

Socket programming

A Client-Server Exchange

Client
process

Server
process

1. Client sends request

2. Server
handles
request

3. Server sends response4. Client
handles

response

Resource

– A server process and one or more client processes
– Server manages some resource.
– Server provides service by manipulating resource

for clients.

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

Basic networking theory

● The TCP/IP communication stack has four
layers
– Application layer (DHCP, SSH, LDAP, FTP, HTTP)

– Transport layer (TCP, UDP)

– Internet layer (IPv4, IPv6, ICMP)

– Link layer (MAC, ask EE people)

Link layer connections: LAN

● IEEE 802.3, the ethernet, is the most popular
LAN setup

● Each machine on a LAN has a network
interface (e.g. ethernet card) connected to a
common broadcast medium

● Each interface card is associated with a
Medium Access Control (MAC) address

MAC addresses

● 48 bit unique identifier assigned to a network
interface controller

● Human readable format: six octets represented in
hexadecimal number pairs
– 01-23-45-67-89-AB

– 32:12:34:6F:45:A3

● Of six octets
– First three are organization identifiers
– Last three are device identifiers assigned by manufacturer

Ethernet frame format

● Data frames on the ethernet are packets of a
specific size and format
– Preamble

– Start delimiter

– MAC dest

– MAC source

– Payload

– Gap

Ethernet protocol

● The sender broadcasts
● Each host connected to the LAN checks

destination address in dataframe with own MAC
address

● If destination matches, receive the packet

● Is this a good protocol?

Enter the (inter)net

● Multiple LANs want to communicate with each
other

● Most popular protocol is the internet protocol
(IP)

● Each device connected to the internet has an IP
address (IPv4 or IPv6)

● IPv4 uses 32 bit addressing
● IPv6 uses 128 bit addressing

IPv4 problems

● Too few unique addresses available
● Forced lots of hacky solutions
● Example: NAT

– Try to find your IP using ifconfig

– Try to find your IP using a third party lookup service

– Why is there a difference?

● Eventually will be replaced by IPv6
– For the time being, have to be aware of hacks

Internet Connections (TCP/IP)

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

Two common paradigms for clients and servers communication

 Datagrams (UDP protocol SOCK_DGRAM)

 Connections (TCP protocol, SOCK_STREAM)

Connections are point-to-point, full-duplex (2-way communication), and
reliable.

Note: 3479 is an
ephemeral port allocated

by the kernel

Note: 80 is a well-known port
associated with Web servers

Network Applications

Access to Network via Program Interface
– Sockets make network I/O look like files
– Call system functions to control and communicate
– Network code handles issues of routing, segmentation.

OS

Network
Interface

Client
Appl.

Socket
OS +
Network
APIs

OS

Network
Interface

Server
Appl.

Socket
OS +
Network
APIs

Internet

Client MachineClient Machine Server MachineServer Machine

Clients

Examples of client programs
– Web browsers, ftp, telnet, ssh

How does a client find the server?
– The IP address in the server socket address identifies

the host (more precisely, an adaptor on the host)
– The (well-known) port in the server socket address

identifies the service, and thus implicitly identifies the
server process that performs that service.

– Examples of well known ports
● Port 7: Echo server
● Port 23: Telnet server
● Port 25: Mail server
● Port 80: Web server

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Servers

Servers are long-running processes (daemons).
– Created at boot-time (typically) by the init process (process

1)
– Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-
known port associated with a particular service.

– Port 7: echo server
– Port 23: telnet server
– Port 25: mail server
– Port 80: HTTP server

A machine that runs a server process is also often
referred to as a “server.”

See /etc/services for a
comprehensive list of the
services available on a Linux
machine.

Client /
Server
Session

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

Sockets

What is a socket?
– To the kernel, a socket is an endpoint of

communication.
– To an application, a socket is a file descriptor that lets

the application read/write from/to the network.
● Remember: All Unix I/O devices, including networks, are

modeled as files.

Clients and servers communicate with each by
reading from and writing to socket descriptors.

The main distinction between regular file I/O and
socket I/O is how the application “opens” the
socket descriptors.

Socket Programming Cliches
Network Byte Ordering
– Network is big-endian, host may be big- or little-endian
– Functions work on 16-bit (short) and 32-bit (long) values
– htons() / htonl() : convert host byte order to network byte order
– ntohs() / ntohl(): convert network byte order to host byte order
– Use these to convert network addresses, ports, …

Structure Casts
– You will see a lot of ‘structure casts’

 struct sockaddr_in serveraddr;
 /* fill in serveraddr with an address */
 …
 /* Connect takes (struct sockaddr *) as its second argument */
 connect(clientfd, (struct sockaddr *) &serveraddr,

sizeof(serveraddr));
 …

Socket Programming Help

man is your friend (aka RTFM)
– man accept
– man select
– Etc.

The manual page will tell you:
– What #include<> directives you need at the top of your

source code
– The type of each argument
– The possible return values
– The possible errors (in errno)

● The basic ideas:
– a socket is like a file:

● you can read/write to/from the network just like you would a file
– For connection-oriented communication (e.g. TCP)

● servers (passive open) do listen and accept operations
● clients (active open) do connect operations
● both sides can then do read and/or write (or send and recv)
● then each side must close
● There are more details, but those are the most important ideas

– Connectionless (e.g. UDP): uses sendto and recvfrom

The Socket Interface

=
file.datInternet

Sockets And Socket Libraries

● In Unix, socket procedures (e.g. listen, connect,

etc.) are system calls
– part of the operating system
– implemented in the “top half” of the kernel
– when you call the function, control moves to the

operating system, and you are using “system”
CPU time

Socket Address Structures
Generic socket address:
– For address arguments to connect, bind, and
accept.

