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Abstract

Most theories explaining how animals form preferences for
their actions agree upon a basic outline: animals discover
what is preferable through interactions with the world, store
this information in memory, and recall it to help them de-
cide what to do in a new situation. However, no single the-
ory currently explains both how preferences are learned, and
how they are recalled in a way that is compatible with empir-
ical data. We advance precisely such a proposal in the form
of a stochastic choice model where the decision agent learns
what to do based on scale-free comparisons between options
it observes in the world and at each decision instance recalls a
subset of these comparison experiences in a manner that min-
imizes the metabolic costs of memory recall. In simulation,
this model makes qualitatively accurate predictions connect-
ing agent choices with various dynamic choice correlates doc-
umented in the literature on choice process models.

Keywords: Decision-making; cognitive science; Bayesian
modeling; computer simulation; learning; memory; mathemat-
ical modeling; artificial intelligence

Introduction
While economists are primarily concerned with representing
decision-makers’ static preferences, psychologists are more
interested in investigating the processes by which animals
make the choices they do. Naturally, there are also differences
in the analysis tools that the two disciplines bring to bear
in addressing decision-making under uncertainty. Economic
theories of choice tend to axiomatically impose conditions on
when subjects’ preferences can be said to be originating from
some latent function measuring the desirability of various op-
tions. In contrast, cognitive theories of the choice process em-
phasize algorithmically modelling the deliberative process by
which agents accumulate evidence and make choices. Theo-
ries of the choice process, therefore, differ substantially from
static theories of decision-making under uncertainty both in
means and methods.

Choice process models have a long history. Procedural
theories like elimination-by-aspects, suppresion-of-aspects,
lexicographic heuristics etc. can be considered the earliest
choice process theories. Computational theories of the de-
cision process originate in the duelling visions of two sep-
arate research programs: Busemeyer’s decision field theory
(DFT) (Busemeyer & Townsend, 1993), and McClelland’s
leaky competing accumulator models (McClelland, 2001).
The basic insight shared by both frameworks, and indeed
most succeeding models, is that evidence (as a function of
payoffs) for decisions accumulates independently for each

option, and that once the quantity of evidence reaches a cer-
tain threshold, a decision is made. The biggest difference be-
tween the two approaches is that whereas accumulator mod-
els are deterministic in selecting the first option to attain a
preset evidence threshold, random walk theories like DFT
require the difference between multiple options’ evidence to
reach a preset threshold in order to output a stochastic choice.

The latest generation of process theories borrows the basic
evidence accumulation structure of its forebears, but differs
in being more specific in defining the nature of evidence be-
ing compiled. For example, Chater and colleagues (Stewart,
Chater, & Brown, 2006) have proposed a system of infer-
ring choices that dispenses with the need to map payoffs to
intrinsic value scales. In their proposal, the payoff’s sub-
jective value emerges from ordinal binary comparisons to
a sample of payoffs drawn from memory. The means by
which certain payoffs are preferentially recalled, though, are
left unspecified, so this model cannot predict the behavior of
choice process correlates like reaction time and neural acti-
vation. A more recent proposal, due to Dickhaut and col-
leagues (Dickhaut, Rustichini, & Smith, 2009), uses a sig-
nal detection analogy to describe the choice process, with the
agent’s goal being to estimate utility from noisy observations
of the world state with minimum cognitive effort. Crucially,
existing process models leave the question of the origin of
preferences unanswered.

In this paper, we develop a theory of the choice process that
specifies both the manner in which preferences are learned
from the world, and the manner in which they are recalled for
future decisions. The basis for this development is a recent
theoretical advance (Srivastava & Schrater, 2012), where we
demonstrated that optimal Bayesian inference about which
options in the world an agent has to select between, as well
as which options in these option subsets are the best, yields
preferences that are economically rationalizable under some
general constraints on the agent’s observation history. In our
present work, we build upon this theory of preference forma-
tion by adding embodiment constraints via a requirement of
effort-sensitive computation. By doing so, we obtain a com-
putationally tractable choice model that can jointly make pre-
dictions both for the static revealed preferences of subjects
and dynamic process correlates like error rate, reaction time,
and neural activation.
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Modeling the choice process
Our theory can be distilled into three specific claims:

1. Animals infer what to do from choices they have made in
the past concerning different stimulus configurations.

2. Animals perform this inference frugally, using a limited
subset of past experiences.

3. Animals are smart about which experiences to use - they
select them in order of expected informativeness.

In the three subsections below, we operationalize each of
these claims computationally.

