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Abstract

We show that several striking differences in memory performance between recogni-1

tion and recall tasks are explained by an ecological bias endemic in classic memory2

experiments - that such experiments universally involve more stimuli than retrieval3

cues. We show that while it is sensible to think of recall as simply retrieving4

items when probed with a cue - typically the item list itself - it is better to think5

of recognition as retrieving cues when probed with items. To test this theory, by6

manipulating the number of items and cues in a memory experiment, we show7

a crossover effect in memory performance within subjects such that recognition8

performance is superior to recall performance when the number of items is greater9

than the number of cues and recall performance is better than recognition when10

the converse holds. We build a simple computational model around this theory,11

using sampling to approximate an ideal Bayesian observer encoding and retrieving12

situational co-occurrence frequencies of stimuli and retrieval cues. This model13

robustly reproduces a number of dissociations in recognition and recall previously14

used to argue for dual-process accounts of declarative memory.15

1 Introduction16

Over nearly half a century, differences in memory performance in recognition and recall-based17

experiments have been a prominent nexus of controversy and confusion in the behavioral and18

neuroscientific literature. There is broad agreement among memory researchers, following Mandler’s19

influential lead, that there are at least two different types of memory activities - recollection, wherein20

we simply remember something we want to remember, and familiarity, wherein we remember having21

seen something before, but nothing more beyond it [8]. Recall-based experiments are obvious22

representatives of recollection. Mandler suggested that recognition was a good example of familiarity23

activity.24

Dual-process accounts of memory question Mandler’s premise that recognition is exclusively a25

familiarity operation. They argue, phenomenologically, that recognition could also succeed successful26

recollection, making the process a dual composition of recollection and familiarity [21]. Experimental27

procedures and analysis methods have been designed to test for the relative presence of both processes28

in recognition experiments, with variable success. These endeavors contrast with strength-based29

single-process models of memory that treat recognition as the retrieval of a weak trace of item30

memory, and recall as retrieval of a stronger trace of the same item [20].31

The single/dual process dispute also spills over into the computational modeling of memory. Gillund32

and Shiffrin’s influential SAM model is a single-process account of both recognition and recall [4]. In33

SAM and other strength-based models of declarative memory, recognition is modeled as item-relevant34

associative activation of memory breaching a threshold, while recall is modeled as sampling items35

from memory using the relative magnitudes of these associative activations. In contrast, McClelland’s36

equally influential CLS model is explicitly a dual-process model, where a fast learning hippocampal37

component primarily responsible for recollection sits atop a slow learning neocortical component38
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responsible for familiarity [9]. Wixted’s signal detection model tries to bridge the gap between39

these accounts by allowing dual process contributions to combine additively into a unidimensional40

strength variable [20]. While such pragmatic syntheses are useful, the field is still looking for a more41

satisfactory theoretical unification.42

The depth of the difference between the postulated dual processes of recollection and familiarity43

depends inevitably on the strength of the quantitative and qualitative dissociations that previous44

research has documented in memory tasks, prominent among which are recognition and recall.45

Mandler, for instance, postulated a one-to-one mapping between recognition and familarity on one46

hand and recall and recollection on the other [8], although other authors hold more nuanced views [21].47

Notwithstanding such differences of opinion, the road to discovering useful single-process accounts48

of declarative memory has to go through explaining the multiple performance dissociations between49

recognition and recall memory tasks. To the extent that single process accounts of both tasks can50

explain such dissociations, differences between recollection and familarity will not seem nearly as51

fundamental.52

Improved strength-based models have competently modeled a large array of recognition-recall53

dissociations [12], but fail, or have to make intricate assumptions, in the face of others [21]. More54

importantly, the SAM model and its descendants are not purely single-process models. They model55

recognition as a threshold event and recall as a sampling event, with the unification coming from56

the fact that both events occur using the same information base of associative activation magnitude.57

We present a much simpler single process model that capably reproduces many critical qualitative58

recognition-recall dissociations. In the process, we rationalize the erstwhile abstract associative59

activation of strength-based memory models as statistically efficient monitoring of environmental60

co-occurrence frequencies. Finally, we show using simulations and a behavioral experiment, that the61

large differences between recognition and recall in the literature can be explained by the responses of62

an approximately Bayesian observer tracking these frequencies to two different questions.63

