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Abstract

We present a computational model of multiple-object tracking that makes trial-level predictions

about the allocation of visual attention and the effect of this allocation on observers’ ability to

track multiple objects simultaneously. This model follows the intuition that increased attention to

a location increases the spatial resolution of its internal representation. Using a combination of

empirical and computational experiments, we demonstrate the existence of a tight coupling

between cognitive and perceptual resources in this task: Low-level tracking of objects generates

bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces

error probabilities in attended locations while increasing it at non-attended locations. Whereas

earlier models of multiple-object tracking have predicted the big picture relationship between

stimulus complexity and response accuracy, our approach makes accurate predictions of both the

macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations

in difficulty across individual trials and targets arising from the idiosyncratic within-trial interac-

tions of targets and distractors.

Keywords: Visual cognition; Multiple-object tracking; Attention dynamics; Metacognition;

Bayesian models of cognition; Computational cognitive science

1. Introduction

Pylyshyn’s multiple-object tracking (MOT) paradigm is one of the most prominent

testbeds for studying visual cognition (Pylyshyn & Storm, 1988). In a typical MOT task

(Fig. 1), subjects see a number of objects, typically circles, moving onscreen. Some sub-

set of the objects are marked as targets before the trial begins, but during the trial, all
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objects turn to a uniform color and move haphazardly for several seconds. The task is to

keep track of which objects were marked as targets at the start of the trial so that they

can be identified at the end of the trial when the objects stop moving.

How is MOT even possible? It was not historically intuitive that MOT would be possi-

ble at all (Scholl, 2009). Classical theories of attention have tended to assume the exis-

tence a single attention “spotlight,” suggesting that tasks involving selective attention at

multiple locations simultaneously should be impossible. Yet, in practice, humans can

track multiple objects quite successfully. How do they do it?

There are three theoretical accounts that shed light on different elements of the overall

process. The first, Pylyshyn’s FINST theory, was the primary motivator for the design of

the MOT task itself. In this account, it was argued that people assign “pointers” to vari-

ous objects and then track them, using a hitherto unknown pre-attentive mechanism. Pyly-

shyn’s deep insight was to disconnect the task of indexing an object from attending to it.

After all, he reasoned, how can you pay attention to something unless you have pre-atten-

tively assigned it to be some thing (Pylyshyn, 1989)?

Fig. 1. (A) Schematic representation of a typical multiple-object tracking (MOT) task. (B) Graphical descrip-

tion of a hierarchical model for tracking N objects simultaneously. The low-level state estimate is computed

using a bank of Kalman filters which predict particle locations with an accuracy that is influenced by their

spatial resolution. (C) The scale of spatial resolution for a filter at any time step is determined by the atten-

tion allocated to it by the top-level model of attention dynamics. This model obtains information about the

confusability of tracking targets from the filter predictions and rationally allocates attention to minimize over-

all confusability constrained by its attention budget.
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However, if FINST (FINgers of INSTantiation) pointers are pre-attentive, it is reason-

able to consider that a finite number of them preexist and are assigned when needed to

environmental cues. Such accounts predict a sharp capacity constraint on the number of

targets that observers can track—perfect tracking up to the number of pointers available

and collapse thereafter. It is seen, however, that at sufficiently slow speeds, a relatively

large number of targets can be accurately tracked (Alvarez & Franconeri, 2007), whereas

at high speeds, even one or two objects cannot be tracked (Holcombe & Chen, 2012).

The capacity constraint, then, is gradual, not steep, which implicates the allocation of

some finite cognitive resource as the source of the MOT capacity constraint.

Cognitive resource models, as proposed in Alvarez and Franconeri (2007), explain the

gradual nature of performance degradation with increasing target load. But this is not the

only manipulation that requires explanation. Objects that move faster are harder to track,

but if they are moved far apart in the visual field, they can be tracked even at high

speeds, suggesting that spatial crowding also limits tracking (Franconeri, Lin, Pylyshyn,

Fisher, & Enns, 2008). Additionally, objects that move for longer durations are harder to

track, even at constant speeds (Oksama & Hyona, 2004). To account for such results,

Franconeri and colleagues have proposed that the primary source of MOT difficulties is

the distance that objects have to travel, with longer trajectories naturally providing more

chances for identification errors (Franconeri, Jonathan, & Scimeca, 2010).

