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Abstract

The question of whether people store absolute magnitude in-
formation or relative local comparisons of magnitudes has re-
mained unanswered despite persistent efforts over the last three
decades to resolve it. Absolute identification is one of the
most rigorous experimental benchmarks for evaluating theo-
ries of magnitude representation. We characterize difficulties
with both absolute and relative accounts of magnitude repre-
sentation and propose an alternative account that potentially re-
solves these difficulties. We postulate that people store neither
long-term internal referents for stimuli, not binary compar-
isons of size between successive stimuli. Rather, they obtain
probabilistic judgments of size differences between successive
stimuli and encode these for future use, within the course of
identification trials. We set up a Bayesian ideal observer model
for the identification task using this representation of magni-
tude and propose a memory-sampling based approximation for
solving it. Simulations suggest that the model adequately cap-
tures human behavior patterns in absolute identification.
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A theoretical debate
One of the most compelling mysteries of human behavior is
the nature of the information we store that enables us to de-
cide what to do rapidly and effectively in everyday life. The-
oretical opinion currently lies on a spectrum conceptually de-
fined by two strongly divergent positions: one camp, gener-
ally better represented among economists and neuroscientists,
assumes that people have direct psychophysical access to the
magnitude of entities in the world (how big was this stimu-
lus on the scale I’m interested in?) (Brown, Marley, Donkin,
& Heathcote, 2008); the other, mostly containing psycholo-
gists, claims that people store only the relative results of com-
parative evaluations (which stimulus was bigger?) (Stewart,
Brown, & Chater, 2005).

A classic problem for the absolute magnitude camp is that
of absolute identification. Across a range of sensory modali-
ties line lengths, sound frequency, sound loudness, etc. ob-
servers are quicker and more accurate in identifying stimuli
at the extremes of the presented stimuli set than for stimuli in
the middle (Lacouture & Marley, 2004). In addition to iden-
tification, it is also possible to ask participants to categorize
perceptual stimuli into one of two groups, in which case a
similar pattern of results is seen to hold. The same ‘bow-tie’
seen in identification experiments is seen in perceptual cate-
gorization experiments, with extreme stimuli within the stim-
uli set categorized more accurately and rapidly (Lacouture &
Marley, 2004; Ratcliff & Rouder, 1998). Why should the
range of stimuli presented in a set affect observers’ responses
to individual stimuli, if each stimulus has its own independent
internal magnitude representation?

A classic challenge posed to the relative magnitude camp
is the distance effect seen in closely related experiments. Dis-
tance effects are seen when people are asked to identify which
of two presented stimuli is larger (Ratcliff & Rouder, 1998).
Participants in Ratcliff & Rouder’s brightness discrimination
experiment were more accurate and quicker to respond when
pairs of presented stimuli were far apart in actual brightness.
The distance effect in perceptual choice finds an exact coun-
terpart in the distance effect observed in economic experi-
ments, where participants are seen to be more inconsistent
and late in responding when the value of competing options is
close (Dickhaut, Smith, Xin, & Rustichini, 2013). If people
aren’t storing absolute magnitude information, why do they
find stimuli farther apart easier to categorize and differenti-
ate?

Explanations for subsets of these phenomena have been
previously proposed, and are briefly described below. How-
ever, the universality of these effects in perception and cog-
nition demands a universal explanation, one equally appli-
cable to simple perceptual identification tasks and to cogni-
tive preference judgment tasks. Sequential sampling models,
best represented by Roger Ratcliff’s seminal drift diffusion
model (Ratcliff & Rouder, 1998), are in fact universally used
to fit data from all of these tasks, and commonly provide very
good empirical fits. Drift diffusion models (DDM) assume
that evidence favoring multiple alternatives rises in separate
evidence accumulators, and the first accumulator to reach an
implicit decision threshold is emitted as the overt choice.
Even the simplest DDM style accounts of the choice pro-
cess, though, use O(N) parameters to fit choice and response
time data in N-alternative experiments (Brown & Heathcote,
2008). While empirically valuable, such modelling is de-
scriptive; it does not provide insight into why the error and
RT distributions with respect to stimulus order take the typi-
cal ‘bowtie’ shapes they do (Brown et al., 2008). All DDMs
can say in such cases is that evidence for extreme stimuli ac-
cumulates faster than for intermediate stimuli. They cannot
explain why this happens.