2 Model64

We use a very simple model, specified completely by heavily stylized encoding and retrieval processes.65

The encoding component of our model simply learns the relative frequencies with which specific66

conjunctions of objects are attended to in the world. We consider objects x of only two types: items67

xi and lists xl. We model each timestep as as a Bernoulli trial between the propensity to attend to68

any of the set of items or to the item-list itself, with a uniform prior probability of sampling any69

of the objects. Observers update the probability of co-occurrence, defined in our case rigidly as70

1-back occurrence, inductively as the items on the list are presented. We model this as the observer’s71

sequential Bayesian updates of the probability p(x), stored at every time step as a discrete memory72

engram m.73

Thus, in this encoding model, information about the displayed list of items is available in distributed74

form in memory as p(xi, xl|m), with each engram m storing one instance of co-occurrence. The true75

joint distribution of observed items,to the extent that it is encoded within the set of all task-relevant76

memory engramsM is then expressible as a simple probabilistic marginalization,77

p(xi, xl) =

M∑
m

p(xi, xl|m)p(m), (1)

where we assume that p(m) is flat overM, i.e. we assume that within the set of memory engrams78

relevant for the retrieval cue, memory access is random.79

Our retrieval model is approximately Bayesian. It assumes that people sample a small subset of all80

relevant engramsM′ ⊂M when making memory judgments. Thus, the joint distribution accessible81

to the observer during retrieval becomes a function of the set of engrams actually retrieved,82

pMk
(xi, xl) =

Mk∑
m

p(xi, xl|m)p(m), (2)

whereMk denotes the set of first k engrams retrieved.83

Following a common approach to sampling termination in strength-based sequential sampling memory84

models, we use a novelty threshold that allows the memory judgment process to self-terminate when85
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Figure 1: Illustrating the ecological difference in retrieval during recognition and recall memory
experiments. We model recall retrieval as a probabilistic query about items conditioned on the item
list and recognition retrieval as a probabilistic query about the item list conditioned on the item
presented during retrieval. Since there are almost always more items than lists in classic memory
experiments, the second conditional distribution tends to be formed on a smaller discrete support set
than the former.

incoming engrams no longer convey significantly novel information [4, 12]. We treat the arrival of the86

kth successive engram into working memory as a probabilistic draw from pMk
. The stopping rule for87

memory retrieval is for n consecutive identical samples being drawn in succession during this internal88

sampling, n remaining a free parameter in the model. The sample drawn at the instant the novelty89

threshold is breached is overtly retrieved. Since this sample is drawn from a distribution constructed by90

approximately reconstructing the true encoded distribution of situational co-occurrences, the retrieval91

model is approximately Bayesian. Finally, since our encoding model ensures that the observer knows92

the joint distribution of event co-occurrences, which contains all the information needed to compute93

marginals and conditionals also, we further assume that these derivative distributions can also be94

sampled, using the same retrieval model, when required.95

We show in this paper that this simple memory model yields both recognition and recall behavior.96

The difference between recognition and recall is simply that these two retrieval modalities ask two97

different questions of the same base of encoded memory - the joint distribution p(xi, xl). We illustrate98

this difference in Figure 1. During recall-based retrieval, experimenters ask participants to remember99

all the items that were on a previously studied list. In this case, the probabilistic question being asked100

is ’given xl, find xi’, which our model would answer by sampling p(xi|xl). In item-recognition101

experiments, experimenters ask participants to determine whether each of several items was on a102

previously shown list or not. We assert that in this case the probabilistic question being asked is103

’given xi. find xl’, which our model would answer by sampling p(xl|xi).104

Our operationalization of recognition as a question about the list rather than the item runs contrary to105

previous formalizations, which have tended to model it as the associative activation engendered in106

the brain by observing a previously seen stimulus - models of recognition memory assume that the107

activation for previously seen stimuli is greater, for all sorts of reasons. In contrast, recall is modeled108

in classical memory accounts much the same way as in ours - as a conditional activation of items109

associated with retrieval cues, including both the item list and temporally contiguous items. Our110

approach assumes that the same mechanism of conditional activation occurs in recognition as well -111

the difference is that we condition on the item itself.112
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3 Basic prediction: fast recognition and slow recall113

