

This is similar to “Latent Semantic Analysis” (LSA), a well-known document dimensionality
reduction technique in information retrieval (basically, LSA does SVD on X, which is equivalent to
doing PCA on X)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 9



PCA: Data as Combination of Basis Vectors

Consider doing PCA on a (words × documents) matrix X

Each entry Xdn in X is the frequency of word d in document n

PCA on X will give us eigenvectors that correspond to “topics” or concepts

Each document is like a weighted combination of these topics

This is similar to “Latent Semantic Analysis” (LSA), a well-known document dimensionality
reduction technique in information retrieval (basically, LSA does SVD on X, which is equivalent to
doing PCA on X)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 9



PCA: Data as Combination of Basis Vectors

X is (genes × samples) matrix: Each sample (expression values of a set of D genes) is a weighted
combination of K biological “pathways”

X is (movies × users) matrix: Each user (represented by the vector of his/her ratings of D movies)
is a weighted combination of K genres

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 10



PCA: Data as Combination of Basis Vectors

X is (genes × samples) matrix: Each sample (expression values of a set of D genes) is a weighted
combination of K biological “pathways”

X is (movies × users) matrix: Each user (represented by the vector of his/her ratings of D movies)
is a weighted combination of K genres

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 10



Beyond Linear Projections..

Consider the swiss-roll dataset (points lying close to a manifold)

Linear projection methods (e.g., PCA) can’t capture intrinsic nonlinearities

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 11



Nonlinear Dimensionality Reduction

Given: Low-dim. surface embedded nonlinearly in high-dim. space

Such a structure is called a Manifold

Goal: Recover the low-dimensional surface

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 12



Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Usually two ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry

Locally Linear Embedding (LLE)
Isomap
Maximum Variance Unfolding
Laplacian Eigenmaps
And others (tSNE, Hessian LLE, etc.)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 13



Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Usually two ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry

Locally Linear Embedding (LLE)
Isomap
Maximum Variance Unfolding
Laplacian Eigenmaps
And others (tSNE, Hessian LLE, etc.)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 13



Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Usually two ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry

Locally Linear Embedding (LLE)
Isomap
Maximum Variance Unfolding
Laplacian Eigenmaps
And others (tSNE, Hessian LLE, etc.)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 13



Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Usually two ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry

Locally Linear Embedding (LLE)
Isomap
Maximum Variance Unfolding
Laplacian Eigenmaps
And others (tSNE, Hessian LLE, etc.)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 13



Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 14



Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 14



Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 14



Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 14



Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 14



Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 14



Kernel PCA

Right figure: After mapping the data via φ, data is now close to a linear subspace

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 15



Kernel PCA

Goal: Compute eigenvectors v i , i.e., Cv i = λiv i , each v i is M dimensional

Plugging in the expression for C, we have

1

N

N∑
n=1

φ(xn)φ(xn)>v i =
1

N

N∑
n=1

φ(xn)φ(xn)>v i = λiv i

Denoting αin = 1
λiN

φ(xn)>v i , v i =
∑N

n=1 αinφ(xn) (also recall Rep. Thm.)

Thus we can get v i by finding αi = [αi1 . . . αiN ]

Plugging this back in the eigenvector equation Cv i = λiv i

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑

m=1

αimφ(xm) = λi

N∑
n=1

αinφ(xn)

Pre-multiplying both sides by φ(x`)> and re-arranging

1

N

N∑
n=1

φ(x`)>φ(xn)
N∑

m=1

αimφ(xn)>φ(xm) = λi

N∑
n=1

αinφ(x`)>φ(xn)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 16



Kernel PCA

Goal: Compute eigenvectors v i , i.e., Cv i = λiv i , each v i is M dimensional

Plugging in the expression for C, we have

1

N

N∑
n=1

φ(xn)φ(xn)>v i =
1

N

N∑
n=1

φ(xn)φ(xn)>v i = λiv i

Denoting αin = 1
λiN

φ(xn)>v i , v i =
∑N

n=1 αinφ(xn) (also recall Rep. Thm.)