It is easy to find counterexamples casting doubts on strong versions of each of these

theories. A claim that MOT is entirely pre-attentive and restricted to using a finite set of

three to four object pointers (Pylyshyn, 1989) would fail to explain failures of tracking as

few as one or two objects at high speeds (Holcombe & Chen, 2012) and the ability to

track up to eight objects at sufficiently low speeds (Alvarez & Franconeri, 2007). The

claim that spatial interference accounts for all MOT difficulties (Franconeri et al., 2010)

fails to account for MOT failures in experimental setups designed to permit no spatial

interference (Holcombe & Chen, 2012). Claims that cognitive resource limitations alone

are responsible for MOT failures are difficult to set up in the first place, since it is still

not clear what the resource being utilized in MOT is (Vul, Frank, Alvarez, & Tenen-

baum, 2009). But any such claims would need to deal with the array of perceptual manip-

ulations that lead to systematic changes in MOT performance we listed above. The

effects of cognitive resource allocation cannot conceivably account for the impact of, say,

changed object spacing, on MOT performance. Such effects necessarily have a perceptual

basis.

Thus, while each of these theories brings useful insights into the MOT phenomenon,

none can yet claim to explain it in its totality, and it is likely that true understanding will

incorporate ideas from each one of them. So, for instance, it is possible to envisage a

scheme wherein multiple attention foci are generated by object salience cues as required

by FINST theory, are resolved to varying degrees of spatial precision through competitive

allocation of endogenous attention as resource models predict, and suffer from errors of

spatial interference when distractors approach the targets within an attention focus at a

distance too close for the focus-specific spatial resolution to differentiate them.

N. Srivastava, E. Vul / Topics in Cognitive Science 8 (2016) 337



In this article, we operationalize this particular theoretical synthesis computationally

and test its predictions. The proposed model uses recursive Bayesian estimation of posi-

tion coordinates to model the consequences of perceptual uncertainty and controls the

effective length scales on which these estimators work as a function of the amount of

attention allocated to them by a high-level controller. Our model follows the phenomeno-

logical intuition that humans are able to make finer-grained judgments of relative position

when they attend more to a particular location and that such targeted covert attention is a

scarce resource—resolution gain in the attended patch is bought at the expense of coar-

ser-grained resolution elsewhere.

We demonstrate that adding a hierarchical controller that assigns spatial resolution to

each of the low-level trackers out of a common pool of attention resource permits us to

model MOT phenomena that reflect flexible cognitive resources, for example, the number

of objects that can be tracked, and the profile of most common errors made by subjects.

Successfully designing such a computational observer allows us to successfully model

and predict human behavior at the millisecond level of resolution within MOT trials,

unlike previous spatial interference studies (Franconeri et al., 2010), where model predic-

tions apply to entire seconds-long trials at the finest level of analysis. Further, we show

that people track different targets with variable spatial precision over time, following our

models’ predictions of strategic and dynamic allocation of cognitive resources, and that

our model distinguishes between “dropping” and “swapping” errors (Drew, Horowitz, &

Vogel, 2013), which we elicit behaviorally using a novel experimental manipulation.

2. Overview of flexible-resolution spatial tracking

We work within the framework of rational analysis, wherein models are strongly char-

acterized by their computational goals.

The computational goal of the low-level controllers is to estimate individual object

positions with statistical optimality given the noise/uncertainty of localizing objects in

individual frames, following Vul et al. (2009). This assumption is entirely in line with

existing ideas in Bayesian studies of visual perception and simply suggests that the low-

level controllers behave as ideal Bayesian observers (Knill & Richards, 1996). In our

account, each low-level controller tracks only one object in a MOT display; we discuss

ways of relaxing this constraint in the Discussion.