The sample-based threshold used to terminate memory retrieval in our model ε does not depend on114

the size of the support of the probability distribution being sampled from. This immediately implies115

that, for the same threshold sample value, the model will take longer to approach it when sampling116

from a distribution with larger support than when sampling from distributions with smaller support.117

In classical memory experiments, observers are typically asked to memorize multiple items associated118

with one, or a few, lists. Thus, there is an ecological bias built into classic memory experiments such119

that |items| � |lists|. Making this assumption immediately rationalizes the apparent difference in120

speed and effort between recognition and recall in our model. Because the recognition task samples121

p(list|item), its sample complexity is lower than recall, which involves sampling p(item|list) from122

memory.123

To verify this numerically, starting from identical memory encodings in both cases, we ran 1000124

simulations of recognition and recall respectively using our retrieval model, using a fixed n value.125

The results, measured in terms of the number of retrieval samples drawn before termination, are126

shown in the left panel of Figure 2. The sample complexity of recall is evidently higher than for127

recognition1. Thus, we suggest that the fundamental difference between recognition and recall - that128

recognition is easier and recall is harder - is explicable simply by virtue of the ecological bias of129

memory experiments that use fewer cues than stimuli.130

The difference in speed between recollection and familiarity processes, as measured in recall and131

recognition experiments, has been one of the fundamental motivations for proposing that two memory132

processes are involved in declarative memory. Dual-process accounts have invoked priority arguments133

instead, e.g. that information has to pass through semantic memory, which is responsible for134

recognition, before accessing episodic memory which is responsible for recall [17].Single process135

accounts following in the lineage of SAM [4] have explained the difference by arguing that recognition136

involves a single comparison of activation values to a threshold, whereas recall involves competition137

between multiple activations for sampling. Our model rationalizes this distinction made in SAM-style138

sequential sampling models by arguing that recognition memory retrieval is identical to recall memory139

retrieval; only the support of the distribution from which the memory trace is to be probabilistically140

retrieved changes. Thus, instead of using a race to threshold for recognition and a sampling process141

in recall, this model uses self-terminating sampling in both cases, explaining the main difference142

between the two tasks - easy recognition and hard recall - as a function of typical ecological parameter143

choices. This observation also explains the relative indifference of recognition tasks to divided144

attention conditions, in contrast with recall which is heavily affected [2]. Because of the lower sample145

complexity of recognition, fewer useful samples are needed to arrive at the correct conclusion.146

4 An empirical test147

The explanation our model offers is simple, but untested. To directly test it, we constructed a simple148

behavioral experiment, where we would manipulate the number of items and cues keeping the total149

number of presentations constant, and see how this affected memory performance in both recognition150

and recall retrieval modalities. Our model predicts that memory performance difficulty scales up with151

the size of the support of the conditional probability distribution relevant to the retrieval modality.152

Thus recall, which samples from p(item|list), should become easier as the number of items to recall153

per cue reduces. Similarly recognition, which samples from p(listlitem), should become harder as154

the number of cues per item increases. Because classic memory experiments have tended to use more155

items than cues (lists), our model predicts that such experiments would consistently find recognition156

to be easier than recall. By inverting this pattern, having more cues than items, for instance, we would157

expect to see the opposite pattern hold. We tested for this performance crossover using the following158

experiment.159

We used a 2×2 within subject factorial design for this experiment, testing for the effect of the retrieval160

mode - recognition/recall and either a stimulus heavy, or cue heavy selection of task materials. In161

addition, we ran two conditions between subjects, using different parameterization of the stimuli/cue162

1Recall trials that timed out by not returning a sample beyond the maximum time limit (100 samples) are not
plotted. These corresponded to 55% of the trials, resulting in a recall hit rate of 45%. In contrast, the average
recognition hit rate was 82% for this simulation.
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Figure 2: (Left) Simulation results show easier recognition and harder recall given typical ecological
choices for stimuli and cue set sizes. (Right) Results from experiment manipulating the stimuli and
cue set size ratio. By manipulating the number of stimuli and cues, we predicted that we would
be able to make recall harder than recognition for experiment participants. The results support our
prediction unambiguously.Error bars show s.e.m.