Bayes-optimal preference formation
Real subjects, unlike traditional economic agents, need not
consider the set of all possible options in the world at every
decision instance. Instead, options tend to have typical co-
occurrence relations - such that which options co-occur be-
comes itself a signal that allows the agent to establish the
context in which an option’s desirability is to be evaluated.
Therefore, in (Srivastava & Schrater, 2012), we outlined a
theory of preference formation wherein the basic atom of
value includes both information about which option(s) are
desirable and the set of options it is desirable amongst, us-
ing modal frames as a mathematical formalism for express-
ing an instantaneous judgment of desirability for human sub-
jects. Compiling desirability across multiple such objects to
retrieve an analogue of traditional value computation required
the development of a new framework for inferring prefer-
ences which we detail in (Srivastava & Schrater, 2012) and
briefly review here.

Consider a standard choice formulation where an agent is
presented with the set of options X . Traditional treatments
of preference learning assume that there is some hidden state
function U : X → R+ such that x � y iff U(x) >U(y). Pref-
erence learning, in such settings, is reduced to a task of statis-
tically estimating a monotone distortion of U. In (Srivastava
& Schrater, 2012), we showed that assuming the existence of
such a U is incompatible with a number of behavioral results
on choice behavior. Our alternative strategy was to demon-
strate that the set of options o ∈ P (X )1 actually observed at
any decision instance can be used instead to directly infer fu-
ture preference using preferences revealed at previous deci-
sion instances without having to resort to intermediate utility
computations.

Formally, we introduce preference information into our
system via a desirability function d that simply points to the
best option in a given context, i.e. d(o) = B, where B is an
accessibility relation (o,o,m) corresponding to the Kripke
frame 〈o,B〉, designed to point to the best option in the ob-
served set by defining mi = 1 iff oi � oi′∀oi′ ∈ o \ {oi} and
zero otherwise. The desirability indicated by d(o) can be

1P (·) references the power set operation.

remapped on to the larger set of options by defining a rela-
tive desirability across all possibilities r(x,o) = m,x ∈ o and
zero otherwise.

We further assume that agents infer the situation of the
world that they are required to respond to using the option
sets they encounter, both as a way to orient themselves with
respect to the environment and be able to respond flexibly to
novel situations. While the set of contexts inferred C by an
agent from its observation history can be latent in general, a
crucial novelty of our framework was to restrict the nature
of these contexts as bijective maps of observed option sets,
i.e. C ⊆ P (X ). In our framework, the computation corre-
sponding to utility is desirability p(r|x,o), which is obtained
by marginalizing over C ,

D(x) = p(r|x,o) = ∑
C
c p(r|x,c)p(x|c)p(c)

∑
C
c p(x|c)p(c|o)

, (1)

where it is understood that the context probability p(c|o) =
p(c|{o1,o2, · · · ,ot−1}) is a distribution on the set of all possi-
ble contexts incrementally inferred from the agent’s obser-
vation history. From the definition of desirability, we can
also obtain a simple definition of the desirability probability
p(r|x,c) as p(ri|xi,c) = 1 iff rixi = 1 and zero otherwise.

To instantiate equation (1) concretely, we must also instan-
tiate the observation probability p(o|c). Multiple definitions
that obtain the highest possible value for c = o and penalize
mismatches in set membership are plausible. This likelihood
function is used to update the agent’s posterior belief about
the contexts it considers viable at decision instance t, given
its observation history as,

p(c(t)|o(1:t)) =
p(o(t)|c)p(c|o(1:t−1))

∑
C
c p(o(t)|c)p(c|o(1:t−1))

, (2)

which, in conjunction with the desirability based state prefer-
ence update, and a simple decision rule (e.g. MAP, softmax)
yields a complete decision theory.

