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Abstract

Statistical decision theory axiomatically assumes that the relative desirability of
different options that humans perceive is well described by assigning them option-
specific scalar utility functions. However, this assumption is refuted by ob-
served human behavior, including studies wherein preferences have been shown
to change systematically simply through variation in the set of choice options
presented. In this paper, we show that interpreting desirability as a relative com-
parison between available options at any particular decision instance results in a
rational theory of value-inference that explains heretofore intractable violations of
rational choice behavior in human subjects. Complementarily, we also character-
ize the conditions under which a rational agent selecting optimal options indicated
by dynamic value inference in our framework will behave identically to one whose
preferences are encoded using a static ordinal utility function.

1 Introduction

Normative theories of human choice behavior have long been based on how economic theory has
postulated they should be made. The standard version of the theory states that consumers seek to
maximize innate, stable preferences over the options they consume. Preferences are represented by
numerical encoding of value in terms of utilities, and subjects are presumed to select the option with
the maximum expected utility. The most difficult part of this theory is that preferences must exist
before decisions can be made. The standard response, in both economics and decision theory, to the
basic question “Where do preferences come from?” is “We’ll leave that one to the philosophers,
utilities are simply abstractions we assume for the work we do.”, which, while true, is not an answer.

While this question has been studied before in the form of learning utility values from behavior [5,
14, 10], human preferences exhibit patterns of behavior that are impossible to reconcile with the idea
that stable numerical representations of value can be ascribed to each item they choose between.
Behavioral experiments in the last half century have conclusively demonstrated (see [18] for a
comprehensive review) that human choice strongly violates the key axioms that the existence of
stable utility values depends on. A particular subset of these violations, called context effects, wound
the utility maximization program the most deeply, since such violations cannot be explained away
as systematic distortions of underlying utility and/or probability representations [22]. Consider for
instance, the “frog legs” thought problem, pictured in Figure 1, introduced by Luce and Raiffa in
their seminal work [15]. No possible algebraic reformulation of option-specific utility functions
can possibly explain preference reversals of the type exhibited in the frog legs example. Preference
reversals elicited through choice set variation have been observed in multiple empirical studies,
using a variety of experimental tasks, and comprise one of the most powerful criticisms of the use
of expected utility as a normative standard in various economic programs, e.g. in public goods
theory. However, for all its problems, the mathematical simplicity of the utility framework and lack
of principled alternatives has allowed it to retain its central role in microeconomics [12], machine
learning [1], computational cognitive science [7] and neuroscience [11].
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(a) When asked to select between just
salmon and steak, the diner picks salmon, in-
dicating salmon � steak by his choice

(b) When presented with an additional third
menu item, the diner picks steak, indicating
steak � salmon

Figure 1: Illustration of Luce’s ‘frog legs’ thought experiment. No possible absolute utility assigna-
tion to individual items can account for the choice behavior exhibited by the diner in this experiment.
The frog legs example is illustrative of reversals in preference occuring solely through variation in
the set of options a subject has to choose from.

Our contribution in this paper is the development of a rational model that infers preferences from
limited information about the relative value of options. We postulate that there is a value inference
process that predicts the relative goodness of items in enabling the agent to achieve its homeostatic
and other longer-range needs (e.g. survival and reproductive needs). While this process should be
fully explicated, we simply don’t know enough to make detailed mathematical models. However,
we show that we only have to postulate that feedback from decisions provides limited information
about the relative worth of options within the choice set for a decision to retrieve an inductive rep-
resentation of value that is equivalent to traditional preference relations. Thus, instead of assuming
utilities as being present in the environment, we learn an equivalent sense of option desirability from
information in a limited format that depends on the set of options in the decision set. This induc-
tive methodology naturally makes choice sets informative about the value of options, and hence
affords simple explanations for context effects. We show how to formalize the idea of relative value
inference, and that it provides a new rational foundation for understanding the origins of human
preferences.