ratios. In the stimulus heavy condition, for instance, participants were exposed to 5 stimuli associated163

with 3 cues, while for the cue heavy condition, they saw 3 stimuli associated with 5 cues. The semantic164

identity of the stimuli and cue sets were varied across all four conditions randomly, and the order of165

presentation of conditions to participants was counterbalanced. All participants worked on all four166

of the memory tasks, with interference avoided with the use of semantically distinct category pairs167

across the four conditions. Specifically, we used number-letter, vegetable-occupation, fruit-adjective168

and animal-place category pairs for the four conditions. Within each category, stimuli/cues for a169

particular presentation were sampled from a 16 item master list, such that a stimulus could not occur170

twice in conjunction with the same cue, but could occur in conjunction with multiple cues.171

120 undergraduates participated in the experiment for course credit. Voluntary consent was obtained172

from all participants, and the experimental protocol was approved by an institutional IRB. We told173

experiment participants that they would be participating in a memory experiment, and their goal was174

to remember as many of the items we showed them as possible. We also told them that the experiment175

would have four parts, and that once they started working on a part, there would be no opportunity to176

take a break until it ended. 80 participants performed the experiment with 3/5 and 5/3 stimulus-to-cue177

mappings, 40 did it with 2/7 and 7/2 stimulus-to-cue mappings. Note that in all cases, participants178

saw approximately the same number of total stimulus-cue bindings (3x5 = 15 or 2x7 = 14), thus179

undergoing equivalent cognitive load during encoding.180

Stimuli and cues were presented onscreen, with each pair appearing on the screen for 3 seconds,181

followed by an ITI of equal duration. To prevent mnemonic strategy use at the time of encoding, the182

horizontal orientation of the stimulus-cue pair was randomly selected on each trial, and participants183

were not told beforehand which item category would be the cue; they could only discover this at184

the time of retrieval2. Participants were permitted to begin retrieval at their own discretion once185

the encoding segment of the trial had concluded within each condition. All participants chose to186

commence retrieval without delay. Participants were also permitted to take breaks of between 2-5187

minutes between working on the different conditions, with several choosing to do so.188

Once participants had seen all item-pairs for one of the conditions, the experiment prompted them to,189

when ready, click on a button to proceed to the testing phase. In the recall condition, they saw a text190

box and a sentence asking them to recall all the items that occurred alongside item X, where X was191

randomly chosen from the set of possible cues for that condition; they responded by typing in the192

words they remembered. For recognition, participants saw a sentence asking them to identify if X had193

occurred alongside Y, where Y was randomly chosen from the set of possible cues for that condition.194

After each forced yes/no response, a new X was shown. Half the X’s shown in the recognition test195

were ’lures’ , they had not been originally displayed alongside Y.196

2An active weblink to the actual experiment is available online at [anonymized weblink].
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Memory performance was measured using d’, which is simply the difference between the z-normed197

hit rate and false alarm rate, as is conventional in recognition experiments. d’ is generally not used198

to measure recall performance, since the number of true negatives is undefined in classic recall199

experiments, which leaves the false alarm rate undefined as well. In our setup, the number of true200

negatives is obviously the number of stimuli the participant saw that were not on the specific list201

being probed, which is what we used to calculate d-prime for recall as well.202

The right panel in Figure 2 illustrates the results of our experiment. The predicted crossover is203

unambiguously observed. Further, changes in memory performance across the stimulus-cue set size204

manipulation is symmetric across recognition and recall. This is precisely what we’d expect if set205

size dependence was symmetrically affecting memory performance across both tasks as occurs in206

our model. While not wishing to read too much into the symmetry of the quantitative result, we note207

that such symmetry under a simple manipulation of the retrieval conditions appears to suggest that208

the manipulation does in fact affect memory performance very strongly. Overall, the data strongly209

supports our thesis - that quantitative differences in memory performance in recognition and recall210

tasks are driven by differences in the set size of the underlying memory distribution being sampled.211