Effort-sensitive preference formation
Whereas the computational aspect of our theory is fully spec-
ified in terms of a Bayesian agent seeking to accumulate ev-
idence for future choices based on past choice experiences,
at the mechanistic level, there are further considerations that
are expected to constrain it. The principal constraint we con-
sider is a requirement of biological organisms to reduce the
metabolic costs of thinking.

Cognitive dynamics form a large fraction of the body’s
basal metabolic requirements. It is reasonable, therefore,
to assume that achieving efficiency in cognitive processing
would promote natural selection. Thus, it is not unnatural to
assume, as we do in this paper, that animals’ mechanisms
of cognitive dynamics have evolved to be sensitive to the
metabolic costs of choice selection, and that animals allocate
resources for cognitive processing rationally.

Given the computational goal of a statistically optimal
preference-learning agent outlined in the preceding section,
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we develop a model of effort-sensitive preference formation
by assuming that while the brain does perform the Bayesian
updates we have described above, it does so using a subset of
previous observations, not the entire history to impute desir-
ability. Thus, we model the choice process as animals trying
to solve a tradeoff between the amount of choice-relevant in-
formation they must recall to choose wisely in any particu-
lar decision instance and the amount of metabolic effort they
must incur in doing so.

We model the process of memory recall as the activation
of a subset M of all decision-relevant memory particles. Us-
ing this notation, a general belief formation model could be
expressed as,

p(x) = ∑
m∈M

p(x|m)p(m), (3)

where x∈X are the choices available to the agent, and m∈M
are memory particles corresponding to past choice selections.
Here, the probability distribution p(m) - which we call the
memory prior - encodes the likelihood of recalling the mem-
ory of experience m, while the distribution p(x|m) encodes
beliefs about outcomes learned during the experience corre-
sponding to the memory particle m.

Instead of the idealized context inference in Equation 2, the
memory-constrained preference learning agent will employ
an update,

p(c|o,m) =
p(o|c,m)p(c|Mold)

∑
C
c p(o|c,m)p(c|Mold)

,

⇒ pk(c|o(t)) =
Mk

∑
m

p(o|c,m)p(c|m(1:k−1))p(m)

∑
C
c p(o|c,m)p(c|m(1:k−1))

,

=
Mk

∑
m

p(o|c)p(c|m(1:k−1))p(m)

∑
C
c p(o|c)p(c|m(1:k−1))

, (4)

where p(o|c,m) = p(o|c) follows from the fact that the obser-
vation likelihood of a particular option set o conditioned on
having seen the same option set before in context c will be in-
dependent of which memory particle was responsible for re-
calling context c. Note that the index k in Equation 4 indicates
the temporal order in which evidence from various memory
particles is accumulated during preference formation during
a particular decision. Also note that, while the set C still re-
tains its original definition as the set of inferred contexts, this
set will now be determined by the set of memory particles
presently activated, not by directly indexing past choice sets
as was possible earlier.

The relative desirability computation in Equation 1 also
changes to reflect the dependence of the computation on the
result of a race between multiple memory particles to influ-
ence the agent’s choice. In particular, the kth arrival will de-
termine that the relative desirability of option x is,

Dk(x) =
∑

C
c p(r|x,c)p(x|c)pk(c|o)

∑
C
c p(x|c)pk(c|o)

, (5)

where k is a positive integer-valued parameter controlling the
amount of deliberation an agent is willing to undergo before
making an explicit choice.

An animal will express desirability Dk∗ as an observable
decision when it believes it has constructed a sufficiently use-
ful preference. Modeling the transition from fluid internal
preferences to static revealed preference is equivalent to es-
timating k∗ in our framework. As we describe below, and
illustrate in Figure 1, we believe that animals are sensitive to
the amount of information that particular memory particles
can bring to bear on a decision problem, and that they likely
select the particles they use to form preferences in order of
informativeness. Thus, a reasonable form for k∗ inference
would be a stopping rule

k∗ = argmax
k

KL(pk(r|x)‖pk−δ(r|x))< ε, (6)

reflecting diminishing marginal informativeness of incremen-
tal evidence accumulation.
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Figure 1: Smartly selecting memory particles for preference
formation leads to frugal but accurate computations.