2 Human Preferences via Value Inference

We begin by reviewing and formalizing probabilistic decision-making under uncertainty. An agent
selects between possibilities x in the world represented by the set X . The decision-making problem
can be formulated as one wherein the agent forms a belief b(x), x ∈ X about the relative desirability
of different possibilities in X and uses this belief to choose an element or subset X ∗ ⊂ X . When
these beliefs satisfy the axioms of utility, the belief function simply the expected utility associated
with individual possibilities u(x), u : X → R.

We assume these desirabilities must be learned from experience, suggesting a reinforcement learn-
ing approach. The agent’s belief about the relative desirability of the world is constantly updated by
information that it receives about the desirability of options in terms of value signals r(x). Belief
updating produces transition dynamics on bt(x). Given a sequence of choices, the normative expec-
tation is for agents to select possibilities in a way that maximizes their infinite-horizon cumulative
discounted desirability,

argmax
x(t)

∞∑
t

γtbt(x). (1)

The sequence of choices selected describes the agent’s expected desirability maximizing behavior
in a belief MDP-world.
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From a Bayesian standpoint, it is critical to describe the belief updating about the desirability of dif-
ferent states. Let p(x|r(1:t)) represent the belief a value x is the best option given a sequence of value
signals. Since the agent learns this distribution from observing r(x) signals from the environment,
an update of the form,

p(x|r(t)) = p(r(t)|x)× p(x|{r(1), r(2) · · · , r(t−1)}), (2)

reflects the basic process of belief formation via value signals. When value signals are available for
every option, independent of other options, the likelihood term p(r|x) in Equation (2) is a probabilis-
tic representation of observed utility, which remains unaffected in the update by the agent’s history
of sampling past possibilities and hence is invariant to transition probabilities. Such separation be-
tween utilities and probabilities in statistical decision theory is called probabilistic sophistication,
an axiom that underlies almost all existing computational decision theory models [11].

The crux of our new approach is that we assume that value signals p(r|x) are not available for
every option . Instead, we assume we get partial information about the value of one or more options
within the set of options c available in the decision instance t. In this case value signals are hidden
for most options x. However, the set of options c ∈ C ⊆ P(X )1 observed can now potentially be
used as auxiliary information to impute values for options whose value has not been observed. In
such a scenario, the agent requires a more sophisticated inference process,

p(x|r(1:t)) = 1

p(r(1:t))

∫
c

p(x, c, r(1:t)),

=
1

p(r(1:t))

∫
c

[p(rt|x, c)p(c|x)]× p(x|{r(1), r(2) · · · , r(t−1)}).

Importantly, we concentrate on understanding the meaning of utility in this framework. As in the
case of value observability for all options, a probabilistic representation of utility under indirect
observability must be equivalent to,

p(r|x) = p(r, x)

p(x)
=

∫
c
p(r, x, c)∫

c
p(x|c)p(c)

=

∫
c
p(r|x, c)p(x|c)p(c)∫

c
p(x|c)p(c)

. (3)

The resulting prediction of value of an option couples value signals received across decision in-
stances with different option sets, or contexts. The intuition behind this approach is contained in the
frog leg’s example - the set of options become informative about the hidden state of the world, like
whether the restaurant has a good chef.

Naively, one could assume that altering existing theory to include this additional source of informa-
tion would be an incremental exercise. However, a formidable epistemological difficulty arises as
soon as we attempt to incorporate context into utility-based accounts of decision-making. To see
this, let us assume that we have defined a measure of utility u(x, c) that is sensitive to the context c
of observing possibility x. Now, for such a utility measure, if it is true that for any two possibilities
{xi, xj} and any two contexts {ck, cl},

u(xi, ck) > u(xj , ck)⇒ u(xi, cl) > u(xj , cl),

then the choice behavior of an agent maximizing u(x, c) would be equivalent to one maximiz-
ing u(x). Thus, for the inclusion of context to have any effect, there must exist at least some
{xi, xj , ck, cl} for which the propositions u(xi, ck) > u(xj , ck) and u(xi, cl) < u(xj , cl) can hold
simultaneously.