The set size of the distribution being sampled, in turn, is determined by task constraints - and ends up212

being symmetric when comparing single-item recognition with cued recall.213

5 Predicting more recognition-recall dissociations214

The fact that recognition is usually easier than recall - more accurate and quicker for the same stimuli215

sets - is simply the most prominent difference between the two paradigms. Experimentalists have216

uncovered a number of interesting manipulations in memory experiments that affect performance217

on these tasks differentially. These are called recognition-recall dissociations, and are prominent218

challenges to single-process accounts of the two tasks. Why should a manipulation affect only one219

task and not the other if they are both outcomes of the same underlying process? [21] Previous220

single-process accounts have had success in explaining some such dissociations. We focus here221

on some that have proved relatively hard to explain without making inelegant dissociation-specific222

assumptions in earlier accounts [12].223

5.1 List strength effects and part set cuing224

Unidimensional strength-based models of memory like SAM and REM fail to predict the list strength225

effect [11] where participants’ memory performance in free recall is lower than a controlled baseline226

for weaker items on mixed lists (lists containing both strongly and weakly encoded items). Such227

behavior is predicted easily by strength-based models. What they find difficult to explain is that228

performance does not deviate from baseline in recognition tasks. The classical explanation for this229

discrepancy is the use of a differentiation assumption. It is assumed that stronger items are associated230

more strongly to the encoding context, however differences between the item itself as shown, and231

its encoded image are also stronger. In free recall, this second interaction does not have an effect,232

since the item itself is not presented, so a positive list strength effect is seen. In recognition, it is233

conjectured that the two influences cancel each other out, resulting in a null list strength effect [12].234

A lot of intricate assumptions have to hold for the differentiation account to hold. Our model has235

a much simpler explanation for the null list-strength effect in recognition. Recognition involves236

sampling based on the strength of the associative activation of the list given a specific item and so237

is independent of the encoding strength of other items. On the other hand, recall involves sampling238

from p(item|list) across all items, in which case, having a distribution favoring other items will239

reduce the probability that the unstrengthened items will be sampled. Thus, the difference in which240

variable the retrieval operation conditions on explains the respective presence and absence of a list241

strength effect in recall and recognition. The left panel in Figure 3 presents simulation results from242

our model reproducing this effect, where we implement mixed lists by presenting certain stimuli243

more frequently during encoding and retrieve in the usual manner. Hit rates are calculated for less244

frequently presented stimuli. The simulation shows a positive list strength effect for recall (weaker245

hit rates for less studied items) and a null list strength effect for recognition, congruent with data.246

Our model also reconciles the results of [1] who demonstrated that the list strength effect does not247

occur if we examine only items that are the first in their category to be retrieved. For category-248

insensitive strength-based accounts, this is a serious problem. For our account, which is explicitly249

6



concerned with how observers co-encode stimuli and retrieval cues, this result is no great mystery.250

For multi-category memory tests, the presence of each semantic category instantiates a novel list251

during encoding, such that the strength-dependent updates during retrieval apply to each individual252

p(item|list) and do not apply across the other category lists.253

More generally, the dynamic nature of the sampled distribution in our Bayesian theory accommodates254

the theoretical views of both champions of strength-dependent activation and retrieval-dependent255

suppression [1]. Strength-dependent activation is present in our model in the form of the Bayesian256

posterior over cue-relevant targets at the time when cued recall commences; retrieval-dependent257

suppression of competitors is present in the form of normalization of the distribution during further258

sequential Bayesian updates as the retrieval process continues. Assigning credit differentially to259

individual categories predicts an attenuation (though not removal) of the list strength effect, due260

to the absence of learning-induced changes for the first-tested items, as well diminishing memory261

performance with testing position seen in [1].262
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Figure 3: Reproducing (left) list strength effects and (right) the word frequency mirror effect using
our model.

The part set cueing effect is the observation that showing participants a subset of the items to be263

recalled during retrieval reduces their recall performance for non-shown items [10]. This effect does264

not appear in recognition experiments, which is again problematic for unidimensional strength-based265

memory models. Our model has a simple explanation. The presented items during retrieval are simply266

treated as further encoding opportunities for the seen items, resulting in a list strength imbalance as267

above. This affects recall, but not recognition for the same reasons the list strength effect does.268

