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Abstract-Since intelligent agents make choices based on both 
external rewards and intrinsic motivations, the structure of 
a realistic decision theory should also present as an indirect 
model of intrinsic motivation. We have recently proposed a 
model of sequential choice-making that is grounded in well­
articulated cognitive principles. In this paper, we show how 
our model of choice selection predicts behavior that matches 
the predictions of state-of-the-art intrinsic motivation models, 
providing both a clear causal mechanism for explaining its 
effects and testable predictions for situations where its predictions 
differ from those of existing models. Our results provide a 
unified cognitively grounded explanation for phenomena that 
are currently explained using different theories of motivation, 
creativity and attention. 

I. INTRODUCTION 

Standard models of reinforcement learning and control 

theory attempt to model an agent's evaluation of future action 

selection by assigning cardinal values to external incentives. 

As [1] recently point out, doing so necessarily forces the goals 

of the agents to be the same as the goals of the designers, 

which leads to an impoverishment of the range of behaviors 

such agents can display. Furthermore, assuming behavior to 

be driven purely by externally imposed motivations implies 

that agents will respond reliably to repeated encounters with 

external incentives. This is seldom the case in natural systems, 

necessitating research into models of intrinsic motivation. 

Intrinsic motivation is typically viewed as motivation that 

is driven by an interest or enjoyment in the task itself, and 

exists within the individual rather than in external incentives. 

Traditional models of control and decision-making ignore the 

internal incentives that bias the decisions of real organisms 

away from normative expectations in ways that are predictably 

irrational [2]. We suggest that any realistic theory of decision­

making must, therefore, take these intrinsic reward signals into 

account and thus be, indirectly, a theory of intrinsic motivation. 

There are currently two dominant frameworks for modeling 

intrinsic motivation. The first, which is predicated fundamen­

tally on the idea that the human brain encodes prediction 

error as a form of intrinsic reward, has been most extensively 

explored by Barto and colleagues [3], [4]. This line of re­

search derives from the neuroscientific connections between 

reinforcement learning and neural dopaminergic activity first 

proposed by [5] It has been shown that dopamine signals also 

encode non-hedonic qualities, principally novelty [6], [7]. For 

example, [8] suggests that dopamine responses could be inter-

preted as reporting a generalized sense of error in prediction 

abstracted away from any notion of reward. The principal 

goal in this paradigm is to use prediction error to quantify 

intrinsic reward as a supplement to traditional external reward 

signals to optimize the performance of standard reinforcement 

learning algorithms. For example, [9] has shown how using 

such intrinsically motivated algorithms leads to better state­

space exploration. 

The second framework of intrinsic motivation modeling 

is related more closely to qualitative theories of psychology 

and sociology, beginning with Berlyne's [10] hypothesis that 

organisms are most intrinsically motivated by experiences of 

an intermediate level of novelty, surprise or complexity. This 

assertion has since been expanded upon by Czikszenthmiha­

lyi [11] in his development of flow psychology. Schmidhuber 

has further expanded significantly [12] on this idea to cre­

ate a genre of artificial curiosity algorithms by combining 

the novelty-seeking drive with another hypothesis that the 

human brain encodes its descriptions of the environment in 

information-theoretically efficient ways and derives pleasure 

or motivation in doing so [13]. Oudeyer's intelligent adaptive 

curiosity (lAC) [14] is yet another intrinsic motivation model 

that has found a formal convergence with active learning 

strategies derived from machine learning [15]. lAC 'loves to 

learn' i.e., is explicitly directed to attempt to learn as much 

about the environment as possible. This predisposes it to prefer 

exploring environmental options of intermediate complexity, a 

property of central significance in psychological theories of 

motivation. 

While such models of intrinsic motivation are extremely 

useful in developmental robotics and other applications, they 

do not contribute much insight into the actual cognitive 

mechanisms involved in motivation and its effects on behavior. 

This is principally because all existing models of motivation 

are, in essence, normative. That is, they state how motivation 

ought to be within their own definition, and then directly 

attempt to achieve this standard algorithmically. Hence, no 

insights on the actual nature of motivation can be obtained. 