Challenges to current accounts
Sophisticated models of absolute identification place the
source of this pattern in the process by which observers map
their internal representations of perceived stimuli magnitude
onto discrete number labels. For instance, in (Lacouture &
Marley, 1995), Lacouture & Marley showed that treating the
magnitude-label mapping problem as an encoder problem, to
be solved by a feed-forward network, yields mappings for re-
sponse strengths quadratic in the stimulus order, immediately
yielding the bowtie effect when coupled with a DDM (Brown
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Figure 1: Problems for current accounts of absolute identification. (Left) Accounts that assume that observers maintain long-
term distributions of stimuli magnitude find it hard to explain results where the same stimulus is responded to differently by the
same subject depending on its order within different stimuli sets. (Right) Accounts that assume that observers maintain only a
memory of ‘which was bigger’ judgments find it hard to explain effects of unequal spacing in magnitudes within stimuli sets.

et al., 2008). The psychophysical rationale for such a map-
ping more precise for extreme stimuli is illustrated in Figure
1. Assuming that long-term absolute internal representations
of stimuli magnitude are noisy, the efficient encoding hypoth-
esis holds that when confronted with a specific stimuli set, hu-
mans will respond to the specific task challenge of mapping
stimuli to labels by comparing the presented stimulus to all
available internal referents. The strength of the evidence for
the mapping is information-theoretically stronger for stimuli
corresponding to fewer overlapping internal referents, thus
privileging points closer to the extremes, since they will have
less interference from stimuli representations from one side
of the scale.

A prominent empirical challenge to such accounts comes
from the finding that stimuli of the same length are responded
to differently when they are members of stimuli sets of dif-
ferent lengths, even within the same subject (Sims, 2016). If
long-term stimulus magnitude representations exist, then they
should be indifferent to the impact of adding more stimuli to
an existing stimuli set, and the pattern of response should not
change for the side of the stimulus order where new stim-
uli are not added. However, empirical evidence (see Figure
1 left) shows that it does. The solution to this problem pre-
sented in (Sims, 2016) is to adjust the noise levels in the in-
ternal stimuli representations ‘adaptively’ as a function of the
set of stimuli to be represented. Such solutions, while math-
ematically feasible, call into question exactly how long-term
the internal representations are, if they are to be so responsive
to extraneous context.

Adopting a representation of stimuli that stores only local
comparisons, Stewart et al have argued that observers, once
given feedback about the previous trial, and comparing the
current stimulus to the immediately previous one, can restrict
the range of possible responses by using the previous stim-

ulus as an upper or lower bound for the new one (Stewart
et al., 2005). This range restriction naturally proves to be
more informative for stimuli closer to the edge of the stimu-
lus set range, making responses to these stimuli more accu-
rate. Thus, a convex relationship between response strength
and stimulus order, specific to the presented stimuli set, is
obtained.

Prominent challenges to such relative comparison-based
accounts include the fact that they do not provide easy expla-
nations for differences in response patterns induced as a func-
tion of unequal distances between stimuli in absolute iden-
tification tasks. Including a large gap in the middle of an
otherwise linear in log space stimuli range, Brown et al show
that people find stimuli surrounding this gap easier to identify,
whereas relative judgment models find it hard to even fit such
data without detracting from predictive performance for the
other stimuli (Brown, Marley, Dodds, & Heathcote, 2009).
The core problem is that the model in question, Stewart et
al.’s relative judgment model (RJM) uses a hard threshold in
inter-stimulus distance to determine if a stimulus is larger or
smaller than its predecessor, and fits this threshold as a pa-
rameter. Changes in spacing end up compromising the qual-
ity of the model fit.