Note however, that the context in this operationalization is simply a collection of other possibilities,
i.e. c ⊆ X which ultimately implies u(x, c) = u(X ∗) = u(X ),X ∗ = {x, c} ⊆ X . Such a
measure could assign absolute numbers to each of the possibilities, but any such static assignment
would make it impossible for the propositions u(x1,X ) > u(x2,X ) and u(x1,X ) < u(x2,X )
to hold simultaneously, as is desired of a context-sensitive utility measure. Thus, we see that it is
impossible to design a utility function u such that u : X × C → R. If we wish to incorporate the
effects of context variation on the desirability of a particular world possibility, we must abandon a
foundational premise of existing statistical decision theory - the representational validity of absolute
utility.

1P(·) references the power set operation throughout this paper.
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3 Rational decisions without utilities

In place of the traditional utility framework, we define an alternative conceptual partitioning of the
world X as a discrete choice problem. In this new formulation, at any decision instant t, agents
observe the feasibility of a subset o(t) ⊆ X of all the possibilities in the world. In the following
exposition, we use yt to denote an indicator function on X encoding the possibilities observed as
o(t),

yt(x) =
∑
i∈o(t)

δ(x− i),

. An intelligent agent will encode its understanding of partial observability as a belief over which
possibilities of the world likely co-occur. We call an agent’s belief about the co-occurrence of
possibilities in the world its understanding of the context of its observation. We instantiate contexts
c as subsets of X that the agent believes will co-occur based on its history of partial observations of
the world and index them with an indicator function z on X , so that for context c(t),

zt(x) =
∑
i∈c(t)

δ(x− i).

Instead of computing absolute utilities on all x ∈ X , a context-aware agent evaluates the comparable
desirability of only those possibilities considered feasible in a particular context c. Hence, instead
of using scalar values to indicate which possibility is more preferable, we introduce preference
information into our system via a desirability function d that simply ‘points’ to the best option in a
given context, i.e. d(c) = B, where B is a binary relation (c, c,m) and mi = 1 iff ci � ci′∀ci′ ∈
c \ {ci} and zero otherwise. The desirability indicated by d(c) can be remapped on to the larger
set of options by defining a relative desirability across all possibilities r(x) = m,x ∈ c and zero
otherwise.

Recall now that we have already defined what we mean by utility in our system in Equation 3.
Instantiated in the discrete choice setting, this can be restated as a probabilistic definition of relative
desirability at decision instant t as,

R(t)(x) = p(r(t)|x) =
∑C

c p(r
(t)|x, c)p(x|c)p(c)∑C
c p(x|c)p(c)

, (4)

where it is understood that p(c) = p(c|{o1, o2, · · · , ot−1}) is a distribution on the set of all possible
contexts inferred from the agent’s observation history. From the definition of desirability, we can
also obtain a simple definition of p(r|x, c) as p(ri|xi, c) = 1 iff rixi = 1 and zero otherwise.
To instantiate Eqn (4) concretely, it is finally necessary to define a specific form for the likelihood
term p(x|c). While multiple mathematical forms can be proposed for this expression, depending on
quantitative assumptions about the amount of uncertainty intrinsic to the observation, the underlying
intuition must remain one that obtains the highest possible value for c = o and penalizes mismatches
in set membership. Such definitions can be introduced in the mathematical definition of the element-
wise mismatch probability, p(¬yti |zti). Since p(xi|c(t)) = 1− p(¬yti |zti), we can use these element-
wise probabilities to compute the likelihood of any particular observation o(t) as,

P (o(t)|c(t)) = 1− p

|o(t)|⋃
i

{¬yti}|
|c(t)|⋃

i

{zti}

 ,= 1− β
|X |∑
i

p(¬yti |zti),

where β is a parameter controlling the magnitude of the penalty imposed for each mismatch ob-
served.