While the normative assumptions for each of the systems 

described above are quite reasonable and quite possibly reflect 

elements of the human motivational structure accurately, the 

contemporary spectrum of theories of motivation lacks a 

positive exploration of the nature of human motivation. This 

paper reports our effort at filling in this gap. 
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In this paper, we describe a model of sequential-decision 

making that is grounded in contemporaneous understanding of 

cognition and evolutionary theory. Specifically, we show that 

by assuming that the value of possible outcomes is encoded 

relative to all other outcomes, not with respect to some fixed 

psychological "no reward" condition, and by assuming that 

evolutionary selection has predisposed organisms to minimize 

their cognitive decision-making costs while selecting between 

different actions, we retrieve a formal model of sequential 

decision-making that improves upon existing decision theory 

in interesting ways. 

We show further that, as expected, our model of decision­

making naturally reproduces behavior that is currently hard­

coded into theories of intrinsic motivation based on qualita­

tive psychological theories. Our model of decision-making, 

therefore, provides an interesting implicit model of intrinsic 

motivation that qualitatively resembles state-of-the-art intrinsic 

motivation algorithms which explicitly encode an agent's 

motivational goals. The unforced emergence of such behavior 

from a formal choice model provides positivel insight into the 

nature of human motivation and a number of testable predic­

tions about existing competing models of intrinsic motivation. 

II. A SELF-MOTIVATED MODEL OF LE ARNING 

Any realistic model of decision-making must be consonant 

with the structure of human motivation, i.e. the intrinsic factors 

that affect an agent's choice behavior. One approach to devel­

oping a positive theory of human motivation would, therefore, 

be to develop a realistic model of decision-making and then 

analyze its functional aspects that appear most relevant to 

the emergence of motivated behavior. This is precisely the 

approach we adopt in this paper. 

In this section, we describe a model of decision-making 

that we have recently developed [16]. Computational exper­

iments show that its predictions match human behavioral 

data better than existing theories[17]. We begin by obtaining 

alternatives to two foundational assumptions that underpin 

traditional decision theories - the epistemological assumption 

of cardinal utility values and the teleological assumption of 

utility maximization. 

A. Relative utility 

Almost all existing decision theories presuppose the ex­

istence of state-specific quantified reward. This assumption 

ignores the failure of the persistent efforts made by early 

20th century psychologists towards finding tractable map­

pings between physical stimuli and the value judgments of 

human subjects. In fact, it was not until von Neumann and 

Morgenstern [18] showed that it is possible, under a set of 

mathematical axioms (henceforth the VNM axioms) governing 

the nature of human preferences, to obtain consistent additive 

1 In this paper, we strongly differentiate between positive and normative 
theories of phenomena. In the interests of clarity, we briefly define positive 
theories as attempts to describe phenomena as they are. On the other 
hand, normative theories attempt to describe phenomena as they should be, 
according to some externally imposed idealized standard. 

values of relative expected utility among various options that 

quantifications of human preferences could be meaningfully 

addressed. The von Neumann program is fundamental to the 

development of reward-based models of decision-making and 

planning in AI. 

However, two major problems have arisen in the course 

of the adaptation of the VNM approach to computational 

decision models. First, it has been established by multiple 

empirical studies that the VNM axioms do not apply to 

human preferences. Second, in adapting the VNM approach 

to computational models, the idea that the additive utilities 

obtained are relative has been ignored, leading to absolute 

scalar values of reward unhesitatingly (and errantly!) being 

used in both the AI and reinforcement learning [19] literature. 

In our formulation of self-motivated learning, we retreat 

to the pre-VNM state of understanding of preferences, by 

assuming that agents can only adopt preferences for particular 

outcomes relative to others observed in the same context. 

B. Evolutionarily meaningful bounded rationality 

Basic rational choice theory assumes that rational agents 

attempt to maximize the reward that they can obtain through 

their actions. However, this assumption has been shown by 

multiple behavioral studies to be unrealistic. The principal 

alternative to this assumption is the bounded rationality ap­

proach. However, traditional views of bounded rationality [20] 

continue to assume that agents attempt to maximize reward 

under computational constraints. In a subtle but important 

departure from conventional reward models, environmental 

phenomena are judged to be valuable only to the extent that 

they have been judged valuable in the past in our model. 

