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Dimensionality Reduction

@ Usually considered an unsupervised learning method

@ Used for learning the low-dimensional structures in the data

o Also useful for “feature learning” or “representation learning” (learning a better, often
smaller-dimensional, representation of the data), e.g.,

e Documents using using topic vectors instead of bag-of-words vectors
o Images using their constituent parts (faces - eigenfaces)

@ Can be used for speeding up learning algorithms

@ Can be used for data compression
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Curse of Dimensionality

o Exponentially large # of examples required to “fill up” high-dim spaces
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@ Fewer dimensions = Less chances of overfitting = Better generalization
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Curse of Dimensionality

o Exponentially large # of examples required to “fill up” high-dim spaces
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@ Fewer dimensions = Less chances of overfitting = Better generalization

@ Dimensionality reduction is a way to beat the curse of dimensionality
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Linear Dimensionality Reduction

@ A projection matrix U =[uy up ... uk] of size D x K defines K linear projection directions, each
ux € RP, for the D dim. data (assume K < D)
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Linear Dimensionality Reduction

@ A projection matrix U =[uy up ... uk] of size D x K defines K linear projection directions, each
ux € RP, for the D dim. data (assume K < D)

@ Can use U to transform x, € RP into z, € RX as shown below

Kx1 KxD Dx1
uf
- UT *
uKT x|
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@ A projection matrix U =[uy up ... uk] of size D x K defines K linear projection directions, each
ux € RP, for the D dim. data (assume K < D)

@ Can use U to transform x, € RP into z, € RX as shown below

Kx1 KxD Dx1
uf
- UT *
uKT x|
e Note that z, =UTx, = [u] x, uj x,, ... u;x,,] is a K-dim projection of x,
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Linear Dimensionality Reduction

@ A projection matrix U =[uy up ... uk] of size D x K defines K linear projection directions, each
ux € RP, for the D dim. data (assume K < D)

@ Can use U to transform x, € RP into z, € RX as shown below

Kx1 KxD Dx1
uf
- UT *
uKT x|
e Note that z, =UTx, = [u] x, uj x,, ... u;x,,] is a K-dim projection of x,

o z, € R¥ is also called low-dimensional “embedding” of x, € RP
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Linear Dimensionality Reduction

o X =[x1 x2 ... xn]is D x N matrix denoting all the N data points
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o X =[x1 x2 ... xn]is D x N matrix denoting all the N data points

@ Z=[zy z, ... zy] is K x N matrix denoting embeddings of data points
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Linear Dimensionality Reduction

o X =[x1 x2 ... xn]is D x N matrix denoting all the N data points
@ Z=[zy z ... zp] is K x N matrix denoting embeddings of data points
o With this notation, the figure on previous slide can be re-drawn as below

Kx N KxD DxN

= UT *
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Linear Dimensionality Reduction

o X =[x1 x2 ... xn]is D x N matrix denoting all the N data points
@ Z=[zy z, ... zy] is K x N matrix denoting embeddings of data points
o With this notation, the figure on previous slide can be re-drawn as below

Kx N KxD DxN

Z - UT *

@ How do we learn the "best” projection matrix U?
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o X =[x1 x2 ... xn]is D x N matrix denoting all the N data points
@ Z=[zy z, ... zy] is K x N matrix denoting embeddings of data points
o With this notation, the figure on previous slide can be re-drawn as below

Kx N KxD DxN

Z - UT *

@ How do we learn the "best” projection matrix U?

@ What criteria should we optimize for when learning U?
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Linear Dimensionality Reduction

o X =[x1 x2 ... xn]is D x N matrix denoting all the N data points
@ Z=[zy z, ... zy] is K x N matrix denoting embeddings of data points
o With this notation, the figure on previous slide can be re-drawn as below

Kx N KxD DxN

Z - UT *

@ How do we learn the "best” projection matrix U?
@ What criteria should we optimize for when learning U?