Thus we can get v i by finding αi = [αi1 . . . αiN ]

Plugging this back in the eigenvector equation Cv i = λiv i

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑

m=1

αimφ(xm) = λi

N∑
n=1

αinφ(xn)

Pre-multiplying both sides by φ(x`)> and re-arranging

1

N

N∑
n=1

φ(x`)>φ(xn)
N∑

m=1

αimφ(xn)>φ(xm) = λi

N∑
n=1

αinφ(x`)>φ(xn)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 16



Kernel PCA

Goal: Compute eigenvectors v i , i.e., Cv i = λiv i , each v i is M dimensional

Plugging in the expression for C, we have

1

N

N∑
n=1

φ(xn)φ(xn)>v i =
1

N

N∑
n=1

φ(xn)φ(xn)>v i = λiv i

Denoting αin = 1
λiN

φ(xn)>v i , v i =
∑N

n=1 αinφ(xn) (also recall Rep. Thm.)

Thus we can get v i by finding αi = [αi1 . . . αiN ]

Plugging this back in the eigenvector equation Cv i = λiv i

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑

m=1

αimφ(xm) = λi

N∑
n=1

αinφ(xn)

Pre-multiplying both sides by φ(x`)> and re-arranging

1

N

N∑
n=1

φ(x`)>φ(xn)
N∑

m=1

αimφ(xn)>φ(xm) = λi

N∑
n=1

αinφ(x`)>φ(xn)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 16



Kernel PCA

Goal: Compute eigenvectors v i , i.e., Cv i = λiv i , each v i is M dimensional

Plugging in the expression for C, we have

1

N

N∑
n=1

φ(xn)φ(xn)>v i =
1

N

N∑
n=1

φ(xn)φ(xn)>v i = λiv i

Denoting αin = 1
λiN

φ(xn)>v i , v i =
∑N

n=1 αinφ(xn) (also recall Rep. Thm.)

Thus we can get v i by finding αi = [αi1 . . . αiN ]

Plugging this back in the eigenvector equation Cv i = λiv i

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑

m=1

αimφ(xm) = λi

N∑
n=1

αinφ(xn)

Pre-multiplying both sides by φ(x`)> and re-arranging

1

N

N∑
n=1

φ(x`)>φ(xn)
N∑

m=1

αimφ(xn)>φ(xm) = λi

N∑
n=1

αinφ(x`)>φ(xn)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 16



Kernel PCA

Goal: Compute eigenvectors v i , i.e., Cv i = λiv i , each v i is M dimensional

Plugging in the expression for C, we have

1

N

N∑
n=1

φ(xn)φ(xn)>v i =
1

N

N∑
n=1

φ(xn)φ(xn)>v i = λiv i

Denoting αin = 1
λiN

φ(xn)>v i , v i =
∑N

n=1 αinφ(xn) (also recall Rep. Thm.)

Thus we can get v i by finding αi = [αi1 . . . αiN ]

Plugging this back in the eigenvector equation Cv i = λiv i

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑

m=1

αimφ(xm) = λi

N∑
n=1

αinφ(xn)

Pre-multiplying both sides by φ(x`)> and re-arranging

1

N

N∑
n=1

φ(x`)>φ(xn)
N∑

m=1

αimφ(xn)>φ(xm) = λi

N∑
n=1

αinφ(x`)>φ(xn)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 16



Kernel PCA

Goal: Compute eigenvectors v i , i.e., Cv i = λiv i , each v i is M dimensional

Plugging in the expression for C, we have

1

N

N∑
n=1

φ(xn)φ(xn)>v i =
1

N

N∑
n=1

φ(xn)φ(xn)>v i = λiv i

Denoting αin = 1
λiN

φ(xn)>v i , v i =
∑N

n=1 αinφ(xn) (also recall Rep. Thm.)

Thus we can get v i by finding αi = [αi1 . . . αiN ]

Plugging this back in the eigenvector equation Cv i = λiv i

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑

m=1

αimφ(xm) = λi

N∑
n=1

αinφ(xn)

Pre-multiplying both sides by φ(x`)> and re-arranging

1

N

N∑
n=1

φ(x`)>φ(xn)
N∑

m=1

αimφ(xn)>φ(xm) = λi

N∑
n=1

αinφ(x`)>φ(xn)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 16



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA

Using φ(xn)>φ(xm) = k(xn, xm), we get

1

N

N∑
n=1

k(x`, xn)
N∑

m=1

αimk(xn, xm) = λi

N∑
n=1

αink(x`, xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space

φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define αi as the N × 1 vector with elements αin

Using K and αi , the eigenvector equation becomes:

K 2αi = λiNKαi ⇒ Kαi = λiNαi

Thus αi is an eigenvector of the N × N kernel matrix K

Note: Since v>i v i = 1 and v i =
∑N

n=1 αinφ(xn), we have α>i Kαi = 1, which means α>i λiNαi = 1
and α>i αi = 1/(λiN). Thus the original solution with α>i αi = 1 (eigenvec with norm 1) needs to
be re-scaled as α̃in = αin/