This likelihood function can then be used to update the agent’s posterior belief about the contexts it
considers viable at decision instance t, given its observation history as,

p(c(t)|{o(1), o(2), · · · , o(t)}) = p(o(t)|c)p(c|{o(1), o(2), · · · , o(t−1)})∑C
c p(o

(t)|c)p(c|{o(1), o(2), · · · , o(t−1)})
, (5)

To outline a decision theory within this framework, observe that, at decision instant t, a Bayesian
agent could represent its prior preference for different world possibilities in the form of a probability
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distribution over the possible outcomes in X , conditioned on desirability information obtained in
earlier decisions, p(x|c(t), {r(1), r(2), · · · r(t−1)}). New evidence for the desirability of outcomes
observed in context c(t) is incorporated using p(r(t)|x, c(t)), a distribution encoding the relative
desirability information obtained from the environment at the current time step, conditioned on the
context in which the information is obtained. This formulation immediately yields the belief update,

p(x|c(t), r(t)) ∝ p(r(t)|c(t), x)× p(x|c(t), {r(1), r(2), · · · r(t−1)}), (6)

to obtain a posterior probability encoding the desirability of different possibilities x, while also
accounting tractably for the context in which desirability information is obtained at every decision
instance. Defining a choice function to select the mode of the posterior belief completes a rational
context-sensitive decision theory.

4 Demonstrations

To demonstrate the value of the relative desirability-based encoding of preferences, in Section 4.1,
we describe situations in which the influence of context shifting significantly affects human pref-
erence behavior in ways that utility-based decision theories have historically been hard-pressed to
explain. Complementarily, in Section 4.2 we characterize conditions under which the relative desir-
ability framework yields predictions of choice behavior equivalent to that predicted by ordinal utility
theories, and hence, is an equivalent representation for encoding preferences.

4.1 Where context matters ...

In this section, we show how our inductive theory of context-sensitive value inference leads, not
surprisingly, to a simple explanation for the major varieties of context effects seen in behavioral
experiments. These are generally enumerated as attraction, similarity, comparison and reference
point effects [2]. Interestingly, we find that each of these effects can be described as a special case
of the frog legs example, with the specialization arising out of additional assumptions made about
the relationship of the new option added to the choice set. Table 1, with some abuse of notation,
describes this relationship between the effects in set-theoretic terms. Space constraints necessitate

Effect name Description Assumptions
Frog legs c1 ← {X,Y } ⇒ X � Y , c2 ← {X,Y, Z} ⇒ Y � X -
Similarity c1 ← {X,Y } ⇒ X � Y , c2 ← {X,Y, Z} ⇒ Y � X Z ≈ X
Attraction c1 ← {X,Y } ⇒ X ∼ Y , c2 ← {X,Y, Z} ⇒ X � Y X � Z

Compromise c1 ← {X,Y } ⇒ X � Y , c2 ← {X,Y, Z} ⇒ Y � X Y �(c) X,Z

Reference point c1 ← {X,Y } ⇒ X ∼ Y , c2 ← {X,Y, Z} ⇒ X �(−) Y Z � X

Table 1: A unified description of context effects. � indicates stochastic preference for one item
over another. �(c) indicates that the preference in question holds only in some observation contexts.
�(−) indicates that the preference in question is stochastically weaker than before.

an abbreviate description of our results. Detailed descriptions of these effects, supplemented with
an explanation of how they may be elicited in our framework, is provided in SI. We use available
space to completely describe how the most general version of preference reversal, as seen in the frog
legs example, emerges from our framework and provide a brief overview of the other results. To
instantiate our likelihood definition in (5), we define a specific mismatch probability,

p(¬yti |zti) =
1

|X |
(
(1− zti)yti + (1− yti)zti

)
, (7)

with β = 1 for all our demonstrations.

