
Linear Dimensionality Reduction:
Principal Component Analysis

Piyush Rai

Machine Learning (CS771A)

Sept 2, 2016

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 1

Dimensionality Reduction

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 2

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

Documents using using topic vectors instead of bag-of-words vectors

Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms

Can be used for data compression

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 3

Curse of Dimensionality

Exponentially large # of examples required to “fill up” high-dim spaces

Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generalization

Dimensionality reduction is a way to beat the curse of dimensionality

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 4

Curse of Dimensionality

Exponentially large # of examples required to “fill up” high-dim spaces

Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generalization

Dimensionality reduction is a way to beat the curse of dimensionality

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 4

Curse of Dimensionality

Exponentially large # of examples required to “fill up” high-dim spaces

Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generalization

Dimensionality reduction is a way to beat the curse of dimensionality

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 4

Linear Dimensionality Reduction

A projection matrix U = [u1 u2 . . . uK] of size D × K defines K linear projection directions, each
uk ∈ RD , for the D dim. data (assume K < D)

Can use U to transform xn ∈ RD into zn ∈ RK as shown below

Note that zn = U>xn = [u>1 xn u>2 xn . . . u>K xn] is a K -dim projection of xn

zn ∈ RK is also called low-dimensional “embedding” of xn ∈ RD

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 5

Linear Dimensionality Reduction

A projection matrix U = [u1 u2 . . . uK] of size D × K defines K linear projection directions, each
uk ∈ RD , for the D dim. data (assume K < D)

Can use U to transform xn ∈ RD into zn ∈ RK as shown below

Note that zn = U>xn = [u>1 xn u>2 xn . . . u>K xn] is a K -dim projection of xn

zn ∈ RK is also called low-dimensional “embedding” of xn ∈ RD

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 5

Linear Dimensionality Reduction

A projection matrix U = [u1 u2 . . . uK] of size D × K defines K linear projection directions, each
uk ∈ RD , for the D dim. data (assume K < D)

Can use U to transform xn ∈ RD into zn ∈ RK as shown below

Note that zn = U>xn = [u>1 xn u>2 xn . . . u>K xn] is a K -dim projection of xn

zn ∈ RK is also called low-dimensional “embedding” of xn ∈ RD

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 5

Linear Dimensionality Reduction

A projection matrix U = [u1 u2 . . . uK] of size D × K defines K linear projection directions, each
uk ∈ RD , for the D dim. data (assume K < D)

Can use U to transform xn ∈ RD into zn ∈ RK as shown below

Note that zn = U>xn = [u>1 xn u>2 xn . . . u>K xn] is a K -dim projection of xn

zn ∈ RK is also called low-dimensional “embedding” of xn ∈ RD

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 5

Linear Dimensionality Reduction

X = [x1 x2 . . . xN] is D × N matrix denoting all the N data points

Z = [z1 z2 . . . zN] is K × N matrix denoting embeddings of data points

With this notation, the figure on previous slide can be re-drawn as below

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U?

Principal Component Analysis (PCA) is an algorithm for doing this

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 6

Linear Dimensionality Reduction

X = [x1 x2 . . . xN] is D × N matrix denoting all the N data points

Z = [z1 z2 . . . zN] is K × N matrix denoting embeddings of data points

With this notation, the figure on previous slide can be re-drawn as below

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U?

Principal Component Analysis (PCA) is an algorithm for doing this

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 6

Linear Dimensionality Reduction

X = [x1 x2 . . . xN] is D × N matrix denoting all the N data points

Z = [z1 z2 . . . zN] is K × N matrix denoting embeddings of data points

With this notation, the figure on previous slide can be re-drawn as below

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U?

Principal Component Analysis (PCA) is an algorithm for doing this

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 6

Linear Dimensionality Reduction

X = [x1 x2 . . . xN] is D × N matrix denoting all the N data points

Z = [z1 z2 . . . zN] is K × N matrix denoting embeddings of data points

With this notation, the figure on previous slide can be re-drawn as below

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U?

Principal Component Analysis (PCA) is an algorithm for doing this

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 6

Linear Dimensionality Reduction

X = [x1 x2 . . . xN] is D × N matrix denoting all the N data points

Z = [z1 z2 . . . zN] is K × N matrix denoting embeddings of data points

With this notation, the figure on previous slide can be re-drawn as below

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U?