It is intriguing to note that what is hard to explain using
one family of models is easy using the other. Relative judg-
ment models will have no difficulty explaining the effect of
multiple stimuli sets on the response pattern, since there are
no long-term response strength mappings to expect consis-
tent responses from. Absolute magnitude models will find it
straightforward to explain heightened accuracy across large
gaps - assuming the same variance for each internal represen-
tation, shifts in the mean by adding a gap increases the dis-
criminability of neighboring stimuli, increasing the response
strength for the corresponding stimuli.



Finally, both classes of models find it hard to explain prac-
tice effects in absolute identification - the fact that partici-
pants in these experiments actually get better at the task given
practice (Rouder, Morey, Cowan, & Pealtz, 2004). Since nei-
ther class of model posits any form of learning mechanism
for observers, they fail to explain the actual learning curves
seen in real experimental subjects (Dodds, Donkin, Brown, &
Heathcote, 2011).

Judgments are formed from memories
The striking complementarity of the strengths and weak-
nesses of absolute and relative models of absolute identifi-
cation suggest an opportunity to formulate an intermediate
account that bridges this theoretical divide. We make an ef-
fort to do so in this paper.

In contrast with previous work, we make three novel as-
sumptions about the process by which observers perform ab-
solute identification and related tasks. First, we assume that
the mental representation actually used by people in such
tasks is a judgment of relative magnitude made using compar-
ison to the immediately preceding stimulus during the exper-
iment. Second, we assume that observers learn the stimulus-
label mapping via a process well-described as an approxi-
mately Bayesian learning algorithm that explicitly samples
memory engrams corresponding to the internal representa-
tions of stimulus magnitude learned during earlier trials of
the experiment. Finally, we assume that this memory sam-
pling self-terminates according to an information-gain cri-
terion during each trial, and that the learned distribution of
stimuli ranks at the time of termination is what the observer
uses to emit an overt label response.

The relative magnitude representation. Rather than as-
sume the existence of a stable internal magnitude scale, or a
binary ‘bigger than the previous’ representation, we propose
that observers actually store, upon each stimulus presentation,
an instantaneous probabilistic judgment of how much bigger
(or smaller) the incoming stimulus is with respect to its prede-
cessor. In the same way that a beam balance need not know
the actual weights it is loaded with to tell which is bigger,
this internal representation need not require the existence of
an internal magnitude scale in order to be coherently calcu-
lated for local pairwise comparisons. In the same way that
the deflection of the beam balance scale, or even the veloc-
ity of its change, can tell us how unequal the two weights are,
this probabilistic representation of the pairwise difference be-
tween successive stimuli will contain more information than
a simple binary judgment. For any pair of successive obser-
vations {xt−1,xt}, we denote this probabilistic container of
relative magnitude p(r|x,o = {xt−1,xt}), where r takes on the
interpretation of magnitude.

Unlike absolute magnitude accounts, which assume the ex-
istence of long-term absolute internal referents for stimuli
of specific magnitudes, relative magnitude judgment requires
only the existence of a short-term (1-back) absolute internal
referent. On the typical time-scales of absolute identification

experiments, such a referent could stem either from percep-
tual hysteresis, or from short term memory. Once the compar-
ison of the new stimulus with the referent is made, the refer-
ent dissipates on the time-scale of either mechanism, without
affecting the information content of the relative magnitude
judgment, which is stored in long-term memory. The nature
of this mental representation matches exactly the intriguing
phenomenology that triggered the original absolute identifi-
cation experiments - people are much better at making imme-
diate local comparisons (discrimination) but poorer at long-
term identification. If the shorter timescale discrimination is
conducted via perceptual processes, while identification re-
quires more elaborate memory-accumulation, this difference
becomes easy to explain.