@ Principal Component Analysis (PCA) is an algorithm for doing this
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Principal Component Analysis (PCA)

@ A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
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Principal Component Analysis (PCA)

@ A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

@ Can be seen as

e Learning projection directions that capture maximum variance in data

e Learning projection directions that result in smallest reconstruction error

@ Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

B e )
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Principal Component Analysis (PCA)

@ A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

@ Can be seen as

e Learning projection directions that capture maximum variance in data

e Learning projection directions that result in smallest reconstruction error

@ Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

B e )

@ Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)
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PCA as Maximizing Variance
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Variance Captured by Projections

e Consider projecting x,, € RP on a one-dim subspace defined by u; € RP

e Projection/embedding of x, along a one-dim subspace u; = u] x,, (location of the green point
along the purple line representing u;)
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Variance Captured by Projections

e Consider projecting x,, € RP on a one-dim subspace defined by u; € RP

e Projection/embedding of x, along a one-dim subspace u; = u] x,, (location of the green point
along the purple line representing u;)

@ Mean of projections of all the data: £ " ulx,=u (4 XN, x)) =u p
@ Variance of the projected data (“spread” of the green points)

N N
1 T T\ 1 T 2 T
NE ("1 Xn — Uy N) :NE {uy (0 — )} = vy Sy
=1 =t
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Variance Captured by Projections

e Consider projecting x,, € RP on a one-dim subspace defined by u; € RP

e Projection/embedding of x, along a one-dim subspace u; = u] x,, (location of the green point
along the purple line representing u;)

@ Mean of projections of all the data: £ " ulx,=u (4 XN, x)) =u p
@ Variance of the projected data (“spread” of the green points)
1Y T Ty 1y 2 T
T2 (w0 =) = £ 3wl (o — )} = u) Sus
n=1 n=1

e S is the D x D data covariance matrix: s = 1 " (x, — u)(x, — )7 . If data already centered
(e =0) then s = L =V x,x] = £XTX
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Direction of Maximum Variance
>

Y

>

r1

@ We want u; s.t. the variance of the projected data is maximized
arg max ulTSul
uy
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Direction of Maximum Variance
>

Y

>

r1

@ We want u; s.t. the variance of the projected data is maximized
arg max ulTSul
uy

@ To prevent trivial solution (max var. = infinite), assume ||u;|| =1 = u] u;
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Direction of Maximum Variance
>

Y

>

r1

@ We want u; s.t. the variance of the projected data is maximized
arg max ulTSul
uy

@ To prevent trivial solution (max var. = infinite), assume ||u;|| =1 = u] u;

o We will find u; by solving the following constrained opt. problem

argmax uj Suy + M\ (1 — uf uy)
uy

where \; is a Lagrange multiplier
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Direction of Maximum Variance

o The objective function: arg max,, u] Su; + A\1(1 — u{ uy)

@ Taking the derivative w.r.t. u; and setting to zero gives

Su1 = )\1U1
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@ Thus u; is an eigenvector of S (with corresponding eigenvalue A;)
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@ Taking the derivative w.r.t. u; and setting to zero gives
Su1 = )\1U1

@ Thus u; is an eigenvector of S (with corresponding eigenvalue A;)

@ But which of S's (D possible) eigenvectors it is?

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis

12



Direction of Maximum Variance

o The objective function: arg max,, u] Su; + A\1(1 — u{ uy)

Taking the derivative w.r.t. u; and setting to zero gives

Su1 = )\1U1

Thus u; is an eigenvector of S (with corresponding eigenvalue ;)
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Note that since u; u; = 1, the variance of projected data is
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Direction of Maximum Variance

o The objective function: arg max,, u] Su; + A\1(1 — u{ uy)

@ Taking the derivative w.r.t. u; and setting to zero gives

Su1 = )\1U1

Thus u; is an eigenvector of S (with corresponding eigenvalue ;)

@ But which of S's (D possible) eigenvectors it is?