Principal Component Analysis (PCA) is an algorithm for doing this

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 6

Linear Dimensionality Reduction

X = [x1 x2 . . . xN] is D × N matrix denoting all the N data points

Z = [z1 z2 . . . zN] is K × N matrix denoting embeddings of data points

With this notation, the figure on previous slide can be re-drawn as below

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U?

Principal Component Analysis (PCA) is an algorithm for doing this

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 6

Principal Component Analysis

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 7

Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 8

Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 8

Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 8

Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 8

Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 8

Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 8

PCA as Maximizing Variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 9

Variance Captured by Projections

Consider projecting xn ∈ RD on a one-dim subspace defined by u1 ∈ RD

Projection/embedding of xn along a one-dim subspace u1 = u>1 xn (location of the green point
along the purple line representing u1)

Mean of projections of all the data: 1
N

∑N
n=1 u>

1 xn = u>
1 (1

N

∑N
n=1 xn) = u>

1 µ

Variance of the projected data (“spread” of the green points)

1

N

N∑
n=1

(
u>
1 xn − u>

1 µ
)2

=
1

N

N∑
n=1

{u>
1 (xn − µ)}2 = u>

1 Su1

S is the D × D data covariance matrix: S = 1
N

∑N
n=1(xn − µ)(xn − µ)> . If data already centered

(µ = 0) then S = 1
N

∑N
n=1 xnx>

n = 1
N X>X

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 10

Variance Captured by Projections

Consider projecting xn ∈ RD on a one-dim subspace defined by u1 ∈ RD

Projection/embedding of xn along a one-dim subspace u1 = u>1 xn (location of the green point
along the purple line representing u1)

Mean of projections of all the data: 1
N

∑N
n=1 u>

1 xn = u>
1 (1

N

∑N
n=1 xn) = u>

1 µ

Variance of the projected data (“spread” of the green points)

1

N

N∑
n=1

(
u>
1 xn − u>

1 µ
)2

=
1

N

N∑
n=1

{u>
1 (xn − µ)}2 = u>

1 Su1

S is the D × D data covariance matrix: S = 1
N

∑N
n=1(xn − µ)(xn − µ)> . If data already centered

(µ = 0) then S = 1
N

∑N
n=1 xnx>

n = 1
N X>X

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 10

Variance Captured by Projections

Consider projecting xn ∈ RD on a one-dim subspace defined by u1 ∈ RD

Projection/embedding of xn along a one-dim subspace u1 = u>1 xn (location of the green point
along the purple line representing u1)

Mean of projections of all the data: 1
N

∑N
n=1 u>

1 xn = u>
1 (1

N

∑N
n=1 xn) = u>

1 µ

Variance of the projected data (“spread” of the green points)

1

N

N∑
n=1

(
u>
1 xn − u>

1 µ
)2

=
1

N

N∑
n=1

{u>
1 (xn − µ)}2 = u>

1 Su1

S is the D × D data covariance matrix: S = 1
N

∑N
n=1(xn − µ)(xn − µ)> . If data already centered

(µ = 0) then S = 1
N

∑N
n=1 xnx>

n = 1
N X>X

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 10

Variance Captured by Projections

Consider projecting xn ∈ RD on a one-dim subspace defined by u1 ∈ RD

Projection/embedding of xn along a one-dim subspace u1 = u>1 xn (location of the green point
along the purple line representing u1)

Mean of projections of all the data: 1
N

∑N
n=1 u>

1 xn = u>
1 (1

N

∑N
n=1 xn) = u>

1 µ

Variance of the projected data (“spread” of the green points)

1

N

N∑
n=1

(
u>
1 xn − u>

1 µ
)2

=
1

N

N∑
n=1

{u>
1 (xn − µ)}2 = u>

1 Su1

S is the D × D data covariance matrix: S = 1
N

∑N
n=1(xn − µ)(xn − µ)> . If data already centered

(µ = 0) then S = 1
N

∑N
n=1 xnx>

n = 1
N X>X

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 10

Direction of Maximum Variance

We want u1 s.t. the variance of the projected data is maximized

arg max
u1

u>1 Su1

To prevent trivial solution (max var. = infinite), assume ||u1|| = 1 = u>1 u1

We will find u1 by solving the following constrained opt. problem

arg max
u1

u>1 Su1 + λ1(1− u>1 u1)

where λ1 is a Lagrange multiplier

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 11

Direction of Maximum Variance

We want u1 s.t. the variance of the projected data is maximized

arg max
u1

u>1 Su1

To prevent trivial solution (max var. = infinite), assume ||u1|| = 1 = u>1 u1

We will find u1 by solving the following constrained opt. problem

arg max
u1

u>1 Su1 + λ1(1− u>1 u1)