The amount of cognitive effort an animal is willing to
invest in a decision will depend both on the quality of its
constructed preference and the existence of other concurrent
goals that it is currently seeking to fulfill. This intuition is
naturally integrated in our model by permitting the effort pa-
rameters {δ,ε} to be calculated by a higher level hierarchical
controller. Once the high-level controller has assigned the
effort parameters, the agent constructs the best possible pref-
erence within the effort constraint and outputs it as a decision.

For our present purposes, we assume that we already pos-
sess accurate point estimates for these parameters. Realisti-
cally, estimates of the effort parameters may also be uncer-
tain. Weak posterior distributions on the effort parameters
will yield behavior in our model resembling the very human
ability of contradictory decisions being made on very short
timescales2. However, exact modelling of the higher-level

2Waiter: “What dressing would you like with your salad?”.
Diner: “Umm, French. No wait, ranch. Uhh..., actually let’s just
go with French.” Waiter: “Ok, I’ll be right back.” Diner (mutter-
ing):“I should have asked for vinaigrette.”
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controller lies outside the scope of this article.

Sparse but smart preference formation
The final piece of our modelling is defining the criterion that
agents use to activate memory particles, practically reflected
in the choice of p(m) in Equation 4. A flat p(m) would corre-
spond to an agent that is indifferent to the information content
of various memory particles. Such an agent though, would be
information-theoretically inefficient, as outlined in Figure 1.
A more useful strategy would be to selectively use maximally
informative particles.

We use a particular information-theoretic construction to
operationalize this assumption. Deviations in the amount of
information communicated by a particular memory particle
is hypothesized to correspond to its decision salience in neu-
ral computation. We implement this strategy in our model in
the following way. We begin with a standard specification of
prediction error using an information divergence,

R(p(r|x), p(r|x,m)) = ∑
x∈X

p(r|x) log
p(r|x)

p(r|x,m)
, (7)

where, p(r|x) is the currently computed desirability, and
p(r|x,m) is the desirability content of memory particle m,
measured as the relative desirability we would impute in
Equation 5 using M = {m} in Equation 4. We instantiate
the memory prior as a softmax function of particle salience,

p(m) =
exp(λA(m))

∑m∈M exp(λA(m))
, (8)

where λ is a parameter controlling the scale of salience and
the particle salience A(m) itself is instantiated as a convex
function of the prediction error, e.g.

A(m) = cos(απR(p(r|x), p(r|x,m))), (9)

where α is a normalizing constant3. The intuition behind
this relationship between salience and prediction error de-
rives from the need for cognitively salient memories to ei-
ther reinforce existing policies, or support switching away
from them. This dual requirement privileges both low error
conditions (generated by reinforcing particles) and high error
ones (generated by highly contrasting ones). In contrast, in
a domain where on-task behavior is relatively automatic (eye
movements), only high contrast samples need be considered
salient, which is indeed what is seen empirically (Itti & Koch,
2001).

Algorithmically, the salience computation arises dynami-
cally as the contexts are being compiled to generate relative
desirability at the present decision instance. When the set of
compiled contexts is empty, there are no salience weights on
any of the memory particles. Once contexts begin being com-
piled, we use our definitions of prediction error and salience
anchoring on the incomplete context frame set to sequentially
update weights for memory particles.

3In practice, α is an uninteresting parameter. We simply normal-
ize with the largest value we know the KL between two vectors of
size |X | will take.

Results
Due to its commitment to a particular embodied form of pref-
erence dynamics, our model requires relatively few param-
eters to relate dynamic choice correlates to static choice se-
lections. The present specification uses four parameters: the
mismatch penalty weight β used in computing observation
likelihood p(o|c), the salience scaling parameter λ, and the
effort parameters {δ,ε}, controlling the amount of evidence
an agent will recall before revealing its preference. Unlike
existing process models, the size of our parameter set does
not increase with the number of choice options. In the exper-
iments conducted below, λ and β were found to not influence
the results significantly, and remained fixed at the value of 3
in all cases.