Judging utility by whether an option has been useful in the 

past as opposed to how useful it is removes the necessity to 

postulate Platonic rewards embedded in the environment. In 

our formulation, the relative value of possible outcomes must 

emerge from the process of sequential choice selection itself. 

In our formal model, described below, we postulate that 

humans are essentially searching for minimal-cost theories 

about how to choose high value options, where the cost is 

measured in terms of the complexity of encoding and storing 

the information needed to reliably make these decisions. We 

term it cognitive processing cost, which is essentially the cost 

of accessing past beliefs in the agent's memory. In brief, rather 

than view humans and other natural decision-making agents as 

reward maximizers, or even constrained reward maximizers, 

we view them as cognitively efficient need-satisficers. The 

expectation of efficiency allows us to pose the optimal control 

and decision problems using standard optimization techniques, 

with the relevant quantities to be optimized possessing internal 

as opposed to external ontological significance. 

Informally, to make a sequence of decisions, the agent 

cycles between forming beliefs about the relative worth of 

options by accessing past experience, making choices, expe­

riencing outcomes and updating these policies to minimize 

cognitive processing costs for future decisions. 



The formal structure of our model is homologous to the 

well-known minimum description length (MDL) principle, 

with the core premise that an agent tries to minimize its 

cognitive processing cost T while maintaining a 'satisficingly' 

high level of predictive confidence C in the quality of its 

choices. The self-motivated learning objective is to minimize 

a function of the form, 

argmin T (1) 
x 

where T and C are quantified below in terms of policies. 

Let the discrete probability distribution x ( s) represent an 

agent's policy, viz. belief about the relative quality of outcomes 

s E S available to it. The surprise experienced by an agent 

operating with a policy Xa in comparison with policy Xb can 

be quantified with an information divergence [21] of the form, 

na j ( ) 
R(Xa,Xb) = Lx�(s)logXa s . 

j=l x�(s) 
(2) 

In our model, cognitive processing costs are determined as 

the cost of accessing a belief in memory. Using information­

theoretic arguments, we suggest that the access cost of a belief 

is determined by its predictive exceptionality, which in turn can 

be measured as a departure from the usual level of surprise that 

the agent experiences in making its predictions. We measure 

the informational exceptionality of a past policy Xold (and 

hence the ease with which it will be available for recall to the 

agent) as the deviation from the average surprise experienced 

by the agent R': 

(3) 

where x is the agent's current policy. 

Given this measure of ease of memory access for each past 

policy, a reasonable measure of the processing cost of selecting 

a subset M' out of the set M of all past policies is the inverse 

availability-weighted sum of the nominal cost of accessing all 

policies in M'. Assuming the nominal cost of accessing each 

policy to be unity, the total cost of memory access T becomes, 

T = L A-1(Xi), (4) 

xiEM' 

Our measure of the agent's confidence in its ability to 

predict its environment, C : x ---+ [0,1] captures the idea that 

confidence grows when the policies have low uncertainty and 

low surprise: 

C 
_ 1 log Ixi - H(x) 
- Cmax Lmemory R(x, XOld) , (5) 

where the numerator decreases monotonically with respect 

to the Shannon entropy H (x ) of the policy. Note that C is 

normalized with respect to the greatest value it has previously 

been observed to achieve. 

Any algorithmic solution of our agent's objective function 

must solve three problems - one, specify a memory update 

specifying how existing policies are integrated into the agent's 

current policy; two, specify an environmental update, which 

shows how the perceived goodness of various outcomes at 

the present moment, , which we call reward-inference2, are 

integrated into the agent's current policy; three, specify a 

combinatorial optimization algorithm specifying which subset 

of existing policies the agent will recall to form its new policy, 

such that the objective function we have defined above is satis­

fied. In [16], we describe a direct policy search-based solution 

to all three problems for simple outcome spaces, resulting 

in a self-motivated learning algorithm for predicting choices 

made by agents in sequential settings. The resultant algorithm 

outputs beliefs corresponding to the relative preference for 

each of the possible outcomes in the agent's decision context. 
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III. EXPERIMENTS 
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Fig. 1. Self-motivated learning tracks optimal Bayesian performance when 
natural dynamics transition model is given, i.e. for standard multi-arm bandit 
problems. The reward on each arm is assumed to be drawn from a Gaussian 
distribution of known mean and variance and results are reported by averaging 
over 10 trials of 50 time steps each. Since optimal GI has a model of all 
arms and their associated rewards, while our algorithm must visit each state 
individually to obtain a reward estimate, we allow our algorithm to simulate 
trials, viz. visit multiple (all) arms in each trial. 