where λ1 is a Lagrange multiplier

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 11

Direction of Maximum Variance

We want u1 s.t. the variance of the projected data is maximized

arg max
u1

u>1 Su1

To prevent trivial solution (max var. = infinite), assume ||u1|| = 1 = u>1 u1

We will find u1 by solving the following constrained opt. problem

arg max
u1

u>1 Su1 + λ1(1− u>1 u1)

where λ1 is a Lagrange multiplier

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 11

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 12

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

Principal Component Analysis

Steps in Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
XX> (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = U>X

where U = [u1 . . . uK] is D × K and embedding matrix Z is K × N

A word about notation: If X is N × D, then S = 1
NX
>X (needs to be D × D) and the embedding

will be computed as Z = XU where Z is N × K

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 13

PCA as Minimizing the
Reconstruction Error

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 14

Data as Combination of Basis Vectors

Assume complete orthonormal basis vectors u1,u2, . . . ,uD , each ud ∈ RD

We can represent each data point xn ∈ RD exactly using this new basis

xn =
D∑

k=1

znkuk

Denoting zn = [zn1 zn2 . . . znD]>, U = [u1 u2 . . .uD], and using U>U = ID

xn = Uzn and zn = U>xn

Also note that each component of vector zn is znk = u>k xn

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 15

Data as Combination of Basis Vectors

Assume complete orthonormal basis vectors u1,u2, . . . ,uD , each ud ∈ RD

We can represent each data point xn ∈ RD exactly using this new basis

xn =
D∑

k=1

znkuk

Denoting zn = [zn1 zn2 . . . znD]>, U = [u1 u2 . . .uD], and using U>U = ID

xn = Uzn and zn = U>xn

Also note that each component of vector zn is znk = u>k xn

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 15

Data as Combination of Basis Vectors

Assume complete orthonormal basis vectors u1,u2, . . . ,uD , each ud ∈ RD

We can represent each data point xn ∈ RD exactly using this new basis

xn =
D∑

k=1

znkuk

Denoting zn = [zn1 zn2 . . . znD]>, U = [u1 u2 . . .uD], and using U>U = ID

xn = Uzn and zn = U>xn

Also note that each component of vector zn is znk = u>k xn

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 15

Data as Combination of Basis Vectors

Assume complete orthonormal basis vectors u1,u2, . . . ,uD , each ud ∈ RD

We can represent each data point xn ∈ RD exactly using this new basis

xn =
D∑

k=1

znkuk

Denoting zn = [zn1 zn2 . . . znD]>, U = [u1 u2 . . .uD], and using U>U = ID

xn = Uzn and zn = U>xn

Also note that each component of vector zn is znk = u>k xn

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 15

Data as Combination of Basis Vectors

Assume complete orthonormal basis vectors u1,u2, . . . ,uD , each ud ∈ RD

We can represent each data point xn ∈ RD exactly using this new basis

xn =
D∑

k=1

znkuk

Denoting zn = [zn1 zn2 . . . znD]>, U = [u1 u2 . . .uD], and using U>U = ID

xn = Uzn and zn = U>xn

Also note that each component of vector zn is znk = u>k xn

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 15

Reconstruction of Data from Projections

Reconstruction of xn from zn will be exact if we use all the D basis vectors

Will be approximate if we only use K < D basis vectors: xn ≈
∑K

k=1 znkuk

Let’s use K = 1 basis vector. Then the one-dim embedding of xn is

zn = u>1 xn (note: this will just be a scalar)

We can now try “reconstructing” xn from its embedding zn as follows

x̃n = u1zn = u1u>1 xn

Total error or “loss” in reconstructing all the data points

L(u1) =
N∑

n=1

||xn − x̃n||2 =
N∑

n=1

||xn − u1u
>
1 xn||2

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 16

Reconstruction of Data from Projections

Reconstruction of xn from zn will be exact if we use all the D basis vectors

Will be approximate if we only use K < D basis vectors: xn ≈
∑K

k=1 znkuk

Let’s use K = 1 basis vector. Then the one-dim embedding of xn is

zn = u>1 xn (note: this will just be a scalar)