The ideal version of preference inference has already been
shown to conform with normative rational expectations of
choice behavior in (Srivastava & Schrater, 2012). In this
paper, we focus on demonstrating that our model of effort-
constrained preference inference generates the right profiles
of dynamic choice correlates that other process models have
sought to model. Specifically, we demonstrate the ability of
our model to qualitatively replicate the absolute identifica-
tion results of (Lacouture & Marley, 2004), which (Brown
& Heathcote, 2008) have set up as a benchmark for testing
accumulator models.

The basic setup of the experiment involves showing sub-
jects 40 copies each of n stimuli, and asking them to assign
number labels 1 · · ·n to them. The underlying assumption in
previous models has been that subjects possess some internal
scale to which they map stimuli lengths, with some amount
of noise inherent to this process. We assume, on the other
hand, that subjects can learn relative magnitude information
by comparing between the stimuli they are seeing. For ana-
lytical tractability, we restricted ourselves to considering only
pairwise comparisons, i.e. we assumed that agents are com-
paring the presently seen stimulus to the stimulus seen imme-
diately prior. On each trial, agents updated their estimates for
p(r|xt ,o= {xt ,xt−1}) following our model. Note that the only
comparison permitted in our model was judging which one
was longer. No absolute magnitude information was stored.

We found that simulated agents operating under these con-
straints were able to learn the relative ordering of stimuli
lengths using a relatively small number of comparisons (40
presentations of each stimulus, as used in (Lacouture & Mar-
ley, 2004)). While our results are presented using a smaller
stimulus set than the original experiment, the qualitative
trends match exactly (see Figure 2). The fraction of correct
responses appears as a convex function of stimulus order, and
the response time appears as a concave function of stimulus
order, precisely matching the profiles observed by (Lacouture
& Marley, 2004) (also see Figure 10 in (Brown & Heathcote,
2008)). Additionally, manipulating the effort parameters per-
mits us to make predictions about the behavior of the re-
sponse time and error curves respectively in speed-emphasis
and accuracy-emphasis. Our results are qualitatively in agree-
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Figure 2: Our model replicates patterns of error rate and response time as a function of stimulus magnitude order previously
observed in human subjects in an absolute identification task. Task parameters were chosen to replicate Experiment 1 in
(Lacouture & Marley, 2004) - 40 trials per stimulus per session; results averaged across 12 simulation sessions. (a) error rate
is lowest for extreme stimuli; intermediate magnitude stimuli are predicted incorrectly significantly more often. Error bars are
2 SD across. (b) response time is also lowest for extreme-valued stimuli, and increases for intermediate stimuli. Error bars are
2 SE across (repeated measurements). In both cases, simulations emphasizing speed over accuracy change the profile of the
curves in the same manner observed in human subjects by (Ratcliff & Rouder, 1998).

ment with data for such a manipulation collected by (Ratcliff
& Rouder, 1998) (see Figure 7 in (Brown & Heathcote, 2008)
for a visual comparison). The major quantitative difference is
that whereas human subjects do not lose significant accuracy
in the speed condition, our artificial subjects, trained on a lim-
ited set of trials, lose considerably more.

The model’s capacity to identify absolute stimuli arises
from its ability to accumulate evidence from pairwise com-
parisons and recall a small number of these comparisons to
dynamically estimate the order of the present stimulus. This
linkage of preference with history renders transparent the re-
lationship between the psychophysical bowtie effect seen in
identification experiments (Lacouture & Marley, 2004) and
the economic distance effect (Dickhaut, Smith, Xin, & Rus-
tichini, 2013) observed in multiple behavioral economics ex-
periments where it is found that extreme choice valence (dis-
tance in utility) appears to be correlated with lower error rate,
response times and interestingly, levels of neuronal activation
as measured by fMRI (Dickhaut et al., 2013).