In the frog legs example, the reversal in preferences is anecdotally explained by the diner originally
forming a low opinion of the restaurant’s chef, given the paucity of choices on the menu, deciding to
pick the safe salmon over a possibly a burnt steak. However, the waiter’s presenting frog legs as the
daily special suddenly raises the diner’s opinion of the chef’s abilities, causing him to favor steak.
This intuition maps very easily into our framework of choice selection, wherein the diner’s partial
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menu observations o1 = {steak, salmon} and o2 = {steak, salmon, frog legs} are associated with two
separate contexts c1 and c2 of observing the menu X . Bad experiences related to ordering steak in
menus typically observed under context c1 (interpretable as ‘cheap restaurants’) may be encoded by
defining the vectorm = {1, 0, 0, 0} for c1 and good experiences ordering steak off menues observed
in context c2 (interpretable as ‘upscale restaurants’) as m = {0, 1, 0, 0} for c2. Then, by definition,
p(r|salmon, c1) > p(r|steak, c1), while p(r|salmon, c2) < p(r|steak, c2). For the purposes of this
demonstration, let us assume these probability pairs, obtained through the diner’s past experiences in
restaurants to be {0.7, 0.3} and {0.3, 0.7} respectively. Now, when the waiter first offers the diner a
choice between steak or salmon, the diner computes relative desirabilities using (4), where the only
context for the observation is {salmon, steak}. Hence, the relative desirabilities of steak and salmon
are computed over a single context, and are simply R(salmon) = 0.7, R(steak) = 0.3. When the
diner is next presented with the possibility of ordering frog legs, he now has two possible contexts to
evaluate the desirability of his menu options: {salmon, steak} and {salmon, steak, frog legs}. Based
on the sequence of his history of experience with both contexts, the diner will have some posterior
belief p(c) = {p, 1− p} on the two contexts. Then, the relative desirability of salmon, after having
observed frog legs on the menu can be calculated using (4) as,

R(salmon) =
p(r|salmon, c1)p(salmon|c1)p(c1) + p(r|salmon, c2)p(salmon|c2)p(c2)

p(salmon|c1)p(c1) + p(salmon|c2)p(c2)
,

=
0.7× 1× p+ 0.3× 1× (1− p)

1× p+ 1× (1− p)
= 0.7p+ 0.3(1− p).

Similarly, we obtain R(steak) = 0.3p+0.7(1− p). Clearly, for 1− p > p,R(steak) > R(salmon),
and the diner would be rational in switching his preference. Thus, through our inferential machinery,
we retrieve the anecdotal explanation for the diner’s behavior: if he believes that he is more likely
to be in a good restaurant (with probability (1− p)) than not, he will prefer steak.

Along identical lines, making reasonable assumptions about the contexts of past observations, our
decision framework accomodates parsimonious explanations for each of the other effects detailed in
Table 1. Attraction effects are traditionally studied in market research settings where a consumer is
unsure about which of two items to prefer. The introduction of a third item that is clearly inferior to
one of the two earlier options leads the consumer towards preferring that particular earlier option.
Our framework elicits this behavior through the introduction of additional evidence of the desir-
ability of one of the options from a new context, causing the relative desirability of this particular
option to rise. Similarity effects arise when, given that a consumer prefers one item to another, giv-
ing him further options that resemble his preferred item causes him to subsequently prefer the item
he earlier considered inferior. This effect is elicited simply as a property of division of probability
among multiple similar options, resulting in reduced desirabiliy of the previously superior option.
Compromise effects arise when the introduction of a third option to a choice set where the consumer
already prefers one item to another causes the consumer to consider the previously inferior option
as a compromise between the formerly superior option and the new option, and hence prefer it. We
find that the compromise effect arises through a combination of reduction in the desirability of the
superior option through negative comparions with the new item and increase in the desirability of
the formerly inferior item through positive comparisons with the new item, and that this inference
occurs automatically in our framework assuming equal history of comparisons between the exist-
ing choice set items and the new item. Reference point effects have typically not been associated
with explicit studies of context variation, and may in fact be used to reference a number of behavior
patterns that do not satisfy the definition we provide in Table 1. Our definition of the reference
point effect is particularized to explain data on pain perception collected by [23], demonstrating
relativity in evaluation of objectively identical pain conditions depending on the magnitude of al-
ternatively experienced pain conditions. In concord with empirical observation, we show that the
relative (un)desirability of an intermediate pain option reduces upon the experience of greater pain,
a simple demonstration of prospect relativity that utility-based accounts of value cannot match.