We can now try “reconstructing” xn from its embedding zn as follows

x̃n = u1zn = u1u>1 xn

Total error or “loss” in reconstructing all the data points

L(u1) =
N∑

n=1

||xn − x̃n||2 =
N∑

n=1

||xn − u1u
>
1 xn||2

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 16

Reconstruction of Data from Projections

Reconstruction of xn from zn will be exact if we use all the D basis vectors

Will be approximate if we only use K < D basis vectors: xn ≈
∑K

k=1 znkuk

Let’s use K = 1 basis vector. Then the one-dim embedding of xn is

zn = u>1 xn (note: this will just be a scalar)

We can now try “reconstructing” xn from its embedding zn as follows

x̃n = u1zn = u1u>1 xn

Total error or “loss” in reconstructing all the data points

L(u1) =
N∑

n=1

||xn − x̃n||2 =
N∑

n=1

||xn − u1u
>
1 xn||2

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 16

Reconstruction of Data from Projections

Reconstruction of xn from zn will be exact if we use all the D basis vectors

Will be approximate if we only use K < D basis vectors: xn ≈
∑K

k=1 znkuk

Let’s use K = 1 basis vector. Then the one-dim embedding of xn is

zn = u>1 xn (note: this will just be a scalar)

We can now try “reconstructing” xn from its embedding zn as follows

x̃n = u1zn = u1u>1 xn

Total error or “loss” in reconstructing all the data points

L(u1) =
N∑

n=1

||xn − x̃n||2 =
N∑

n=1

||xn − u1u
>
1 xn||2

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 16

Reconstruction of Data from Projections

Reconstruction of xn from zn will be exact if we use all the D basis vectors

Will be approximate if we only use K < D basis vectors: xn ≈
∑K

k=1 znkuk

Let’s use K = 1 basis vector. Then the one-dim embedding of xn is

zn = u>1 xn (note: this will just be a scalar)

We can now try “reconstructing” xn from its embedding zn as follows

x̃n = u1zn = u1u>1 xn

Total error or “loss” in reconstructing all the data points

L(u1) =
N∑

n=1

||xn − x̃n||2 =
N∑

n=1

||xn − u1u
>
1 xn||2

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 16

Direction with Best Reconstruction

We want to find u1 that minimizes the reconstruction error

L(u1) =
N∑

n=1

||xn − u1u
>
1 xn||2

=
N∑

n=1

{x>
n xn + (u1u

>
1 xn)

>(u1u
>
1 xn)− 2x>

n u1u
>
1 xn}

=
N∑

n=1

−u>
1 xnx

>
n u1 (using u>

1 u1 = 1 and ignoring constants w.r.t. u1)

Thus the problem is equivalent to the following maximization

arg max
u1:||u1||2=1

u>
1

(
1

N

N∑
n=1

xnx
>
n

)
u1 = arg max

u1:||u1||2=1

u>
1 Su1

where S is the covariance matrix of the data (data assumed centered)

It’s the same objective that we had when we maximized the variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 17

Direction with Best Reconstruction

We want to find u1 that minimizes the reconstruction error

L(u1) =
N∑

n=1

||xn − u1u
>
1 xn||2

=
N∑

n=1

{x>
n xn + (u1u

>
1 xn)

>(u1u
>
1 xn)− 2x>

n u1u
>
1 xn}

=
N∑

n=1

−u>
1 xnx

>
n u1 (using u>

1 u1 = 1 and ignoring constants w.r.t. u1)

Thus the problem is equivalent to the following maximization

arg max
u1:||u1||2=1

u>
1

(
1

N

N∑
n=1

xnx
>
n

)
u1 = arg max

u1:||u1||2=1

u>
1 Su1

where S is the covariance matrix of the data (data assumed centered)

It’s the same objective that we had when we maximized the variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 17

Direction with Best Reconstruction

We want to find u1 that minimizes the reconstruction error

L(u1) =
N∑

n=1

||xn − u1u
>
1 xn||2

=
N∑

n=1

{x>
n xn + (u1u

>
1 xn)

>(u1u
>
1 xn)− 2x>

n u1u
>
1 xn}

=
N∑

n=1

−u>
1 xnx

>
n u1 (using u>

1 u1 = 1 and ignoring constants w.r.t. u1)

Thus the problem is equivalent to the following maximization

arg max
u1:||u1||2=1

u>
1

(
1

N

N∑
n=1

xnx
>
n

)
u1 = arg max

u1:||u1||2=1

u>
1 Su1

where S is the covariance matrix of the data (data assumed centered)

It’s the same objective that we had when we maximized the variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 17

Direction with Best Reconstruction

We want to find u1 that minimizes the reconstruction error

L(u1) =
N∑

n=1

||xn − u1u
>
1 xn||2

=
N∑

n=1

{x>
n xn + (u1u

>
1 xn)