Note that since u; u; = 1, the variance of projected data is

UISUl = )\1

@ Var. is maximized when uy is the (top) eigenvector with largest eigenvalue

The top eigenvector uy is also known as the first Principal Component (PC)
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Direction of Maximum Variance

o The objective function: arg max,, u] Su; + A\1(1 — u{ uy)

@ Taking the derivative w.r.t. u; and setting to zero gives

Su1 = )\1U1

Thus u; is an eigenvector of S (with corresponding eigenvalue ;)

@ But which of S's (D possible) eigenvectors it is?

Note that since u; u; = 1, the variance of projected data is

UISUl = )\1

@ Var. is maximized when uy is the (top) eigenvector with largest eigenvalue

The top eigenvector uy is also known as the first Principal Component (PC)

@ Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)
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Principal Component Analysis

@ Steps in Principal Component Analysis
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@ Steps in Principal Component Analysis

o Center the data (subtract the mean p = £ SV x, from each data point)
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o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)
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Principal Component Analysis

@ Steps in Principal Component Analysis

o Center the data (subtract the mean p = £ SV x, from each data point)

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigendecomposition of the covariance matrix S
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Principal Component Analysis

@ Steps in Principal Component Analysis

o Center the data (subtract the mean p = £ SV x, from each data point)

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {u}£_; with eigenvalues {\¢}r;
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Principal Component Analysis

@ Steps in Principal Component Analysis

o Center the data (subtract the mean p = £ SV x, from each data point)

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {u}£_; with eigenvalues {\¢}r;

e The final K dim. projection/embedding of data is given by

where U = [u; ...

Machine Learning (CS771A)

Z=U'X
uk]is D x K and embedding matrix Z is K x N
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Principal Component Analysis

@ Steps in Principal Component Analysis

o Center the data (subtract the mean p = £ SV x, from each data point)

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {u}£_; with eigenvalues {\¢}r;

e The final K dim. projection/embedding of data is given by
Z=U'X

where U = [u; ... uk]is D x K and embedding matrix Z is K x N

o A word about notation: If Xis N x D, then S = $X "X (needs to be D x D) and the embedding
will be computed as Z = XU where Z is N x K
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Data as Combination of Basis Vectors

e Assume complete orthonormal basis vectors uy, us, ..., up, each uy € RP
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Data as Combination of Basis Vectors

e Assume complete orthonormal basis vectors uy, us, ..., up, each uy € RP

@ We can represent each data point x, € RP exactly using this new basis

D
Xp = E Znk Uk
k=1
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Data as Combination of Basis Vectors

e Assume complete orthonormal basis vectors uy, us, ..., up, each uy € RP

@ We can represent each data point x, € RP exactly using this new basis
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Data as Combination of Basis Vectors

e Assume complete orthonormal basis vectors uy, us, ..., up, each uy € RP

@ We can represent each data point x, € RP exactly using this new basis

D
Xp = E Znk Uk
k=1

X Z,
X'\Z an
- *
u u u
1 2 D
Xp 2o

e Denoting z, = [zy1 zm2---zsp] ", U = [u1 uy ...up], and using UTU = Ip

‘xn =Uz, and z,= UTx,,
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Data as Combination of Basis Vectors

e Assume complete orthonormal basis vectors uy, us, ..., up, each uy € RP

@ We can represent each data point x, € RP exactly using this new basis

D
Xp = E Znk Uk
k=1

X Z,
n2 an
- *
u u u
1 2 D
Xp 2o

e Denoting z, = [zy1 zm2---zsp] ", U = [u1 uy ...up], and using UTU = Ip

‘xn =Uz, and z,= UTx,,

@ Also note that each component of vector z, is z,x = uan
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Reconstruction of Data from Projections

@ Reconstruction of x,, from z,, will be exact if we use all the D basis vectors
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Reconstruction of Data from Projections

@ Reconstruction of x,, from z,, will be exact if we use all the D basis vectors
o Will be approximate if we only use K < D basis vectors: x, = Z,}le Znic U
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Reconstruction of Data from Projections

@ Reconstruction of x,, from z,, will be exact if we use all the D basis vectors
o Will be approximate if we only use K < D basis vectors: x, = Z,}le Znic U