Competing hypotheses that seek to explain these behaviors are either normative and static, (e.g. ex-
tended discrete choice models ( [13] provides a recent review), componential context theory [21],
quantum cognition [8]) or descriptive and dynamic, (specifically, decision field theory [3]). In con-
trast, our approach not only takes a dynamic inductive view of value elicitation, it retains a norma-
tivity criterion (Bayes rationality) for falsifying observed predictions, a standard that is expected of
any rational model of decision-making [6].
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4.2 ... and where it doesn’t

It could be conjectured that the relative desirability indicator d will be an inadequate representation
of preference information compared with scalar utility signals assigned to each world possibility,
which would leave open the possibility that we may have retrieved a context-sensitive decision
theory at the expense of theoretical assurance of rational choice selection, as has been the case in
many previous attempts cited above. Were this conjecture to be true, it would severely limit the
scope and applicability of our proposal. To anticipate this objection, we theoretically prove that
our framework reduces to the standard utility-based representation of preferences under equivalent
epistemic conditions, showing that our theory retains equivalent rational representational ability
as utility theory in simple, and simply extends this representational ability to explain preference
behaviors that utility theory can’t.

What does it mean for a measure to represent preference information? To show that a utility function
u completely represents a preference relation on X it is sufficient [12] to show that, ∀x1, x2 ∈
X , x1 � x2 ⇔ u(x1) > u(x2).Hence, equivalently, to show that our measure of relative desirability
R also completely represents preference information, it should be sufficient to show that, for any two
possibilities xi, xj ∈ X , and for any observation context c

xi � xj ⇔ R(xi) > R(xj). (8)

In SI, we prove that (8) holds at decision instant t under three conditions,

(I) Context consistency: ∃c ∈ C, s.t. xi � xj ⇒ xi � xj∀c ∈ Cij , {xi, xj} ∈ Cij ⊆ C.
(II) Transitivity between contexts: if xi � xj in c1 and xj � xk in c2,∀c ∈ C, xi � xk.

(III) Symmetry in context observability: ∀xi, xj ∈ X , limt→∞ |C(t)i\j | = |C
(t)
j\i|.

2.

Of the three assumptions we need to prove this equivalence result, (I) and (II) simply define a sta-
ble preference relation across observation contexts and find exact counterparts in the completeness
and transitivity assumptions necessary for representing preferences using ordinal utility functions.
(III), the only additional assumption we require, ensures that the agent’s history of partial obser-
vations of the environment does not contain any useful information. The restriction of infinite data
observability, while stringent and putatively implausible, actually uncovers an underlying epistemo-
logical assumption of utility theory, viz. that utility/desirability values can somehow be obtained
directly from the environment. Any inference based preference elicitation procedure will therefore
necessarily need infinite data to attain formal equivalence with the utility representation. Finally,
we point out that our equivalence result does not require us to assume continuity or the equiva-
lent Archimedean property to encode preferences, as required in ordinal utility definitions. This is
because the continuity assumption is required as a technical condition in mapping a discrete math-
ematical object (a preference relation) to a continuous utility function. Since relative desirability is
defined constructively on Q ⊆ Q, |Q| <∞, a continuity assumption is not needed.

5 Discussion

Throughout this exegesis, we have encountered three different representations of choice preferences:
relative (ordinal) utilities, absolute (cardinal) utilities and our own proposal, viz. relative desirability.
Each representation leads to a slightly different definition of rationality, so that, assuming a rational
set selection function σ in each case we have,

• Economic rationality: x ∈ σ(X ) ⇒ @y ∈ X , s.t. y � x, predominantly used in human
preference modeling in neoclassical economics [12]], e.g. discrete choice modeling [9].

• VNM-rationality: x ∈ σ(X ) ⇒ @y ∈ X , s.t. u(y) > u(x), predominantly used in
studying decision-making under risk [19], e.g. reinforcement learning [1].

• Bayes rationality: x ∈ σ(X ) ⇒ @y ∈ X , s.t. R(y, {H}) > R(x, {H}), which we have
proposed. The term {H} here is shorthand for {o1, o2, · · · , ot−1}, {r1, r2, · · · rt−1}, the
entire history of choice set and relative desirability observations made by an agent leading
up to the current decision instance.