>(u1u
>
1 xn)− 2x>

n u1u
>
1 xn}

=
N∑

n=1

−u>
1 xnx

>
n u1 (using u>

1 u1 = 1 and ignoring constants w.r.t. u1)

Thus the problem is equivalent to the following maximization

arg max
u1:||u1||2=1

u>
1

(
1

N

N∑
n=1

xnx
>
n

)
u1 = arg max

u1:||u1||2=1

u>
1 Su1

where S is the covariance matrix of the data (data assumed centered)

It’s the same objective that we had when we maximized the variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 17

Direction with Best Reconstruction

We want to find u1 that minimizes the reconstruction error

L(u1) =
N∑

n=1

||xn − u1u
>
1 xn||2

=
N∑

n=1

{x>
n xn + (u1u

>
1 xn)

>(u1u
>
1 xn)− 2x>

n u1u
>
1 xn}

=
N∑

n=1

−u>
1 xnx

>
n u1 (using u>

1 u1 = 1 and ignoring constants w.r.t. u1)

Thus the problem is equivalent to the following maximization

arg max
u1:||u1||2=1

u>
1

(
1

N

N∑
n=1

xnx
>
n

)
u1 = arg max

u1:||u1||2=1

u>
1 Su1

where S is the covariance matrix of the data (data assumed centered)

It’s the same objective that we had when we maximized the variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 17

Direction with Best Reconstruction

We want to find u1 that minimizes the reconstruction error

L(u1) =
N∑

n=1

||xn − u1u
>
1 xn||2

=
N∑

n=1

{x>
n xn + (u1u

>
1 xn)

>(u1u
>
1 xn)− 2x>

n u1u
>
1 xn}

=
N∑

n=1

−u>
1 xnx

>
n u1 (using u>

1 u1 = 1 and ignoring constants w.r.t. u1)

Thus the problem is equivalent to the following maximization

arg max
u1:||u1||2=1

u>
1

(
1

N

N∑
n=1

xnx
>
n

)
u1 = arg max

u1:||u1||2=1

u>
1 Su1

where S is the covariance matrix of the data (data assumed centered)

It’s the same objective that we had when we maximized the variance

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 17

How many Principal Components to Use?

Eigenvalue λk measures the variance captured by the corresponding PC uk

The “left-over” variance will therefore be
D∑

k=K+1

λk

Can choose K by looking at what fraction of variance is captured by the first K PCs

Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA
using nonparametric Bayesian methods)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 18

How many Principal Components to Use?

Eigenvalue λk measures the variance captured by the corresponding PC uk

The “left-over” variance will therefore be
D∑

k=K+1

λk

Can choose K by looking at what fraction of variance is captured by the first K PCs

Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA
using nonparametric Bayesian methods)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 18

How many Principal Components to Use?

Eigenvalue λk measures the variance captured by the corresponding PC uk

The “left-over” variance will therefore be
D∑

k=K+1

λk

Can choose K by looking at what fraction of variance is captured by the first K PCs

Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA
using nonparametric Bayesian methods)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 18

How many Principal Components to Use?

Eigenvalue λk measures the variance captured by the corresponding PC uk

The “left-over” variance will therefore be
D∑

k=K+1

λk

Can choose K by looking at what fraction of variance is captured by the first K PCs

Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA
using nonparametric Bayesian methods)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 18

How many Principal Components to Use?

Eigenvalue λk measures the variance captured by the corresponding PC uk

The “left-over” variance will therefore be
D∑

k=K+1

λk

Can choose K by looking at what fraction of variance is captured by the first K PCs

Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA
using nonparametric Bayesian methods)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 18