Bayesian stimulus-label mapping. Given this assump-
tion about the nature of the long-term internal referent, an
observer’s goal in absolute identification is to extract a rel-
ative magnitude judgment across stimuli in the stimulus set
given access to a history of pairwise relative magnitude ob-
servations, and to do so using their own history of stimulus
exposure within the task. We model the stimulus-label map-
ping process in the absolute identification task as Bayesian
marginalization over relative magnitude judgments seen in
pairwise comparisons (Srivastava, Vul, & Schrater, 2014).
The mathematical machinery of sequential Bayesian updating
allows us to formalize this learning process sequentially on a
trial-by-trial, instead of treating the stimulus-label mapping
and experimental responding as separate events as is classi-
cally done. A graphical view of this process is illustrated in
Figure 2.
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Figure 2: An approximately Bayesian learning model of ab-
solute identification. Observers encode a history of relative
magnitude comparisons into memory, and sample from this
set of memories to sequentially learn the relative rank order
of individual stimuli upon repeated presentation.

The relative magnitude of each stimulus, as we describe
above, takes on a probabilistic interpretation formally ex-
pressed as p(r|x,o), where r is the relative magnitude judg-
ment, x is the currently visible stimulus, and o = {xt−1,xt} is



the relevant comparison observation. The ideal Bayesian ob-
server learns p(r|x,o) by combining comparison information
from all previously observed comparisons. Thus, this quan-
tity is obtained by marginalizing over the set of previously
seen unique observations in memory C = P (X ),s.t.∀c ∈
C , |c| = 2 which we denote the memorized comparisons.
Then,

D(x) = p(r|x,o) = ∑
C
c p(r|x,c)p(x|c)p(c|o)

∑
C
c p(x|c)p(c|o)

, (1)

where it is understood that the comparison probability
p(c|o) = p(c|{o1,o2, · · · ,ot−1}) is a distribution on the set
of all comparisons available from observation history. Here,
p(r|x,c) encodes the probability that the item x was found to
be larger in the comparison c, p(x|c) encodes the probability
that the item x was present in the context c and p(c) encodes
the frequency with which the observer encounters these com-
parisons during the experiment. This frequency is updated
via recursive Bayesian estimation,

p(c(t)|o(1:t)) =
p(o(t)|c)p(c|o(1:t−1))

∑
C
c p(o(t)|c)p(c|o(1:t−1))

. (2)

This completes the computational description of the task an
ideal Bayesian observer would perform in service of absolute
identification, given access to local relative magnitude judg-
ments. The practical approximation arises when we explicitly
model the act of accessing previous relative magnitude judg-
ments as memory sampling.

Self-terminating memory sampling. Evidence accumu-
lation influences the shape of the distribution p(c|o) via mem-
ory sampling. We model the process of memory recall as
the activation of a subset Q of decision-relevant memory en-
grams. Using this notation, a general memory accumulation
model could be expressed as,

p(c) = ∑
q∈Q

p(c|q)p(q), (3)

where c∈ C are stimuli comparisons available in memory and
q ∈ Q are memory engrams corresponding to past relative
magnitude judgments. Here, the probability distribution p(q)
- which we call the memory prior - encodes the likelihood of
recalling the memory of experience q, while the distribution
p(c|q) encodes the knowledge of having seen c and its corre-
sponding relative magnitude judgment stored in the memory
engram q. For simplicity, we assume a trivial bijective map-
ping between c and q - each memory engram is assumed to
be associated with a unique stimuli pair.

This memory-sampling variant of p(c|o) plugs directly as
the prior in the Bayesian comparison probability update for
p(c|o) in Equation 2, which then itself plugs into the two
computations in Equations 1 and 2 that define the ideal ob-
server model. This replacement is facilitated by one addi-
tional assumption: that the comparison-specific memories

recalled are episodic, and therefore convey all comparison-
relevant information once the comparison episode itself has
been activated in memory1.