2The notation Ci\j references the subset of all observed contexts that contain xi but not xj .
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Bayes rationality simply claims that value inference with the same history of partial observations
will lead to a consistent preference for a particular option in discrete choice settings. In Section
4.2, we have shown conditions on choice set observations under which Bayes-rationality will be
equivalent to economic rationality. VNM-rationality is a further specialization of economic ratio-
nality, valid for preference relations that, in addition to being complete, transitive and continuous (as
required for economic preferences representable via ordinal utilities) also satisfy an independence
of irrelevant attributes (IIA) assumption [16]. Bayes-rationality specializes to economic rationality
once we instantiate the underlying intuitions behing the completeness and transitivity assumptions
in a context-sensitive preference inference theory. Therefore, rational value inference in the form
we propose can formally replace static assumptions about preference orderings in microeconomic
models that currently exclusively use ordinal utilities [12]. As such, context-sensitive preference
elicitation is immediately useful for the nascent agent-based economic modeling paradigm as well
as in dynamic stochastic general equilibrium models of economic behavior. Further work is nec-
essary to develop a context-sensitive equivalent of the IIA assumption, which is necessary for our
system to be directly useful in modeling decision-making behaviors under uncertainty. However,
even in its current form, our inference model can be used in conjunction with existing ‘inverse plan-
ning’ models of utility elicitation from choice data [17] that infer absolute utilities from choice data
using extraneous constraints on the form of the utility function from the environment. In such a
synthesis, our model could generate a preference relation sensitive to action set observability, which
inverse planning models could use along with additional information from the environment to gen-
erate absolute utilities that account for observational biases in the agent’s history.

A philosophically astute reader will point out a subtle flaw in our inferential definition of rationality.
Namely, while we assume an intuitive notion of partial observability of the world, in practice, our
agents compile desirability statistics on the set of all possibilities, irrespective of whether they have
ever been observed, a problem that is rooted in an inherent limitation of Bayesian epistemology
of being restricted to computing probabilities over a fixed set of hypotheses. How can a desirabil-
ity representation that assumes that observers maintain probabilistic preferences over all possible
states of the world be more epistemologically realistic than one that assumes that observers main-
tain scalar utility values over the same state space3? As a partial response to this criticism, we point
out that we do not require an ontic commitment to the computation of joint probability distributions
on all x ∈ X . In practice, it is likely that Bayesian computations are implemented in the brain via
sampling schemes that, in hierarchical formulations, allow approximating information of the joint
distribution as a set of the most likely marginals (in our case, relative desirability in typical observa-
tion contexts). Neural implementations of such sampling schemes have been proposed in the recent
cognitive science literature [20]. Devising a sampling scheme that matches the intuition of context
retrieval from memory to supplement our value-inference scheme presents a promising direction for
future research.

Another straightforward extension of our framework would imbue observable world possibilities
with attributes, resulting in the possibility of deriving a more general definition of contexts as clus-
ters in the space of attributes. Such an extension would result in the possibility of transferring pref-
erences to entirely new possibilities, allowing the set X to be modified dynamically, which would
further address the epistemological criticism above. Even further, such an extension maps directly
to the intuition of value inference resulting from organisms’ monitoring of internal need states, here
modeled as attributes. Canini’s recent modeling of transfer learning using hierarchical Dirichlet
processes [4] provides most of the mathematical apparatus required to perform such an extension,
making this a promising direction for future work in our project.

In conclusion, it has long been recognized that state-specific utility representations of the desirability
of options are insufficient to capture the rich variety of systematic behavior patterns that humans ex-
hibit. In this paper, we show that reformulating the atomic unit of desirability as a context-sensitive
‘pointer’ to the best option in the observed set recovers a rational way of representing desirability in
a manner sufficiently powerful to describe a broad range of context effects in decisions. Since it is
likely that preferences for options do not exist a priori and are induced via experience, our present
proposal is expected to approximate the true mechanisms for the emergence of context-sensitive
preference variation better than alternative static theories, while retaining normativity criteria miss-
ing in alternative dynamic accounts.

3One could argue that we are essentially observing the state space (to be able to index using its membership),
but pretending to not observe it.
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