5.2 Mirror effect269

Another interesting effect that strength-based memory models have found hard to explain is the270

word-frequency mirror effect [5]. This is seen when participants see two different classes of items271

in recognition experiments. It is found, for instance, that unique items are both recognized more272

accurately as previously seen and unseen in such experiments than common items. Such a pattern of273

memory performance is contrary to the predictions of nearly all accounts of memory that depend274

on unidimensional measures of memory strength, who can only model adaptive changes in memory275

performance via shifts in the response criterion [20] that do not permit both the hit rate and the false276

alarm rate to improve simultaneously.277

The essential insight of the mirror effect is that some types of stimuli are intrinsically more memorable278

than others, a common-sense observation that has proved surprisingly difficult for strength-based279

memory models to assimilate.This difficulty extends to our own model also, but our inductive frame-280

work allows us to express the assumptions about information that the stimuli base frequency adds281

to the picture in a clean way. Specifically, in our model observers use p(list|item) for recogni-282

tion, which is high for unique items and low for common items by Bayesian inversion because283

p(item|list)/p(item) ≈ 1 for unique items, because they are unlikely to have been encountered284

outside the experimental context, and� 1 for common items. In contrast, observers sample from285

p(item|list) during recall, removing the effect of the frequency base rate p(item), so that the pattern286
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of results is inverted: performance is equivalent or better than baseline for common stimuli than for287

rare ones [6], since they are more likely to be retrieved in general.288

The right panel in Figure 3 shows simulation results using our model wherein we used two possible289

cues during encoding, one to test performance during retrieval and one to modify the non-retrieval290

frequency of stimuli encounters. We prepended the event stream used to encode the test-specific291

stimuli-cue presentations with a set of stimuli and lure presentations alongside a non-tested cue, and292

manipulated the size of this prepended set to manipulate the generic frequency of stimuli occurrence293

for this simulation. The simulation results show that, in recognition, hit rates drop and false alarm rates294

rise with more exposure to items outside the experimental list context (high frequency items). Since295

our model assumes unambiguous cue conditioning, it predicts unchanged performance from baseline296

for recall. More intricate models that permit cue-cue associations may reproduce the advantage for297

common items documented empirically.298

5.3 Perceptual modifications and differential generalization299

We conclude our demonstrations by qualitatively explaining two sets of results that have previously300

been very hard to explain, but follow very easily from our proposal.301

The first set show that perceptual modifications of the stimulus between encoding and retrieval affect302

recognition accuracy substantially [13]. Recognition performance in speeded conditions is affected303

more under speeded conditions than unspeeded conditions by perceptual modifications, suggesting at304

least by dual-process interpretations, that recall is less affected by such changes [16]. Whereas other305

single-process models find this result hard to explain [21], our model explains it simply. Because306

recognition performance is conditioned on the stimulus, using a different perceptual variant of the307

stimulus affects the retrieval process. Recall involves conditioning on the retrieval cue, resulting in308

no impact of perceptual modifications to the stimuli during retrieval.309

The second set of results largely draw upon experiments on amnesic patients, showing large deficits in310

associative recognition tests compared to simple item recognition. This is interpreted to argue that the311

processes underpinning recognition do not support novel learning and generalization [21], whereas312

recall clearly does [19]. This is entirely compatible with our account, because we are retrieving cues313

during retrieval, not the items themselves, which makes reconsolidation of item-associated engrams314

impossible in recognition.315

6 Discussion316

We have made a very simple proposal in this paper. We join multiple previous authors in arguing that317

memory retrieval in cued recall tasks can be interpreted as a question about the likelihood of retrieving318

an item given the retrieval cue, typically the list of items given at the time of encoding [17, 8, 4].319

We depart from previous authors in arguing that memory retrieval in item recognition tasks asks the320

precisely opposite question: what is the likelihood of a given item having been associated with the321

list? We integrated this insight into a simple inference-based model of memory encoding, which322

shares its formal motivations with recent inference-based models of conditioning [3, 14], and an323

approximately Bayesian model of memory retrieval, which samples memory frugally along lines324

motivated on information-theoretic [18] and ecological grounds [15] by recent work.325

Our model is meant to be expository and ignores several large issues that other richer models typically326

engage with. For instance, it is silent about the time decay of memory particles, the partitioning of327

the world into items and cues, and how it would go about explaining other more intricate memory328

tasks like plurality discrimination and remember-know judgments. These omissions are deliberate, in329

the sense that we wanted to present a minimal model to deliver the core intuition behind our approach330

- that differences in memory performance in recognition and recall are attributable to no deeper331

issue than an ecological preference to test memory using more items than lists. This observation332

can now subsequently guide and constrain the construction of more realistic models of declarative333

memory [3]. To the extent that differences traditionally used to posit dual-process accounts of memory334

can be accounted for using simpler models like ours, the need to proliferate neuroanatomical and335

process-level distinctions for various memory operations can be concomitantly reduced [7].336
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