√
λiN

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 17



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn)−
1

N

N∑
`=1

φ(x`)

Each element of the centered kernel matrix

K̃nm = φ̃(xn)
>
φ̃(xm)

= φ(xn)
>
φ(xm)−

1

N

N∑
`=1

φ(xn)
>
φ(x`)−

1

N

N∑
`=1

φ(x`)
>
φ(xm) +

1

N2

N∑
j=1

N∑
`=1

φ(x j )
>
φ(x`)

= k(xn, xm)−
1

N

N∑
`=1

k(xn, x`)−
1

N

N∑
`=1

k(x`, xm) +
1

N2

N∑
j=1

N∑
`=1

k(x`, x`)

In matrix notation, the centered K̃ = K − 1NK −K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 18



Kernel PCA: Computing the Embeddings

Suppose {α1, . . . ,αL} are the top L eigenvectors of kernel matrix K̃

The L-dimensional KPCA projection zm = [zm1, . . . , zmL] of a point xm:

zm` = φ(xm)>v ` ∀` = 1, . . . , L

Using the definition of v `, i.e., v ` =
∑N

n=1 α`nφ(xn), we have

zm` = φ(xm)>v ` =
N∑

n=1

α`nk(xn, xm)

Note: Cost of computing the embeddings scales in N

Note: For linear kernel, KPCA reduces to PCA (but more efficient if N < D)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 19



Kernel PCA: Computing the Embeddings

Suppose {α1, . . . ,αL} are the top L eigenvectors of kernel matrix K̃

The L-dimensional KPCA projection zm = [zm1, . . . , zmL] of a point xm:

zm` = φ(xm)>v ` ∀` = 1, . . . , L

Using the definition of v `, i.e., v ` =
∑N

n=1 α`nφ(xn), we have

zm` = φ(xm)>v ` =
N∑

n=1

α`nk(xn, xm)

Note: Cost of computing the embeddings scales in N

Note: For linear kernel, KPCA reduces to PCA (but more efficient if N < D)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 19



Kernel PCA: Computing the Embeddings

Suppose {α1, . . . ,αL} are the top L eigenvectors of kernel matrix K̃

The L-dimensional KPCA projection zm = [zm1, . . . , zmL] of a point xm:

zm` = φ(xm)>v ` ∀` = 1, . . . , L

Using the definition of v `, i.e., v ` =
∑N

n=1 α`nφ(xn), we have

zm` = φ(xm)>v ` =
N∑

n=1

α`nk(xn, xm)

Note: Cost of computing the embeddings scales in N

Note: For linear kernel, KPCA reduces to PCA (but more efficient if N < D)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 19



Kernel PCA: Computing the Embeddings

Suppose {α1, . . . ,αL} are the top L eigenvectors of kernel matrix K̃

The L-dimensional KPCA projection zm = [zm1, . . . , zmL] of a point xm:

zm` = φ(xm)>v ` ∀` = 1, . . . , L

Using the definition of v `, i.e., v ` =
∑N

n=1 α`nφ(xn), we have

zm` = φ(xm)>v ` =
N∑

n=1

α`nk(xn, xm)

Note: Cost of computing the embeddings scales in N

Note: For linear kernel, KPCA reduces to PCA (but more efficient if N < D)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 19



Kernel PCA: Summary of the algorithm

Construct the N × N kernel matrix K

Center K as follows K̃ = K − 1NK −K1N + 1NK1N , where 1N is an N × N matrix of all 1/N

Do eigen-decomposition of K̃ and find top L eigenvecs α1,α2, . . . ,αL with eigenvals λ1, λ2, . . . , λL

Re-scale each eigenvector as α̃i = αi/
√
λiN, ∀i = 1, . . . , L

Finally, compute embedding zm ∈ RL of any point xm as

zm` =
N∑

n=1

α̃`nk(xn, xm)

Note: For compactness, the L× N matrix of all L eigenvectors (each is N dimensional) can be
written as α̃ = [α̃1 α̃2 . . . α̃L]>. Thus we can also write embedding zm ∈ RL as zm = α̃km

where km is N × 1 vector of kernelized similarities of xm with all the N training data points

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 20



Kernel PCA: Summary of the algorithm

Construct the N × N kernel matrix K

Center K as follows K̃ = K − 1NK −K1N + 1NK1N , where 1N is an N × N matrix of all 1/N