Internet-specific socket address:
– Must cast (sockaddr_in *) to (sockaddr *) for
connect, bind, and accept.

struct sockaddr {
 unsigned short sa_family; /* protocol family */
 char sa_data[14]; /* address data. */
};

struct sockaddr_in {
 unsigned short sin_family; /* address family (always AF_INET) */
 unsigned short sin_port; /* port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

Socket address structure

Socket Structure

Socket Types

Byte ordering
● Big Endian byte-order

The byte order for the TCP/IP protocol suite
is big endian.

Byte-Order Transformation

Address Transformation

Byte-Manipulation Functions
● In network programming, we often need to

initialize a field, copy the contents of one
field to another, or compare the contents of
two fields.
– Cannot use string functions (strcpy, strcmp, …)

which assume null character termination.

Information about remote host

Procedures That Implement The Socket API

Creating and Deleting Sockets

• fd=socket(protofamily, type, protocol)
Creates a new socket. Returns a file descriptor (fd). Must
specify:

● the protocol family (e.g. TCP/IP)
● the type of service (e.g. STREAM or DGRAM)
● the protocol (e.g. TCP or UDP)

• close(fd)
Deletes socket.
For connected STREAM sockets, sends EOF to close
connection.

Procedures That Implement The Socket API

Putting Servers “on the Air”
• bind(fd)

Used by server to establish port to listen on.
When server has >1 IP addrs, can specify “ANY”, or a specific
one

• listen (fd, queuesize)

Used by connection-oriented servers only, to put server “on the
air”
Queuesize parameter: how many pending connections can be
waiting

● afd = accept (lfd, caddress, caddresslen)
Used by connection-oriented servers to accept one new
connection

● There must already be a listening socket (lfd)
● Returns afd, a new socket for the new connection, and
● The address of the caller (e.g. for security, log keeping. etc.)

Procedures That Implement The Socket API

How Clients Communicate with Servers
• connect (fd, saddress, saddreslen)

Used by connection-oriented clients to connect
to server

● There must already be a socket bound to a connection-
oriented service on the fd

● There must already be a listening socket on the server
● You pass in the address (IP address, and port number)

of the server.

Used by connectionless clients to specify a
“default send to address”

● Subsequent “writes” or “sends” don’t have to specify a
destination address

● BUT, there really ISN’T any connection established…
this is a bad choice of names!

Procedures That Implement The Socket API

How Clients Communicate with Servers
• send (fd, data, length, flags)
sendto (fd, data, length, flags, destaddress, addresslen)
sendmsg (fd, msgstruct, flags)
write (fd, data, length)
Used to send data.

● send requires a connection (or for UDP, default send
address) be already established

● sendto used when we need to specify the dest address (for
UDP only)

● sendmsg is an alternative version of sendto that uses a struct
to pass parameters

● write is the “normal” write function; can be used with both files
and sockets

• recv (...) recvfrom (...) recvmsg (...) read
(...)
Used to receive data… parameters are similar, but in reverse

(destination => source, etc…)

Connectionless
Service (UDP)
Server

Client

1. Create transport
endpoint: socket()

2. Assign transport
endpoint an

address: bind()

3. Wait for a packet
to arrive: recvfrom()

4. Formulate reply (if any)
and send: sendto()

5. Release transport
endpoint: close()

1. Create transport
endpoint: socket()

2. Assign transport
endpoint an

address (optional):
 bind()

3. Determine address
of server

4. Formulate message
and send: sendto()

6. Release transport
endpoint: close()

5. Wait for packet
to arrive: recvfrom()

Server
Client1. Create transport

endpoint for incoming
connection request: socket()

2. Assign transport
endpoint an
address: bind()

5. Wait for a packet
to arrive: recv ()

6. Formulate reply (if any)
and send: send()

7. Release transport
endpoint: close()

1. Create transport
endpoint: socket()

2. Assign transport
endpoint an
address (optional):
 bind()

3. Determine address
of server

4. Formulate message
and send: send ()

6. Release transport
endpoint: close()

5. Wait for packet
to arrive: recv()

3. Announce willing
to accept connections:
listen()

4. Block and Wait
for incoming request:
accept()

4. Connect to server:
connect()

C
O

N
N

E
C

T
IO

N
-O

R
IE

N
T

E
D

 S
E

R
V

IC
E

Lab this week

● Grab the simple client-server demo in C from my github
● If you run the server code on one local terminal and the client code on another, it

transmits a Hello World message and quits
● Lab tasks

– Make the server persistent, such that it doesn’t quit after one message transfer
– Redesign the server such that it accepts inputs from the client, transforms them into lowercase

and transmits back
– Redesign the server and client such that

– The client requests an HTML file from the server that is displaying some headers and a simple table
– The server reads the file stored in the server’s computer and transmits it as text to the client
– Write a shell script that will display the corresponding webpage on the client’s computer

– Create a version of the server that will allow connectionless (UDP) transfer
● Client code will have to change too
● See if you can get the HTML transfer to work for this UDP connection also

– Create a version of the TCP server that will permit concurrent connections from multiple clients

	Slide 1
	A Client-Server Exchange
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Internet Connections (TCP/IP)
	Network Applications
	Clients
	Using Ports to Identify Services
	Servers
	Overview of the Sockets Interface
	Sockets
	Socket Programming Cliches
	Socket Programming Help
	Slide 19
	Sockets And Socket Libraries
	Socket Address Structures
	Socket address structure
	Socket Structure
	Socket Types
	Byte ordering
	Byte-Order Transformation
	Address Transformation
	Byte-Manipulation Functions
	Information about remote host
	Procedures That Implement The Socket API
	Slide 31
	Slide 32
	Slide 33
	Connectionless Service (UDP)
	Slide 35
	Slide 36