We supplement this low-level controller with a finite resource, the allocation of which

modulates the behavior of the ideal observer by changing local spatial uncertainty. This

high-level controller operates on the assumption that humans can actively control the spa-

tial resolution/uncertainty of individual percepts, but that localized spatial resolution mag-

nification is bought at the expense of coarser resolution elsewhere. Intuitively, this can be

visualized as the attention spotlight magnifying areas inside it, such that finer spatial dis-

criminations become possible than would be possible without attention being focused on

that region, as illustrated in Fig. 1c.
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As the key contribution of this article, we formalized this intuition into a hierarchical

model of inference, where low-level percept-tracking controllers learn the dynamics of

individual objects and emit bottom-up signals identifying the likelihood of their tracking

labels being lost, and a high-level metacognitive module uses these signals to rationally

allocate attention to these controllers from a limited global pool, with the constraint that

greater attention allocation permits finer spatial resolution. The top-down attention alloca-

tion, in turn, determines the uncertainty associated with low-level position measurements.

Fig. 1b schematizes the computations involved in this model in graphical notation.

The computational goal of the high-level controller is to greedily reduce correspon-

dence uncertainty, constrained by the total amount of attention resource available. While

this is certainly not the only possible goal for metacognitive attention dynamics, con-

strained greedy optimization is rational in the context of dynamic resource allocation

when the underlying demand distribution is non-stationary.

Our overall tracking model is based on coupling low-level controllers that iteratively

solve the correspondence problem of observed objects across the visual space, with the

high-level controller that allocates a finite resource that selectively improves localization

precision at critical locations during the MOT trial.

2.1. Bayesian object tracking

We model individual object tracking as an ideal Bayesian observer learning a linear

dynamical system. Given a state equation,

xtþ1 ¼ Hxt þ N 0;Qð Þ;

and a measurement equation,

zt ¼ Cxt þ N 0;Rð Þ;

where Q is process noise and R is measurement noise, we implemented a Kalman filter

that learns {H,C,Q,R} at every time step using expectation-maximization–based parameter

estimation (Ghahramani & Hinton, 1996). This filter serves as our perceptual ideal Baye-

sian observer for a single moving object. It takes the two-dimensional coordinates as the

state observation {x,y}, predicts the future value of the latent state variable s, and thus

generates predictions about future coordinates {x,y}.
A model completely faithful to the computational requirements of the MOT task would

explicitly solve the correspondence problem: which observation should be associated with

which filter, as in Vul et al. (2009). However, to account for human behavior, a simplifi-

cation is possible: Rather than solving the correspondence problem at every time step, we

can simply predict the ambiguity of correspondence at each time step and swap labels

accordingly. This approach permits us to treat particle-filter bindings as known, instead of

unknown, by default at every iteration, which greatly reduces the computational complex-

ity of the model.
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2.2. Rational attention allocation

The top-level attention model assumes that subjects possess a fixed amount of total

attention, which can be represented as the scalar integer A. Following indexing-based

ideas of object tracking (Pylyshyn, 1989), the model assigns indices p to all objects on

the screen; and the amount of attention assigned to each object location at time t is a

function atðpÞ, where
P

p atðpÞ ¼ A.
In every iteration, the model first determines the list of targets for which it will prefer-

entially allocate attention by propagating the list of particles marked as targets (hence-

forth, the “target list”) forward across time. While earlier indexing-based models of MOT

have tried to retain the individual identities of each of the target particles, empirical

results show that humans find it much easier to track target/non-target compared with

tracking numbered target identities across the same trial duration (Pylyshyn, 2004). In

light of this observation, we used binary target/distractor class identification for all parti-

cles.