@ Let's use K = 1 basis vector. Then the one-dim embedding of x,, is

z,=uj x, (note: this will just be a scalar)
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Reconstruction of Data from Projections

@ Reconstruction of x,, from z,, will be exact if we use all the D basis vectors
o Will be approximate if we only use K < D basis vectors: x, = Z,}le Znic U

@ Let's use K = 1 basis vector. Then the one-dim embedding of x,, is

z,=uj x, (note: this will just be a scalar)

@ We can now try “reconstructing” x, from its embedding z, as follows

X, =u1z, = ululTx,,
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Reconstruction of Data from Projections

Reconstruction of x, from z, will be exact if we use all the D basis vectors

Will be approximate if we only use K < D basis vectors: x, = Z,}le Znic U

Let's use K = 1 basis vector. Then the one-dim embedding of x,, is

z,=uj x, (note: this will just be a scalar)

@ We can now try “reconstructing” x, from its embedding z, as follows
s _ T
X, =u1z, = uiuq X,
@ Total error or “loss” in reconstructing all the data points
N N
L(ur) = D [1xn = %ol = 3 lIxn — uru] x|
n=1 n=1

N/
/\

Iy
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Direction with Best Reconstruction
@ We want to find u; that minimizes the reconstruction error

N
L) = D llxo = wu) x|
n=1
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Direction with Best Reconstruction

@ We want to find u; that minimizes the reconstruction error

N
L) = 3 lIxn— vu) x|
n=1
N
= >0 xn + (unw] x0) T (ure] x,) — 2x) wra] x,}
n=1
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Direction with Best Reconstruction

@ We want to find u; that minimizes the reconstruction error

Machine Learning (CS771A)

L(uy)

N
> e — urw] xa 2
n=1

N
T T N\T T T T

g {x, xp + (uru; x,) (uru; x,) — 2x, uru; x,}

n=1

N

T T . T . .

g —uy Xpx, U (using u; u; =1 and ignoring constants w.r.t. uy)
n=1
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Direction with Best Reconstruction

@ We want to find u; that minimizes the reconstruction error

N
L) = D llxn— viu] x|

n=1
N

= Z{x:x,, + (ululTx,,)T(ululTxn) — 2anu1u1Tx,,}
n=1
N

= Z —ulTx,,anul (using ulTul =1 and ignoring constants w.r.t. uz)
n=1

@ Thus the problem is equivalent to the following maximization
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Direction with Best Reconstruction

@ We want to find u; that minimizes the reconstruction error

N
L) = D llxn— viu] x|

n=1
N

= Z{x:x,, + (ululTx,,)T(ululTxn) — 2anu1u1Tx,,}
n=1
N

= Z —ulTx,,anul (using ulTul =1 and ignoring constants w.r.t. uz)
n=1

@ Thus the problem is equivalent to the following maximization

N
T(1 T T
arg max u; (ﬁ E XnX, > u; = argmax u; Suy
up:lfug|12=1 n=1 up:lfuy|12=1

where S is the covariance matrix of the data (data assumed centered)
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Direction with Best Reconstruction

@ We want to find u; that minimizes the reconstruction error

N
L) = D llxn— viu] x|

n=1
N

= Z{x:x,, + (ululTx,,)T(ululTxn) — 2anu1u1Tx,,}
n=1
N

= Z —ulTx,,anul (using ulTul =1 and ignoring constants w.r.t. uz)
n=1

@ Thus the problem is equivalent to the following maximization

N
T(1 T T
arg max u; (ﬁ E XnX, > u; = argmax u; Suy
up:lfug|12=1 n=1 up:lfuy|12=1

where S is the covariance matrix of the data (data assumed centered)

@ It's the same objective that we had when we maximized the variance
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How many Principal Components to Use?

o Eigenvalue A\, measures the variance captured by the corresponding PC uy
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How many Principal Components to Use?

o Eigenvalue A\, measures the variance captured by the corresponding PC uy

@ The “left-over” variance will therefore be

D
> M

k=K+1
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How many Principal Components to Use?

