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A Client-Server Exchange

Client
process

Server
process

1. Client sends request

2. Server 
handles
request

3. Server sends response4. Client 
handles

response

Resource

– A server process and one or more client processes
– Server manages some resource.
– Server provides service by manipulating resource 

for clients.

Note: clients and servers are processes running on hosts 
(can be the same or different hosts).



  

Basic networking theory

● The TCP/IP communication stack has four 
layers
– Application layer (DHCP, SSH, LDAP, FTP, HTTP)

– Transport layer (TCP, UDP)

– Internet layer (IPv4, IPv6, ICMP)

– Link layer (MAC, ask EE people)



  

Link layer connections: LAN

● IEEE 802.3, the ethernet, is the most popular 
LAN setup

● Each machine on a LAN has a network 
interface (e.g. ethernet card) connected to a 
common broadcast medium

● Each interface card is associated with a 
Medium Access Control (MAC) address



  

MAC addresses

● 48 bit unique identifier assigned to a network 
interface controller

● Human readable format: six octets represented in 
hexadecimal number pairs
– 01-23-45-67-89-AB

– 32:12:34:6F:45:A3

● Of six octets
– First three are organization identifiers
– Last three are device identifiers assigned by manufacturer



  

Ethernet frame format

● Data frames on the ethernet are packets of a 
specific size and format
– Preamble

– Start delimiter

– MAC dest

– MAC source

– Payload

– Gap



  

Ethernet protocol

● The sender broadcasts
● Each host connected to the LAN checks 

destination address in dataframe with own MAC 
address

● If destination matches, receive the packet

● Is this a good protocol?



  

Enter the (inter)net

● Multiple LANs want to communicate with each 
other

● Most popular protocol is the internet protocol 
(IP)

● Each device connected to the internet has an IP 
address (IPv4 or IPv6)

● IPv4 uses 32 bit addressing
● IPv6 uses 128 bit addressing



  

IPv4 problems

● Too few unique addresses available
● Forced lots of hacky solutions
● Example: NAT

– Try to find your IP using ifconfig

– Try to find your IP using a third party lookup service

– Why is there a difference?

● Eventually will be replaced by IPv6
– For the time being, have to be aware of hacks



  

Internet Connections (TCP/IP)

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242 

Server host address
208.216.181.15

Two common paradigms for clients and servers communication

 Datagrams (UDP protocol SOCK_DGRAM)

 Connections (TCP protocol, SOCK_STREAM) 

Connections are point-to-point, full-duplex (2-way communication), and 
reliable. 

Note: 3479 is an
ephemeral port allocated

by the kernel 

Note: 80 is a well-known port
associated with Web servers



  

Network Applications

Access to Network via Program Interface
– Sockets make network I/O look like files
– Call system functions to control and communicate
– Network code handles issues of routing, segmentation.

OS

Network
Interface

Client
Appl.

Socket
OS +
Network
APIs

OS

Network
Interface

Server
Appl.

Socket
OS +
Network
APIs

Internet

Client MachineClient Machine Server MachineServer Machine



  

Clients

Examples of client programs
– Web browsers, ftp, telnet, ssh

How does a client find the server?
– The IP address in the server socket address identifies 

the host  (more precisely, an adaptor on the host)
– The (well-known) port in the server socket address 

identifies the service, and thus implicitly identifies the 
server process that performs that service.

– Examples of well known ports
● Port 7: Echo server
● Port 23: Telnet server
● Port 25: Mail server
● Port 80: Web server



  

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client



  

Servers

Servers are long-running processes (daemons).
– Created at boot-time (typically) by the init process (process 

1)
– Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-
known port associated with a particular service.

– Port 7: echo server
– Port 23: telnet server
– Port 25: mail server
– Port 80: HTTP server

A machine that runs a server process is also often  
referred to as a “server.”

See /etc/services for a 
comprehensive list of the 
services available on a Linux 
machine.



  

Client / 
Server
Session

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect



  

Sockets

What is a socket?
– To the kernel, a socket is an endpoint of 

communication.
– To an application, a socket is a file descriptor that lets 

the application read/write from/to the network.
● Remember: All Unix I/O devices, including networks, are 

modeled as files.

Clients and servers communicate with each by 
reading from and writing to socket descriptors.

The main distinction between regular file I/O and 
socket I/O is how the application “opens” the 
socket descriptors.



  

Socket Programming Cliches
Network Byte Ordering
– Network is big-endian, host may be big- or little-endian
– Functions work on 16-bit (short) and 32-bit (long) values 
– htons() / htonl() : convert host byte order to network byte order
– ntohs() / ntohl(): convert network byte order to host byte order
– Use these to convert network addresses, ports, …

Structure Casts
– You will see a lot of ‘structure casts’

  struct sockaddr_in serveraddr; 
  /* fill in serveraddr with an address */
  … 
  /* Connect takes (struct sockaddr *) as its second argument */ 
  connect(clientfd, (struct sockaddr *) &serveraddr,

sizeof(serveraddr)); 
  …



  

Socket Programming Help

man is your friend (aka RTFM)
– man accept
– man select
– Etc. 

The manual page will tell you:
– What #include<> directives you need at the top of your 

source code
– The type of each argument
– The possible return values
– The possible errors (in errno)



● The basic ideas:
– a socket is like a file: 

● you can read/write to/from the network just like you would a file
– For connection-oriented communication (e.g. TCP)

● servers (passive open) do listen and accept operations
● clients (active open) do connect operations
● both sides can then do read and/or write (or send and recv)
● then each side must close
● There are more details, but those are the most important ideas

– Connectionless  (e.g. UDP): uses sendto and recvfrom

The Socket Interface

=
file.datInternet



Sockets And Socket Libraries

● In Unix, socket procedures (e.g. listen, connect, 

etc.) are system calls
– part of the operating system
– implemented in the “top half” of the kernel
– when you call the function, control moves to the 

operating system, and you are using “system” 
CPU time



  

Socket Address Structures
Generic socket address:
– For address arguments to connect, bind, and 
accept.