At every time step, the model evaluates the potential confusability of all targets based

on the object states the low-level Kalman filters. We approximate the probability of con-

fusion as a logistic sigmoid decreasing with the distance between the target and its near-

est distractor, but critically, this distance is scaled by the spatial resolution that each

tracker’s allocated attention resource permits it to have. These convergent desiderata

inform our formal definition of confusability for each object p as

cðpÞ ¼ expð�Kat�1ðpÞd�t ðpÞÞ;

where K is a scaling parameter, d�t ðpÞ ¼ min dtðpÞ, and dt(p) is the estimated distance at

model iteration t between p and all distractors if p is a target or between p and all targets

if p is a distractor.

If a target is easily confusable with a distractor and vice versa, the two will swap tar-

get/distractor labels with a probability determined by the magnitude of their confusability.

Once all possible swaps have been resolved, the particle possesses a new list of targets

(which could be the same as the old list if no swaps occurred).

Since the model’s current top-level attention allocation to all trackers is based on the

previous iteration’s distance estimates, it now determines a new attention allocation for

each of A “units” of attention. Each unit is assigned to an object p by sampling an object

index from a mixture model: With probability s, an object index is sampled from a distri-

bution obtained by normalizing the confusability of all objects, and with probability 1�s,
an object index is sampled from the targets with probability proportional to their confus-

ability. The parameter s controls the extent of inhibition of distractor particles. A value

of 1 would mean that the model treats targets and distractors equally while dividing up

attention. A value of 0 would mean that the model ignores all distractors and attends only

to the targets. Grid search in parameter space suggested that a useful value of s would be

0.4; this is the value we have used throughout our experiments.
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Finally, reflecting sensitivity to cognitive processing costs, we assumed the model

would possess some degree of inertia to changing its attention allocation, so that

atðpÞ ¼ kat�1ðpÞ þ ð1� kÞatðpÞ;

where atðpÞ is the allocation computed for the present iteration as above.

2.3. Experiment design

The basic MOT task is illustrated in Fig. 1a. After initial presentation of 12 objects,

n = {1, 2,. . .,6} of which were red (targets) and the rest (distractors) blue at the begin-

ning of each trial, the subject pressed a key to set them in motion. The objects all turned

blue and moved on the screen following modified Ornstein–Uhlenbeck dynamics, as out-

lined below. After 5 s, the objects stopped moving and one of them, sampled from

among the set of targets and set of distractors with equal probability, turned red. The sub-

ject had to indicate, by pressing “y” or “n,” if the red object was red at the beginning of

the trial too.

Subjects were allowed to practice the task they were to perform until they verified that

they understood the objective and were accustomed to the keyboard controls. Practice

data were discarded from subsequent analysis in all cases. All experiments were IRB

approved and 50 undergraduate students volunteered as subjects for course credit. Sub-

jects viewed the MOT display within a 720 9 720 pixel window on a 19-inch PC moni-

tor at a viewing distance of 55–60 cm and used mouse and keyboard for inputs. Head

movements and eye fixations were unconstrained throughout experiments. Each pixel on

screen, therefore, subtended approximately 0.029° � 0.004° visual angle for our subjects.

The position and velocity for each object evolve independently according to a modified

Ornstein–Uhlenbeck process:

xt ¼ xt�1 þ vt;

vt ¼ kvt�1 � kxt�1 þ wt;

wt �Nð0;rwÞ;

where x and v are the position and velocity at time t; k is a friction parameter constrained

to be between 0 and 1; k is a spring constant which pulls the particles mildly to the cen-

ter of the screen; and wt is random acceleration noise added at each time point which is

distributed as a zero-mean Gaussian with standard deviation rw.

In two dimensions, this stochastic process describes a randomly moving cloud of

objects; the spring constant assures that the objects will not drift off to infinity, and the

friction parameter assures that they will not accelerate to infinity. Within the range of

parameters we consider, this process converges to a stable distribution of positions and

velocities.
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3. Results

3.1. More targets become harder to track

We replicate the finding that object tracking becomes harder both with increasing

velocity of the particle swarm and with increasing number of targets (Alvarez & Fran-

coneri, 2007). Unlike the original experiment, where subjects were allowed to adjust their

own speed to what they felt was subjectively comfortable, we used a 3 up–1 down stair-

case, varying the parameter rw in steps of 0.5, thereby objectively measuring a 79% psy-

chometric accuracy threshold for subjects.