Finally, we formalize our information-theoretic criterion
for terminating memory sampling and emitting an identifica-
tion response. We assume that observers continue to sample
memory engrams until the rate at which these provide new
information subsides below a threshold. Since the number
of unique engrams is limited, the total information available
in memory is finite, and any sampling strategy is bound to
asymptote. Additional information gained by adding an addi-
tional engram qn to the existing set can be expressed as,

IG(qn) = ∑
i

p(ci|q1:n−1) log
p(ci|q1:n−1)

p(ci|q1:n)
, (4)

so our sampling termination rule is,

argmin
n

IG(qn)< T, (5)

where T is the termination threshold, constrained by impre-
cision induced by the influence of processing noise ε such
that T > ε > 0, and also potentially informed by exogenous
influences.

The observer’s choice is determined from the relative mag-
nitude judgment across all x available at the time memory
sampling is terminated. We count instances where the ob-
server’s decision variable predicts the correct rank of the stim-
ulus introduced on individual trials as accurate responses.
Samples to termination are directly interpreted as response
times.

Simulation Results
A complete evaluation of the capabilities of this model re-
quires considerably more space than is available in the present
format. We restrict ourselves to demonstrating that the model
produces reasonable patterns of behavior by replicating well-
established empirical benchmarks for absolute identification
models. First, we demonstrate the ability of our model
to qualitatively replicate the absolute identification results
of (Lacouture & Marley, 2004), which are a common bench-
mark for evidence accumulation models (Brown & Heath-
cote, 2008). Then, we show how it can replicate a harder
pattern of behavior - the crossover effect in RT (Luce, Nosof-
sky, Green, & Smith, 1982; Brown & Heathcote, 2008).

Reproducing the bowtie effect
Modelling our in silico experiment design after the design
reported in (Lacouture & Marley, 2004), we showed 20 in-
stances of the model 40 copies each of N = 7 stimuli, and ask-
ing them to assign number labels 1 · · ·n to them. On each trial,

1This assumption simplifies our analysis by ignoring the memory
dependence of our other intermediate probability terms. While it is
likely that such dependence exists, its effects will work in the same
direction as the basic results of our approach, since it would further
impoverish the preference representation we are already imposing
sampling constraints on.
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Figure 3: Combining the U-shaped pattern of informativeness with an information-based threshold yields patterns of (left)
accuracy and (right) response time as a function of stimulus order. Simulated experiments were conducted using 40 trials per
stimulus per session; results are shown averaged across 20 simulation sessions emulating 20 identical observers. Error bars
represent ±1 s.e.m. across these simulated observers.

agents updated their estimates for p(r|xt ,o = {xt ,xt−1}) fol-
lowing the model described above. Since we assumed equal
spacing on a log scale for stimuli as in the original experi-
ment, we kept the relative magnitude judgments as 1 for sim-
plicity, and used a threshold value T = 0.001. While our re-
sults are presented using a smaller stimulus set than the orig-
inal experiment, the qualitative trends match (see Figure 3).
Accuracy exhibits a convex relationship with stimulus order,
and the response time distribution is concave, matching the
profiles observed by (Lacouture & Marley, 2004) (also see
Figure 10 in (Brown & Heathcote, 2008)).

The model’s capacity to identify absolute stimuli arises
from differences in the informativeness of memory samples
corresponding to various stimuli. Because the evidence from
comparisons involving extreme stimuli consistently points
the same way, the marginal information gain from sampling
saturates rapidly and the model terminates memory retrieval
sooner, leading to faster RTs and accurate responses. On the
other hand, for stimuli closer to the middle, samples will be
split between comparisons where the stimulus is larger and
ones where it is smaller, resulting in greater decision variable
volatility, and hence, more sampling. This interaction then
manifests summarily as slower RTs and noisier responses. In
contrast with conventional DDM models, that require O(N2)
parameters to fit decision processes with N alternatives, our
model requires just one to reproduce the central finding of
the multi-alternative perceptual decision-making literature -
the psychophysical bowtie effect.