PCA as Matrix Factorization

Note that PCA represents each xn as xn = Uzn

When using only K < D components, xn ≈ Uzn

For all the N data points, we can write the same as

X ≈ UZ

where X is D × N, U is D × K and Z is K × N

The above approx. is equivalent to a low-rank matrix factorization of X

Also closely related to Singular Value Decomposition (SVD); see next slide

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 19

PCA as Matrix Factorization

Note that PCA represents each xn as xn = Uzn

When using only K < D components, xn ≈ Uzn

For all the N data points, we can write the same as

X ≈ UZ

where X is D × N, U is D × K and Z is K × N

The above approx. is equivalent to a low-rank matrix factorization of X

Also closely related to Singular Value Decomposition (SVD); see next slide

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 19

PCA as Matrix Factorization

Note that PCA represents each xn as xn = Uzn

When using only K < D components, xn ≈ Uzn

For all the N data points, we can write the same as

X ≈ UZ

where X is D × N, U is D × K and Z is K × N

The above approx. is equivalent to a low-rank matrix factorization of X

Also closely related to Singular Value Decomposition (SVD); see next slide

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 19

PCA as Matrix Factorization

Note that PCA represents each xn as xn = Uzn

When using only K < D components, xn ≈ Uzn

For all the N data points, we can write the same as

X ≈ UZ

where X is D × N, U is D × K and Z is K × N

The above approx. is equivalent to a low-rank matrix factorization of X

Also closely related to Singular Value Decomposition (SVD); see next slide

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 19

PCA as Matrix Factorization

Note that PCA represents each xn as xn = Uzn

When using only K < D components, xn ≈ Uzn

For all the N data points, we can write the same as

X ≈ UZ

where X is D × N, U is D × K and Z is K × N

The above approx. is equivalent to a low-rank matrix factorization of X

Also closely related to Singular Value Decomposition (SVD); see next slide

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 19

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA and SVD

A rank-K SVD approximates a data matrix X as follows: X ≈ UΛV>

U is D × K matrix with top K left singular vectors of X

Λ is a K × K diagonal matrix (with top K singular values)

V is N × K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error

||X−UΛV>||

PCA is equivalent to the best rank-K SVD after centering the data

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20

PCA: Some Comments

The idea of approximating each data point as a combination of basis vectors

xn ≈
K∑

k=1

znkuk or X ≈ UZ

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”

Some examples:

Each face in a collection as a combination of a small no of “eigenfaces”

Each document in a collection as a comb. of a small no of “topics”

Each gene-expression sample as a comb. of a small no of “genetic pathways”

The “eigenfaces”, “topics”, “genetic pathways”, etc. are the “basis vectors”, which can be learned
from data using PCA/SVD or other similar methods

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 21

PCA: Some Comments

The idea of approximating each data point as a combination of basis vectors

xn ≈
K∑

k=1

znkuk or X ≈ UZ

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”

Some examples:

Each face in a collection as a combination of a small no of “eigenfaces”

Each document in a collection as a comb. of a small no of “topics”

Each gene-expression sample as a comb. of a small no of “genetic pathways”

The “eigenfaces”, “topics”, “genetic pathways”, etc. are the “basis vectors”, which can be learned
from data using PCA/SVD or other similar methods

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 21

PCA: Some Comments

The idea of approximating each data point as a combination of basis vectors

xn ≈
K∑

k=1

znkuk or X ≈ UZ

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”

Some examples:

Each face in a collection as a combination of a small no of “eigenfaces”

Each document in a collection as a comb. of a small no of “topics”

Each gene-expression sample as a comb. of a small no of “genetic pathways”

The “eigenfaces”, “topics”, “genetic pathways”, etc. are the “basis vectors”, which can be learned
from data using PCA/SVD or other similar methods

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 21

PCA: Some Comments

The idea of approximating each data point as a combination of basis vectors

xn ≈
K∑

k=1

znkuk or X ≈ UZ

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”

Some examples:

Each face in a collection as a combination of a small no of “eigenfaces”

Each document in a collection as a comb. of a small no of “topics”

Each gene-expression sample as a comb. of a small no of “genetic pathways”

The “eigenfaces”, “topics”, “genetic pathways”, etc. are the “basis vectors”, which can be learned
from data using PCA/SVD or other similar methods

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 21

PCA: Some Comments

The idea of approximating each data point as a combination of basis vectors

xn ≈
K∑

k=1

znkuk or X ≈ UZ

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”

Some examples:

Each face in a collection as a combination of a small no of “eigenfaces”

Each document in a collection as a comb. of a small no of “topics”

Each gene-expression sample as a comb. of a small no of “genetic pathways”

The “eigenfaces”, “topics”, “genetic pathways”, etc. are the “basis vectors”, which can be learned
from data using PCA/SVD or other similar methods

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 21

PCA: Example

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 22

PCA: Example

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 23

PCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA can be kernelized easily (Kernel PCA)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix

Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 24

PCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA can be kernelized easily (Kernel PCA)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix

Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 24

PCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA can be kernelized easily (Kernel PCA)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix

Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 24

PCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA can be kernelized easily (Kernel PCA)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix

Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 24

PCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA can be kernelized easily (Kernel PCA)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix

Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 24