Do eigen-decomposition of K̃ and find top L eigenvecs α1,α2, . . . ,αL with eigenvals λ1, λ2, . . . , λL

Re-scale each eigenvector as α̃i = αi/
√
λiN, ∀i = 1, . . . , L

Finally, compute embedding zm ∈ RL of any point xm as

zm` =
N∑

n=1

α̃`nk(xn, xm)

Note: For compactness, the L× N matrix of all L eigenvectors (each is N dimensional) can be
written as α̃ = [α̃1 α̃2 . . . α̃L]>. Thus we can also write embedding zm ∈ RL as zm = α̃km

where km is N × 1 vector of kernelized similarities of xm with all the N training data points

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 20



Kernel PCA: Summary of the algorithm

Construct the N × N kernel matrix K

Center K as follows K̃ = K − 1NK −K1N + 1NK1N , where 1N is an N × N matrix of all 1/N

Do eigen-decomposition of K̃ and find top L eigenvecs α1,α2, . . . ,αL with eigenvals λ1, λ2, . . . , λL

Re-scale each eigenvector as α̃i = αi/
√
λiN, ∀i = 1, . . . , L

Finally, compute embedding zm ∈ RL of any point xm as

zm` =
N∑

n=1

α̃`nk(xn, xm)

Note: For compactness, the L× N matrix of all L eigenvectors (each is N dimensional) can be
written as α̃ = [α̃1 α̃2 . . . α̃L]>. Thus we can also write embedding zm ∈ RL as zm = α̃km

where km is N × 1 vector of kernelized similarities of xm with all the N training data points

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 20



Kernel PCA: Summary of the algorithm

Construct the N × N kernel matrix K

Center K as follows K̃ = K − 1NK −K1N + 1NK1N , where 1N is an N × N matrix of all 1/N

Do eigen-decomposition of K̃ and find top L eigenvecs α1,α2, . . . ,αL with eigenvals λ1, λ2, . . . , λL

Re-scale each eigenvector as α̃i = αi/
√
λiN, ∀i = 1, . . . , L

Finally, compute embedding zm ∈ RL of any point xm as

zm` =
N∑

n=1

α̃`nk(xn, xm)

Note: For compactness, the L× N matrix of all L eigenvectors (each is N dimensional) can be
written as α̃ = [α̃1 α̃2 . . . α̃L]>. Thus we can also write embedding zm ∈ RL as zm = α̃km

where km is N × 1 vector of kernelized similarities of xm with all the N training data points

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 20



Kernel PCA: Summary of the algorithm

Construct the N × N kernel matrix K

Center K as follows K̃ = K − 1NK −K1N + 1NK1N , where 1N is an N × N matrix of all 1/N

Do eigen-decomposition of K̃ and find top L eigenvecs α1,α2, . . . ,αL with eigenvals λ1, λ2, . . . , λL

Re-scale each eigenvector as α̃i = αi/
√
λiN, ∀i = 1, . . . , L

Finally, compute embedding zm ∈ RL of any point xm as

zm` =
N∑

n=1

α̃`nk(xn, xm)

Note: For compactness, the L× N matrix of all L eigenvectors (each is N dimensional) can be
written as α̃ = [α̃1 α̃2 . . . α̃L]>. Thus we can also write embedding zm ∈ RL as zm = α̃km

where km is N × 1 vector of kernelized similarities of xm with all the N training data points

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 20



Kernel PCA: Summary of the algorithm

Construct the N × N kernel matrix K

Center K as follows K̃ = K − 1NK −K1N + 1NK1N , where 1N is an N × N matrix of all 1/N

Do eigen-decomposition of K̃ and find top L eigenvecs α1,α2, . . . ,αL with eigenvals λ1, λ2, . . . , λL

Re-scale each eigenvector as α̃i = αi/
√
λiN, ∀i = 1, . . . , L

Finally, compute embedding zm ∈ RL of any point xm as

zm` =
N∑

n=1

α̃`nk(xn, xm)

Note: For compactness, the L× N matrix of all L eigenvectors (each is N dimensional) can be
written as α̃ = [α̃1 α̃2 . . . α̃L]>. Thus we can also write embedding zm ∈ RL as zm = α̃km

where km is N × 1 vector of kernelized similarities of xm with all the N training data points

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 20



Kernel PCA: An Example

Note that even if we throw away the 2nd PC, we get a good 1-D embedding

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA 21