Results of 14 subjects are shown in Fig. 2a and qualitatively match those from Alvarez

and Franconeri (2007). An in silico replication of this experiment using a same-sized

agent pool yields identical results, as shown in Fig. 2b, demonstrating that our model

replicates aggregate human performance limitations arising out of both increasing velocity

and target count. This overall pattern of behavior cannot be captured by a simple ideal

observer without a constrained resource.

3.2. Predicting individual trial errors

While replicating aggregate predictions forms a useful baseline for assessing model

validity, our model provides performance predictions for individual MOT trials, thereby

providing a way to examine the limitations that humans face in doing this task at a much

finer resolution. Pursuant to our interest in limitations to MOT performance, we are

interested more in examining if our model gets the same trials wrong as humans. An

Fig. 2. The speed at which observers can maintain a particular accuracy threshold decreases as the number

of objects to be tracked increases both for (left) 14 human subjects tested using a 3 up–1 down staircase

experiment varying object velocity and (right) simulations of our model performing the same staircase task.
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algorithm that has difficulty solving the same MOT trials that humans find difficult to

solve is more interesting from a scientific standpoint than one that merely captures overall

performance trends.

We conducted this analysis in the form of a binary classification study—using multiple

(N = 11) simulations of model performance on an individual trial as a predictor for

human performance. Perfect correlation between human and model predictions would be

equivalent to perfect binary classification of human errors/non-errors using model predic-

tions. As illustrated in Fig. 3a–b, our model outperforms a static spatial tracking model

on two comprehensive criteria of classification performance: F-measure and area under

the ROC curve. We obtained the ROC for our analysis by varying the threshold count of

number of times the model got a trial correct (out of N) for us to label it positive between

1 and 11. The F-score reported is from the middle of the ROC, corresponding to a thresh-

old count of 6.

In a separate experiment, we asked 22 students to perform the MOT task on 150 pre-

set trials, with object velocity set at the average of our earlier sample. We then used clas-

sification with 20-fold cross-validation to calculate how well the performance of half the

subjects on a trial predicted that of the other half, thereby obtaining a theoretical upper

bound on classification performance (illustrated at the top of Fig. 3a). This upper bound

places the extent of improvement in within-trial prediction performance engendered by

our model in proper perspective—our model is clearly a considerable improvement over

the static case, reducing nearly half the distance to the performance upper bound in terms

of error classification performance.

Finally, since our model simulates objects’ movements throughout the trial, it generates

predictions for which objects it considers to be targets at the end of each simulation run.

By measuring the congruence of these final target sets predicted by the model with the

frequency with which humans made mistakes on probed objects, we can get a sense for

whether the model makes the same mistakes the humans did, not just mistakes on the

same trials the humans did.

Panels (c)–(d) in Fig. 3 present quantitative evidence for congruence between human

and model errors even at this fine-grained resolution. In both figures, the x-axis plots the

probability rank with which the model assigns a probed object to the target set, measured

across 11 simulation runs; the y-axis counts the number of times the probed object

occurred in all error trials across 30 subjects. For false-negative trials, where humans,

when probed with a target, said that it was not, panel (c) shows that the targets that

humans mistook for distractors were less likely to be members of the model’s target set.

For false-positive trials, where humans, when probed with a distractor, said it was a tar-

get, panel (d) shows that such distractors were more likely to be members of the target

set in our simulation runs.

3.3. Assessing metacognitive attention control

The model we have proposed augments flexibility in spatial resolution to existing

Bayesian accounts of multiple-object tracking, and our simulation experiments show that
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it does indeed improve trial-level predictions. Here, we further test some more specific

predictions of the strategic-allocation MOT model: Does precision of tracking follow the

predictions our model makes about allocated resources? And does the model distinguish

between qualitatively different types of target-identification errors?