Self-motivated learning closely resembles reinforcement 

learning in its functionality, tracking exemplars of useful 

experiences and promulgating choice policies based on its 

recall of exceptional experiences. For statistically normal 

domains, where useful experiences are typical, the predictions 

of the self-motivated model closely track theoretically optimal 

values. Fig I shows that our algorithm performs close to 

optimality in the standard multi-arm bandit setting, where the 

Bayesian Gittins Index (GI) solution is known to be both 

optimal and analytically tractable. We are thus assured of a 

baseline match between our algorithm's predictions and those 

obtained using other reinforcement learning methods. We now 

demonstrate how the behavior of our algorithm also replicates 

the behavior of explicit models of intrinsic motivation as well 

as human-like behavior in interesting ways. 

20ur model assumes that sensory data is encoded into the space of possible 
outcomes as a relative preference by existing neuronal processes. Thus, our 
usage of the term reward-inference accentuates the fact that it is obtained after 
perceptual processing of environmental stimuli. 
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(a) Sample environment with varying function 
complexity 

(b) Total exploration over time with R-IAC al- (c) Rate of change in confidence for self-
gorithm motivated learning 

Fig. 2. Results for complexity affinity experiments 

A. Affinty for intermediate complexity 

Baranes and Oudeyer [22] have recently proposed Robust­

lAC as an improved version of the original lAC algorithm 

and demonstrated its functionality on a set of experimental 

test examples. Here, we compare the functionality of self­

motivated learning against RIAC3 on the simplest of the 

test examples provided by [22]. The dataset is a simple 1-

dimensional environment containing two noisy parts [0.25 0.5] 

and [0.8 1] and an 'increasing difficulty part' [0.5 0.8], as 

shown in Figure 2(a). Unsurprisingly, as seen in Figure 2(b), 

since doing so is its explicit algorithmic goal, R-IAC spends 

more time exploring the region of increasing complexity and 

ignores the noisy and quiet regions. 

Whereas lAC uses time spent exploring a region as a 

proxy for motivation levels, we use the rate of change in 

predictive confidence as our metric for measuring motivation. 

The intuition behind this mapping is that the agent's self­

perception of ability to engage with the environment is con­

tingent on it being able to predict future choices accurately. 

Doing so causes an increase in confidence. Thus, an active 

learning strategy manifests itself in our cognitive model as 

a confidence-improving heuristic. Thus, the absolute value of 

the rate of change of confidence takes the place of exploration 

time as our measurable variable. Note in Figure 2(c) that our 

algorithm is biased towards simplicity and therefore, along 

with the region of increasing complexity identified by lAC, 

identifies the initial low complexity regions as interesting 

just as well. The motivation predictions of both algorithms, 

however, present as fairly similar. 

B. Prisoners' dilemma and human motivation 

While informational complexity provides an interesting 

abstract framework for understanding the causal structure 

of human motivation, it is necessary for the predictions of 

positive theories of intrinsic motivation to resemble the be­

havior of human subjects at a behavioral level as well. Of 

particular interest are known scenarios where the predictions 

of normative models of behavior diverge from actual behavior. 

3The RIAC and testbed code for this experiment was used as is from 
http://ftowers.inria.fr/riac-software.zip 

TABLE I 
BASIC SETUP FOR A PRISONERS' DILEMMA TASK. NOTE THAT 

T> R> P> S. 

Here, we demonstrate the emergence of super-rational [23] 

behavior in our model's predictions in an iterated prisoner's 

dilemma (PD) setting. 