o Eigenvalue A\, measures the variance captured by the corresponding PC uy

@ The “left-over” variance will therefore be

D
> M
k=K+1

@ Can choose K by looking at what fraction of variance is captured by the first K PCs
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How many Principal Components to Use?

o Eigenvalue A\, measures the variance captured by the corresponding PC uy
@ The “left-over” variance will therefore be
D
> M
k=K+1
@ Can choose K by looking at what fraction of variance is captured by the first K PCs

@ Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

x10° a0’

L

400 600 0 200 400 600
k Number of PC used

o &

Eigenvalues
B

Reconstruction Error

w
8
3
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How many Principal Components to Use?

o Eigenvalue A\, measures the variance captured by the corresponding PC uy
@ The “left-over” variance will therefore be
D
> M
k=K+1
@ Can choose K by looking at what fraction of variance is captured by the first K PCs

@ Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction
error vs number of PC

x10° a0’

A

0 200 400 600 0 200 400 600
k Number of PC used

o &

Eigenvalues

Reconstruction Error

@ Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA
using nonparametric Bayesian methods)
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PCA as Matrix Factorization

@ Note that PCA represents each x, as x, = Uz,
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@ Note that PCA represents each x, as x, = Uz,

@ When using only K < D components, x, ~ Uz,
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PCA as Matrix Factorization

@ Note that PCA represents each x, as x, = Uz,
@ When using only K < D components, x, ~ Uz,

@ For all the N data points, we can write the same as

X~ UZ
where XisDx N, UisDxKandZis K x N
DxN Dx K KxN
z
* | Embedding
X - u of data
(Data) E_Matrix of K
igenvectors
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PCA as Matrix Factorization

@ Note that PCA represents each x, as x, = Uz,
@ When using only K < D components, x, ~ Uz,

@ For all the N data points, we can write the same as

X~ UZ
where XisDx N, UisDxKandZis K x N
DxN Dx K KxN
z
* | Embedding
X - n of data
(Data) Matrixof K
igenvectors

@ The above approx. is equivalent to a low-rank matrix factorization of X
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PCA as Matrix Factorization

@ Note that PCA represents each x, as x, = Uz,
@ When using only K < D components, x, ~ Uz,

@ For all the N data points, we can write the same as

X~ UZ
where XisDx N, UisDxKandZis K x N
DxN Dx K KxN
z
* | Embedding
X - n of data
(Data) Matrixof K
igenvectors

@ The above approx. is equivalent to a low-rank matrix factorization of X

e Also closely related to Singular Value Decomposition (SVD); see next slide
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PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "
DxN DxK

Diagonal
Matrix
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PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "
DxN DxK

Diagonal
Matrix

@ U is D x K matrix with top K left singular vectors of X
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PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "
DxN DxK

Diagonal
Matrix

@ U is D x K matrix with top K left singular vectors of X

e Ais a K x K diagonal matrix (with top K singular values)
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PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "
DxN DxK

X

0
C
*
>
*

<

=

Diagonal
Matrix

@ U is D x K matrix with top K left singular vectors of X
e Ais a K x K diagonal matrix (with top K singular values)

@ Vis N x K matrix with top K right singular vectors of X

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis 20



PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "

DxN DxK

X
0
C
*
>
*
<
=

Diagonal
Matrix

@ U is D x K matrix with top K left singular vectors of X

e Ais a K x K diagonal matrix (with top K singular values)

@ Vis N x K matrix with top K right singular vectors of X

@ Rank-K SVD is based on minimizing the reconstruction error

Machine Learning (CS771A)
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PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "
DxN DxK

Diagonal
Matrix

@ U is D x K matrix with top K left singular vectors of X

Ais a K x K diagonal matrix (with top K singular values)

V is N x K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error
X — UAVT|
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PCA and SVD

o A rank-K SVD approximates a data matrix X as follows: X ~ UAV "
DxN DxK

Diagonal
Matrix

@ U is D x K matrix with top K left singular vectors of X

Ais a K x K diagonal matrix (with top K singular values)