3.3.1. Crowded locations are tracked better
The key non-trivial prediction of our strategic-allocation model of multiple-object

tracking is that subjects will localize easily confusable objects with greater precision

because they will selectively attend to them more to resolve the possible ambiguity. In

Fig. 3. Treating model performance (correct/incorrect) per trial as a binary classifier of human performance

shows that attention-gated spatial tracking predicts trial-level human accuracy better than static spatial inter-

ference–based models, (A) with a considerably greater F-measure and (B) higher area under the ROC curve.

Not only does our model make mistakes on the same trials as humans do, it also makes substantially the

same mistakes that humans do, both for (C) trials where humans mistakenly identify a distractor is a target

and (D) trials where they mistakenly identify a target as a distractor.
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contrast, a bottom-up theory of tracking would predict no relationship between crowding

and localization error—location errors in such models would reflect either constant per-

ceptual uncertainty or might even increase for more confusable objects due to crowding

(Whitney & Levi, 2011).

We directly tested this prediction by making a simple manipulation to the basic design.

We interleaved trials probing the identity of one of four targets with ones wherein once

the dots stop moving, one of them disappears, and participants were prompted to click on

its latest position using a mouse. Participants were instructed to focus on getting the

probe trials correct and respond on the location trials as best they could. This was done

to ensure that subjects did not stop attending to targets in order to focus more generally

on the entire viewing area to better minimize location errors. We further expect that the

randomly interleaved presentation of both types of trials (controlled by a Bernoulli

parameter p = .5) also dissuaded such task switching.

Unlike in the other experiments, where trials were generated de novo for each partici-

pant, all 29 participants saw the same 150 pre-selected trials in this experiment. These tri-

als were selected to hold the distance between the probed/disappearing particle and its

nearest neighbor fixed at five separate values, 30 trials per distance value.

The results shown in Fig. 4a, plotting the localization error (in pixels) that subjects

make against the category of trial (sorted by distance to nearest neighbor), show a clear

trend favoring our hypothesis (q = 0.91, p = .03), and supporting related observations

from Iordanescu, Grabowecky, and Suzuki (2009). Objects that disappeared in crowded

locations were localized with greater precision than objects in less crowded locations, and

this effect appeared to saturate for crowding radii subtending a greater than 1.8° visual

angle, potentially reflecting the limited radius of the attention spotlight. This empirical

result supports our work’s basic assumption—that rational attention allocation influences

MOT performance via flexibility in spatial resolution.

3.3.2. Model identifies drop versus swap errors made by humans
People do not always track all of the objects they were asked to, with errors arising

from swapped labels between targets and distractors; instead, they sometimes simply drop

a target and stop tracking it (Drew et al., 2013). For our purposes, swaps are erroneous

identifications of target-distractor labels, as uncovered in the probe trials. Drops are erro-

neous identifications that participants knew would likely be erroneous before responding

because they knew they had dropped a target. Therefore, we can estimate whether a given

error was a swap or a drop by asking participants if they were surprised by the error.

When an error arises from a participant swapping the probed target for a distractor, or

vice versa, they would be surprised when told that they are wrong. Conversely, partici-

pants who knew that they had dropped one or more targets would express little surprise

at being wrong.

We attempted to elicit precisely this information in a third experiment. The protocol

for this study followed the same staircase design used in the first experiment; we col-

lected data only for 14 subjects and with trials involving four targets amid eight distrac-

tors. Also, every time a subject responded incorrectly to the probed particle, they were
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required to indicate with a keypress whether they were surprised at being wrong before

proceeding to the next trial.