The prisoner's dilemma problem has been extensively stud­

ied in the game theory and sociology literature [24]. In the 

basic PD setting shown in Table I, the utilitarian rational 

strategy for either player is to defect, which, sadly, leads 

to a poor outcome for both players. Blindly cooperating, 

however, is even worse, which means that a player must have 

a responsive strategy for dealing with an opponent. Playing 

multiple PD games with the same parameters affords the 

opportunity to discover the opponent's strategy and adjust 

one's own. This makes iterated PD an interesting problem 

domain for testing agents that purport to behave in a manner 

consonant with autonomously motivated humans. 

It is possible to describe the space of strategies in two 

player PD games as a set S of tuples 3(pl,p2), where pI 
is the probability with which the agent defects if the opponent 

cooperated and p2 the probability that the agent defects if 

the opponent defected on the previous turn. We evaluate 

the performance of two different agents: one using a hard­

coded tit-for-tat (TFT) strategy (cooperate if the other player 

cooperated last turn, defect otherwise), the other beginning 

agnostically and learning an appropriate strategy for dealing 

with the agents it encountered using self-motivated learning. 

We assessed the performance of both agents against a grid of 

mixed strategies obtained by varying pI and p2 between 0 and 

1 in increments of 0.1 along two axes. 

Figure 3(a) shows the payoff obtained by TFT. To briefly 

orient the reader, the rightmost corner represents the case 

where the opponent's strategy is to always defect, i.e. 3(1,1) 
which causes both players to continually defect (tit-for-tat) 

and obtain low payoff. On the other extreme, the saintly 
strategy 3(0,0) lives in the leftmost corner. Here, both players 
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(a) Payoff surface for a theoretically optimal tit-for-tat strategy 

(b) Mean payoff surface for a strategy learned by a self-motivated agent 
over 50 trials 

Fig. 3. Results for prisoners' dilemma experiment 

continually cooperate and receive the intermediate payoff. 

Figure 3(b) shows the average payoff obtained by our model 

over 50 iterations on each grid point. Our model learns, for 

the most part, a strategy that closely resembles TFT. The TFT 

strategy is well-known in the PD literature both for having 

been postulated as a model of human behavior as a theory of 

reciprocal altruism [25] and for being exceptionally robust as a 

game-theoretic strategy against other strategies in iterated PD 

games [24]. Unlike existing adaptive agents [26], [27], our 

agent does not possess an explicit model of its adversary's 

choices. Its preference to cooperate, therefore is intrinsic, 

not game-theoretically planned. The motivation to select the 

cooperative option instead of the defect option inspite of a 

lower extrinsic payoff is explained by the additional intrinsic 

payoff obtained by the agent not having to continually change 

its prediction (and incurring a cognitive cost) once it has begun 

cooperati ng. 

This finding suggests cognitive efficiency as a causal mech­

anism for learned altruistic behavior, i.e., the cost of predicting 

other agents' behavior rises under antagonistic choices, caus­

ing altruistic choices to be preferred. This simple explanation 

presents a parsimonious mechanism for the development of 

learned altruism [25]. Reciprocal altruism, as seen in tit-for­

tat repeated PD games, is widely acknowledged as a powerful 

ultimate explanation for human altruism in small and stable 

groups [28]. One of the principal criticisms levied against 

direct reciprocity theories is that they have heretofore assumed 

that agents cooperate in anticipation of future reward. Such a 

utilitarian mechanism cannot explain the emergence of strong 

reciprocity - cooperative actions performed in the absence of 

external reward. Our experimental results demonstrate that 

intrinsic payoffs support the development of approximately 

reciprocal strategies in two-player games and potentially re­

solve this criticism of reciprocal altruism models. This view is 

further supported by evidence from neurobiology that suggests 

that individuals experience particular subjective rewards from 

mutual cooperation [29]. 

We note, in passing that our model's learned behavior 

deviates from TFT in interesting ways. For example, in cases 

where the opponent is too saintly and does not retaliate, our 

strategy learns to exploit it by electing to defect continually. 

Further analysis of these and other deviations of our model's 

predictions from TFT presents an interesting direction for 

future work. 