Reproducing the crossover effect
The crossover effect describes a more complicated pattern
of behavior typically seen in perceptual choice experiments.
When choice is easy and speed is emphasized, incorrect re-
sponses are quicker than correct responses; when choices
are harder and accuracy is emphasized, the opposite is
true (Brown & Heathcote, 2008). This pattern of RT behavior
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Figure 4: Replication of the crossover effect in perceptual
choice.The x-axis plots the rank distance between compared
stimuli on a given trial, and the y-axis plots the average num-
ber of samples drawn before responding during 20 model
runs. Error bars represent ±1 s.e.m. across these model runs.

has proved very challenging for several models of choice RT
to fit, and is a challenging benchmark for models in this field.

Perceptual choice fits into our framework without affect-
ing the formalism in the slightest. The only difference is that
the observations o now represent two stimuli seen together
instead of sequentially. All the other interpretations remain
identical to those in the identification setting. We conducted
in silico experiments using the same simulation setup as
above. As Figure 4 illustrates, our model displays a crossover
effect even ignoring the effect of the speed-accuracy tradeoff.

Further, our model offers a straightforward parameter-free
explanation for the crossover effect. Simple choices corre-
spond to situations where most samples in memory point in
the same direction for a particular stimulus. In such cases,
the only way the model could fail to produce the correct re-



sponse is if the sampling was terminated prematurely. Thus,
incorrect responses for simple choices have to be fast. Given
sufficient time for integration, it would be impossible for the
model to be incorrect. Hard choices correspond to situations
where both options have memory samples supporting their
case for being bigger. In such cases, the model is biased
towards terminating when the marginal information gain is
low. Thus, the model will fail to terminate when memory
sampling fails to resolve to a modal response, which is more
likely when the sampling has failed to discover the true mode
of the relative magnitude judgment distribution, resulting in
bigger RTs for errors.

Discussion
The results described above suggest that, at a minimum, the
model presented in this paper functions as a reasonable model
for absolute identification. The fact that our model repro-
duces the standard bowtie effect using a single parameter sug-
gests that it is capturing a core intuition that existing DDM
models struggle to incorporate using many more parameters
- errors in the accumulation process occur due to sampling
errors in memory retrieval, posterior distributions for diffi-
cult trials have greater entropy and so take more samples to
resolve. Further work is obviously needed to verify that the
theoretical novelty of the relative magnitude representation
actually provides better fits to data for problem cases in exist-
ing models, such as the ones we highlighted above.

A priori, the representational flexibility provided by this
representation, in conjunction with the fact that the repre-
sentation itself is learned from trial-by-trial stimulus obser-
vations, is expected to reproduce both the shift in response
patterns as a function of stimulus set shown by (Rouder et al.,
2004) and the heightened response to unequal spacing doc-
umented by (Brown et al., 2009). The latter, in particular,
can be obtained using a simple modification of the present
experimental setup - changing the value of the local relative
magnitude judgment to reflect the impact of unequal spac-
ing, instead of keeping it uniform in the presence of equal
spacing as in our demonstrations. Mathematically, changing
this term simply constitutes an over-weighting of the relevant
memory engrams in the accumulation process, which should
easily yield lower error rates around these gaps. Crucially,
our account predicts that this effect should also propagate to
the RT distribution - an easily testable prediction.

Sequentially modelling the mapping process, in conjunc-
tion with the use of an information-based stopping cri-
terion, sheds new light on the relationship between the
psychophysical bowtie effect seen in identification experi-
ments (Lacouture & Marley, 2004) and the economic distance
effect (Dickhaut et al., 2013) observed in multiple behav-
ioral economics experiments where it is found that extreme
choice valence (distance in utility) appears to be correlated
with lower error rate, response times and interestingly, lev-
els of neuronal activation as measured by fMRI (Dickhaut et
al., 2013). According to our model, constructing a decision

variable using conflicting evidence requires more samples to
breach the information-based threshold, resulting in greater
effort, correlated with higher RT and brain activation for both
perceptual and economic choices with greater mutual confus-
ability, as determined by their history of pairwise compar-
isons.
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