Internet-specific socket address:
– Must cast (sockaddr_in *) to (sockaddr *) for 
connect, bind, and accept.

struct sockaddr { 
  unsigned short  sa_family;    /* protocol family */ 
  char            sa_data[14];  /* address data.  */ 
};       

struct sockaddr_in  { 
  unsigned short  sin_family;  /* address family (always AF_INET) */ 
  unsigned short  sin_port;    /* port num in network byte order */ 
  struct in_addr  sin_addr;    /* IP addr in network byte order */ 
  unsigned char   sin_zero[8]; /* pad to sizeof(struct sockaddr) */ 
}; 



Socket address structure



Socket Structure



Socket Types



Byte ordering
● Big Endian byte-order

The byte order for the TCP/IP protocol suite 
is big endian.



Byte-Order Transformation



Address Transformation



Byte-Manipulation Functions
● In network programming, we often need to 

initialize a field, copy the contents of one 
field to another, or compare the contents of 
two fields.
– Cannot use string functions (strcpy, strcmp, …) 

which assume null character termination.



Information about remote host



Procedures That Implement The Socket API

Creating and Deleting Sockets

• fd=socket(protofamily, type, protocol)
Creates a new socket. Returns a file descriptor (fd). Must 
specify:

● the protocol family (e.g. TCP/IP)
● the type of service (e.g. STREAM or DGRAM)
● the protocol (e.g. TCP or UDP)  

• close(fd)
Deletes socket.  
For connected STREAM sockets, sends EOF to close 
connection.



Procedures That Implement The Socket API

Putting Servers “on the Air”
• bind(fd)

Used by server to establish port to listen on.
When server has >1 IP addrs, can specify “ANY”, or a specific 
one

• listen (fd, queuesize) 

Used by connection-oriented servers only, to put server “on the 
air”
Queuesize parameter: how many pending connections can be 
waiting

● afd = accept (lfd, caddress, caddresslen)
Used by connection-oriented servers to accept one new 
connection

● There must already be a listening socket (lfd)
● Returns afd, a new socket for the new connection, and
● The address of the caller (e.g. for security, log keeping. etc.)



Procedures That Implement The Socket API

How Clients Communicate with Servers
• connect (fd, saddress, saddreslen)

Used by connection-oriented clients to connect 
to server

● There must already be a socket bound to a connection-
oriented service on the fd

● There must already be a listening socket on the server
● You pass in the address (IP address, and port number) 

of the server.

Used by connectionless clients to specify a 
“default send to address”

● Subsequent “writes” or “sends” don’t have to specify a 
destination address

● BUT, there really ISN’T any connection established… 
this is a bad choice of names!



Procedures That Implement The Socket API

How Clients Communicate with Servers
• send (fd, data, length, flags) 
sendto (fd, data, length, flags, destaddress, addresslen) 
sendmsg (fd, msgstruct, flags)
write (fd, data, length)
Used  to send data.

● send requires a connection (or for UDP, default send 
address) be already established

● sendto used when we need to specify the dest address (for 
UDP only)

● sendmsg is an alternative version of sendto that uses a struct 
to pass parameters

● write is the “normal” write function; can be used with both files 
and sockets

• recv (...) recvfrom (...) recvmsg (...) read 
(...) 
Used  to receive data… parameters are similar, but in reverse

(destination => source, etc…)



Connectionless 
Service (UDP)
Server

Client

1. Create transport 
endpoint: socket()

2. Assign transport
endpoint an 

address: bind()

3. Wait for a packet
to arrive: recvfrom()

4. Formulate reply (if any)
and send: sendto()

5. Release transport
endpoint: close()

1. Create transport 
endpoint: socket()

2. Assign transport
endpoint an 

address (optional):
 bind()

3. Determine address
of server

4. Formulate message
and send: sendto()

6. Release transport
endpoint: close()

5. Wait for packet
to arrive: recvfrom()



Server
Client1. Create transport 

endpoint for incoming
connection request: socket()

2. Assign transport
endpoint an 
address: bind( )

5. Wait for a packet
to arrive: recv ( )

6. Formulate reply (if any)
and send: send( )

7. Release transport
endpoint: close( )

1. Create transport 
endpoint: socket( )

2. Assign transport
endpoint an 
address (optional):
 bind( )

3. Determine address
of server

4. Formulate message
and send: send ( )

6. Release transport
endpoint: close( )

5. Wait for packet
to arrive: recv( )

3. Announce willing
to accept connections:
listen( )

4. Block and Wait
for incoming request: 
accept( )

4. Connect to server:
connect( )
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Lab this week

● Grab the simple client-server demo in C from my github
● If you run the server code on one local terminal and the client code on another, it 

transmits a Hello World message and quits
● Lab tasks

– Make the server persistent, such that it doesn’t quit after one message transfer
– Redesign the server such that it accepts inputs from the client, transforms them into lowercase 

and transmits back
– Redesign the server and client such that 

– The client requests an HTML file from the server that is displaying some headers and a simple table
– The server reads the file stored in the server’s computer and transmits it as text to the client
– Write a shell script that will display the corresponding webpage on the client’s computer

– Create a version of the server that will allow connectionless (UDP) transfer
● Client code will have to change too
● See if you can get the HTML transfer to work for this UDP connection also

– Create a version of the TCP server that will permit concurrent connections from multiple clients
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