V is N x K matrix with top K right singular vectors of X

Rank-K SVD is based on minimizing the reconstruction error
X — UAVT|

o PCA is equivalent to the best rank-K SVD after centering the data
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PCA: Some Comments
@ The idea of approximating each data point as a combination of basis vectors
K
Xy R~ Zz,,kuk or X~ UZ
k=1

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”
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PCA: Some Comments
@ The idea of approximating each data point as a combination of basis vectors
K
Xy R~ Zz,,kuk or X~ UZ
k=1

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”

@ Some examples:

o Each face in a collection as a combination of a small no of “eigenfaces”
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PCA: Some Comments
@ The idea of approximating each data point as a combination of basis vectors
K
Xy R~ Zz,,kuk or X~ UZ
k=1

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”
@ Some examples:

o Each face in a collection as a combination of a small no of “eigenfaces”

X (DXN) U (DxK) Z‘ (KxN)

e Each document in a collection as a comb. of a small no of “topics”
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PCA: Some Comments
@ The idea of approximating each data point as a combination of basis vectors
K
Xy R~ Zz,,kuk or X~ UZ
k=1

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”
@ Some examples:

o Each face in a collection as a combination of a small no of “eigenfaces”

X (DXN) U (DxK) Z‘ (KxN)

(@... Q)ﬁ(ﬂ!(”@(,@\) 0,

e Each document in a collection as a comb. of a small no of “topics”

o Each gene-expression sample as a comb. of a small no of “genetic pathways”
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PCA: Some Comments
@ The idea of approximating each data point as a combination of basis vectors
K
Xy R~ Zz,,kuk or X~ UZ
k=1

is also popularly known as “Dictionary Learning” in signal/image processing; the learned basis
vectors represent the “Dictionary”
@ Some examples:

o Each face in a collection as a combination of a small no of “eigenfaces”

X (DXN) U (DxK) Z‘ (KxN)

(@“' Q)E(EF’H(,W) 2 ... 2

e Each document in a collection as a comb. of a small no of “topics”
o Each gene-expression sample as a comb. of a small no of “genetic pathways”

o The “eigenfaces”, “topics”’, “genetic pathways”, etc. are the “basis vectors”, which can be learned
from data using PCA/SVD or other similar methods
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PCA: Example

Orlglnal Collectlon of Images

Machine Learning (CS771A)

K=49 Eigenvectors Each image's reconstructed version

(“eigenfaces”) learned £ AN
hy PCA on this data = :
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PCA: Example

16 x 16 pixel images of handwritten 3s (as vectors in R?*%)

Mean p and eigenvectors vy, v2, v3. v4

Mean A =34.10° Ao =2.8-10° A3 =2.4-10° Ay =16-10°

32 3|3 3

Reconstructions:
€ k=1 k=10 Ic'=:b{) . = 200

Each input image now represented by just k numbers
(combination weights of each of the k eigenvectors)
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PCA: Limitations and Extensions

@ A linear projection method
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PCA: Limitations and Extensions

@ A linear projection method

o Won't work well if data can't be approximated by a linear subspace
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PCA: Limitations and Extensions

@ A linear projection method

o Won't work well if data can't be approximated by a linear subspace
o But PCA can be kernelized easily (Kernel PCA)
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PCA: Limitations and Extensions

@ A linear projection method

o Won't work well if data can't be approximated by a linear subspace
o But PCA can be kernelized easily (Kernel PCA)

@ Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

Amore ideal projection
direction(preserves

— class|separation)

*  The projection direction
learned by PCA

(based purely on variance)
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PCA: Limitations and Extensions

@ A linear projection method
o Won't work well if data can't be approximated by a linear subspace
o But PCA can be kernelized easily (Kernel PCA)

@ Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

Amore ideal projection
direction(preserves

— Class separation)

The projection direction
learned by PCA
(based purely on variance)

-5 o

@ PCA relies on eigendecomposition of an D x D covariance matrix
o Can be slow if done naively. Takes O(D?) time
o Many faster methods exists (e.g., Power Method)

Machine Learning (CS771A) Linear Dimensionality Reduction: Principal Component Analysis