The same simulation also replicates a complementary
decision-theoretic observation - high response times are usu-
ally associated with high error rates, and in turn with largely
indifferent choice (Dickhaut et al., 2013). The working of
our model illustrates that differences in the amount of cogni-
tive effort required to disambiguate options that are close in
value arise from the fact that such options have both been pre-
viously chosen while members of different option sets. As-
similating conflicting evidence requires more samples for the
desirability distribution to stabilize, resulting in greater effort,
correlated with higher RT and brain activation.

Having modeled a difficult benchmark for existing process
models, we also demonstrate an effect that accumulator mod-
els and decision field theory find difficult to account for, but
originates endogenously in ours - the increase in choice re-
sponse time as a function of choice set size. Since other com-
putational models of the choice process model evidence accu-
mulation for each option individually, they end up predicting
that response time should be independent of choice set size.
Instead, as Hick’s law formalizes, RT is empirically seen to
increase logarithmically with set size (Hick, 1952). Accumu-
lator models have sought to remove this discrepancy by as-
suming that the response threshold increases logarithmically
with the option set size, but rationales for such assumptions
(which verge upon assuming the consequent) are unclear.

Response times increase naturally in our model, though the
rate of increase appears to be closer to linear than sub-linear
(see Figure 3). That RT should increase with choice set size
is a natural consequence of our model; larger option sets need
more comparison information to draw useful inferences from.
The fact that our model fails to show a sub-linear Hicksian
trend suggests that there are aspects of hierarchical clustering
of option sets that our current framework does not accommo-
date.

Discussion
Earlier efforts at designing choice models have almost uni-
formly reified the notion of value as an easily accessible exter-
nal signal. If value is easily accessible in the form of payoffs,
then we need not worry about learning it. However, evidence
is compiling that value learning is not simple, nor unneces-
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Figure 3: While our model differs from existing process mod-
els in predicting increasing response time as a function of
choice set size, it does not converge to Hick’s law’s predic-
tion of sub-linear increases.

sary, and in fact, it is not clear if we should be thinking in
terms of option-specific value signals at all (Vlaev, Chater,
Stewart, & Brown, 2011). Recognizing this ambiguity, our
own earlier efforts have focused on developing a rational the-
ory of preference learning that does not require intermedi-
ate value computations. In this paper we have connected
these ideas with limited, frugal computation to generate an
integrated theory of metabolically frugal preference learning.
The resulting theory can both predict which option an ob-
server will select, and also how much time (relative to other
options) they will take to do so, depending on subjects’ his-
tory of experience. Crucially, ours is a rationalizable theory
of the choice process - it can both explain what choices an
animal will make, and why, by outlining the mechanism by
which previous choice inform future ones.

Sensitivity to initial conditions, while possibly a limitation,
is a very interesting feature of our model. Its path-dependent
construction of preferences constrains us to predict that the
options that animals predict will depend significantly on the
order of evidence. Since we model the activation propen-
sity of memory particles as a function of the preference being
formed, which particles arrive first strongly influence which
ones will be recalled later. In a binary choice, for instance,
a rare particle (pointing to an infrequently chosen option) ar-
riving first will essentially make it impossible for further rare
particles to participate. Conversely, if the initial particle set
is typical (pointing to the frequently chosen option), rare par-
ticles will have a greater impetus to participate in preference
construction. It is not unreasonable to expect animals to be-
have this way; and predictions from this aspect of our model
are testable. For example, in economic choices between a
safe and a risky option, our model predicts that subject popu-
lations will segment into two cohorts: one that select the risky
option with probabilities matching empirical frequencies of
success, and one that overweights the probability of success

in their choice decisions, a prediction that is supported em-
pirically (Bruhin, Fehr-Duda, & Epper, 2010).

In summary, we have modelled the choice process of an-
imals as statistically efficient memory retrieval, and shown
that such a model can explain important regularities in the re-
lationship between memory samples, choice predictions, and
choice prediction response times. Our results improve upon
previous explanations for a number of response time effects,
because they connect prior choice history to these variables.
Our model is not just rationalizable, it is also substantially
normative; optimizing a dual objective of adapting to envi-
ronmental frequencies while reducing the internal processing
costs of such adaptation. Outlining a tractable form for this
optimization is the key contribution of this work.
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