Even though our model does not include an explicit mechanism for dropping targets, it

is possible to construct hypotheses about situations within trials that would promote drops

and operationalize them in a testable manner. In particular, we expect that subjects would

drop objects from the target list if their attention resources were overstretched, causing

irreducible confusability among objects. In our model, the overall demand for attention

might exceed capacity if there are many potentially confusable targets. Therefore, sensi-

tivity to the drop-swap distinction in our model would predict that the cumulative confus-

ability of all the targets would be larger at critical points in the trial for instances where

errors would occur due to drops than for instances where errors would occur due to

swaps. This prediction is borne out in our data, as shown in Fig. 4b, where we show that

the critical confusability for trials labeled as drop errors from our behavioral characteriza-

tion is consistently higher than for trials labeled as swap errors. Since errors in MOT hap-

pen at critical junctures and cannot be characterized by statistics averaged across the

trial, we used the largest value of confusability obtained within a trial as our definition of

critical confusability.

4. Discussion

Previous work has shown that patterns of aggregate behavior in multiple-object track-

ing as a function of the average speed and spacing of objects, the duration of tracking,

and the number of distractors can be explained by an ideal observer iteratively solving

Fig. 4. Indirect measurements supporting the role of metacognitive attention dynamics in the MOT task.

(Left) Subjects were more precise in localizing objects that were in crowded locations than those that were

more isolated. (Right) The model’s overall confusability load was significantly (p = .0017) higher at peak

confusability in “drop” trials than in “swap” trials as measured behaviorally, suggesting that “dropping” could

be a rational response in such situations. All error bars represent � 1 SEM.
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the correspondence problem (Vul et al., 2009). However, such ideal observers cannot

capture the critical effects of tracking load—how many targets must be tracked—indicat-

ing that some sort of cognitive resource constraints limit human performance. We com-

bined these two features to model human object tracking performance as Bayesian ideal

tracking with a resource constraint and showed that such an agent exhibits the same

tradeoffs between speed and number of targets tracked as people. We go further to show

that this limited resource is not allocated to targets according to a fixed, static division,

but is instead allocated strategically depending on the prospective costs and benefits of

possible allocations.

Strategic, dynamic allocation of cognitive resources can better predict trial-level varia-

tions in performance across subjects in MOT performance. Furthermore, such strategic

metacognitive allocation accounts for differences between trials when targets are dropped

from consideration, rather than merely misassociated and swapped with distractors, differ-

ences that we were able to behaviorally elicit using a novel experimental manipulation.

Finally, the specific combination of our presumed resource (spatial resolution—potentially

mediated by attention) and our dynamic allocation policy predicts a specific pattern of

variation in the precision of position estimates for individual targets (localization errors

increase for less crowded objects), and we show that this holds for human observers.

Together, these results represent proof-of-concept for how we can capture the interaction

between bottom-up uncertainty and human cognitive resources using task-sensitive

metacognitive policies: In multiple-object tracking, spatial resolution is allocated to

reduce uncertainty for the correspondence problem.

Since our computational model is strongly predicated upon the ability of observers to

consistently index objects, it fails in the same directions as indexing theory; for example,

it cannot explain why humans find it easier to differentiate targets from distractors than

to identify which target is which (Pylyshyn, 2006). Future work could replace our index-

ing assumption with more realistic models of generating attention foci given visual stimu-

lus to accommodate these results (Trommersh€auser, Maloney, & Landy, 2003). In

particular, a more flexible representation could be developed where attention is split not

between particles, but between retinotopic attention foci, which track areas in the visual

field that contain varying numbers of objects.

Finally, classical MOT studies have tended to ask subjects to foveate a central location

and maintain this fixation throughout MOT trials as a way of removing sources of percep-

tual uncertainty arising from body or eye movements. This constraint reduces the ecologi-

cal validity of MOT performance as predictors of multiple-object tracking performance in

the real world. We allowed subjects to fixate ad libitum during our experiment, which

means that our present model lumps together the influence of overt and covert attention

modalities. Future work could track eye fixations using eye trackers, with a richer atten-

tion model that includes a flexible covert element of the form we describe in this article

as well as a more restrictive overt element, which would attenuate spatial resolution sym-

metrically as a function of distance from the point of present fixation. Rational predic-

tions for such a model would include predictions of eye fixation positions as a function

of target locations.
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