IV. DISCUSSION 

Both the Barto approach (exemplified in [9]) and the 

Oudeyer [14] computational models of motivation share an 

underlying expectation with our model of choice-selection 

in desiring to improve the ability to learn, and seeking to 

associate intrinsic motivation with an agent's self-perception 

of its predictive ability. However, by disregarding the cognitive 

machinery involved in the process of learning and tying the in­

trinsic motivation directly to the statistically measured learning 

rate, the Barto approach fails to replicate the dyadic nature of 

natural agents' motivations, viz. they stop trying to learn both 

when the environment becomes too predictable and when it 

becomes too unpredictable, an insight that the Oudeyer model 

captures. Since such dyadic behavior is characteristic across 

multiple empirically supported theories of motivation [10], 

[13], it is difficult to consider models that do not retrieve this 

property to be realistic. 

The Oudeyer model encodes this dyadic pattern explicitly 

based on the intuition that agents seek out experiences with 

intermediate novelty, which, on the surface, directly contra­

dicts our model which assigns greater significance to both 

extremely unpredictable and extremely predictable events. 

However, it it important to remember that while Oudeyer 

et al are directly trying to model motivation, our model is 

one of memory access, which operationally creates a model 

of motivation. A closer examination of our model reveals 

that situations with high predictability, if sustained, cause the 

agent to stop updating its beliefs, since no further increases 

in confidence are possible once certainty is assured. On 

the other hand, highly unpredictable decision instances lead 

to low confidence, preventing further updates of similarly 

confidence-reducing novel instances. In both cases, the rate 

of change in confidence, and hence the motivation level is 



decreased, retrieving precisely the behavior we expect from 

a realistic model. Our model differs from lAC in that the 

need to learn is not encoded explicitly as the algorithm's 

objective function. Hence, as we describe in [17], our model 

can behave sub optimally in a manner that reflects learned 

helplessness through past experience with highly unpredictable 

or adversarial environments. In such cases, our model believes 

that the best choice is to stick with its existing strategy, even 

though a different strategy might lead to better learning in the 

new environment. Thus, a testable prediction contrasting lAC 

with our model is that lAC will not show confirmation biases 

in its learning strategy, unlike realistic biological agents and 

the self-motivated learning model. 

As we see above, the comparison between lAC and our 

model leads to the conclusion that motivation is proportional 

to the rate of change in predictive confidence. This is very 

interesting, since our definition of predictive confidence is 

very similar to Schmidhuber's notion of descriptive complexity 

reduction. If we disregard the denominator in our confi­

dence term, we retrieve entropy reduction as a goal for both 

Schmidhuber's algorithm and ours. Our approach differs from 

Schmidhuber's in that we predicate cognitive cost reduction as 

the primary objective of the organism. A simple example to 

accentuate this difference is that teenaged Schmidhuber agents 

would enjoy cleaning their rooms. On the other hand, self­

motivated agents will weigh potential environmental simplicity 

against the cognitive cost of putting things in their right places 

and demur if the latter appears too high. We leave it as an 

exercise for the reader to determine which model of motivation 

appears more realistic. 

Our model also provides novel insight into a potential un­

derlying mechanism forjiow, as defined by Czikszenthmihalyi. 

We hypothesize that the state of flow reported in [11], [30] 

is simply a state of low cognitive cost utilization, as defined 

in our model. An important testable prediction arising from 

this hypothesis is that, whereas it is suggested in [30] that 

flow arises only in situations where high competence meets 

a high level of challenge, according to our theory, a state of 

flow should be achievable irrespective of the complexity of the 

task at hand. All that is necessary is that the agent have high 

confidence in its ability to navigate its current environment. 

V. CONCLUSION 

In place of existing normative accounts of decision-making, 

we have introduced a new model of self-motivated behavior 

that makes predictions in concordance with those obtained 

from state-of-the-art models of intrinsic motivation. Simple 

experiments show that our model behaves like a classi­

cal reinforcement learning algorithm for standard domains, 

replicates behavior predicted by existing motivation models, 

and demonstrates human-like behavior in simple two-player 

game-theoretic simulations. Our work provides a theoretical 

bridge between choice models and theories of motivation, 

and presents a unified and cognitively grounded explanation 

for phenomena currently explained by different qualitative 

psychological theories of motivation, attention and curiosity. 
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