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SYNOPSIS

Algebraic complexity is about studying polynomials from a computational viewpoint. In

this thesis, we report progress on the following three problems in algebraic complexity. A

common theme in our study is the use of formal power series concepts.

Testing Algebraic Dependence Over Finite Fields: Algebraic dependence is a

natural generalization of linear dependence. Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are

algebraically dependent if they satisfy a nonzero polynomial A(f1, . . . , fm) = 0. If there is

no such nonzero polynomial A, the given polynomials are called algebraically independent.

A fundamental question is testing algebraic dependence of a given set of polynomials. In

computer science, it has applications in derandomization of polynomial identity testing

and explicit constructions of randomness extractors from polynomial sources.

Over the fields of characteristic zero or large, a classical criterion due to Jacobi (using

the Jacobian matrix of the given polynomials) gives a randomized polynomial time algo-

rithm to test algebraic dependence of polynomials. Over fields of small characteristic, the

Jacobian criterion fails. A natural question is whether algebraic dependence can be tested

in randomized polynomial time over small characteristic as well. In this thesis, we present

two results that make progress on this question.

First, we give a natural generalization of the classical Jacobian criterion that works over

all fields. Our proof exploits the Taylor expansion of a polynomial and can be interpreted

using Hasse derivatives. Our criterion is efficient (randomized polynomial time) only under

a given promise that inseparability degree, a relevant parameter here, is bounded by a small

constant. Our criterion is stated using the concept of functional dependence, that asks, for
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a given set of polynomials, whether one of the polynomials (after applying a random shift

on the variables) can be approximated by a polynomial function of the other polynomials

(shifted) in the set. This notion of functional dependence can be related to formal power

series.

Using a different approach, we show that dependence testing over finite fields is in AM

∩ coAM. Prior to our work, it was known to be in NP#P, a class just below PSPACE and

much higher than all of the polynomial hierarchy. Our result rules out the plausibility of

NP-hardness of testing algebraic dependence over finite fields (unless polynomial hierar-

chy collapses) and brings us closer to the goal of finding a randomized polynomial time

algorithm for the problem. Our proof uses elementary ideas of algebraic geometry and

Goldwasser-Sipser set lowerbound protocol.

Towards Factor Conjecture: Multivariate polynomial factorization is a fundamental

problem in computational algebra. A classical result of Kaltofen shows that factors of a

polynomial given by size s arithmetic circuit of degree d can be computed by circuits of

size bounded by poly(s, d). The factor conjecture states that any factor g of a polynomial

f can be computed by circuits of size poly(s, dg), where dg is the degree of the factor g. In

this thesis, we confirm the conjecture in the case when the degree of the squarefree part

of the given polynomial is low.

A PSPACE Construction of Hitting Set for VP: Algebraic complexity class VP

contains the families of low degree polynomials computed by small-sized circuits. The

closure of the class VP, denoted as VP, contains families of low degree polynomials in-

finitesimally approximated by small-sized circuits. Over the field of reals, it contains the

limits (in metric topology) of the polynomials in VP.

A hitting set H for a class of polynomials C is a set of points, such that any nonzero

polynomial in the class C evaluates to a nonzero value in at least one point in H. The

existence of small-sized hitting sets for VP is known. The problem of giving an explicit

construction of a hitting set for the class of VP is a challenging problem in complexity

theory. It is expected that this problem can be solved in polynomial time, but the currently
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known upper bound is PSPACE. In this thesis, we study the hitting set construction

problem for VP.

The question of explicit construction of a hitting set for VP has connections with

fundamental problems in computational algebraic geometry. It can be directly solved in

EXPSPACE and it was asked whether the complexity upper bound can be improved.

Recently it was shown to be in PSPACE over characteristic zero fields using analytic

concepts. We give a different approach of construction that works over arbitrary fields.

We reduce the problem of constructing a hitting set for VP to another problem: Ap-

proximate polynomials satisfiability. The well-known problem of polynomial system satis-

fiability checks for the existence of a common solution (over the closure of the underlying

field) of a given system of polynomial equations. Approximate polynomials satisfiability

asks for the existence of an infinite sequence of points such that all the polynomials in

the given system, evaluated at that sequence, approach zero in the limit. Using classical

algebraic geometry, this problem is equivalent to testing if the point of origin is in the

Zariski closure of the image of the given polynomials. Testing if the origin is in closure

of the image is equivalent to testing whether all the annihilating polynomials of the given

polynomials have constant term zero. The latter problem can be solved in PSPACE over

any field, thereby using our reduction, a hitting set for VP can be constructed in PSPACE.
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Chapter 1

Introduction

Polynomials are important in mathematics and computation. Diverse computational prob-

lems can be expressed via polynomials. In algebraic complexity theory, we analyze the

complexity of computing a polynomial p ∈ F[x1, . . . , xn]. Here complexity is measured by

the minimum number of additions and multiplications needed to compute the polynomial,

starting from the variables x1, . . . , xn and freely using any constant from the underlying

field F. This notion of complexity is formalized via the model of arithmetic circuits.

An arithmetic circuit is a directed acyclic graph consisting of addition (+) and mul-

tiplication (×) gates as nodes. It takes variables x1, . . . , xn and field constants as input

nodes (leaves), and outputs a polynomial f(x1, . . . , xn) in the root node. The size of a

circuit is defined to be the total number of edges in it. Arithmetic circuit is a succinct

description of multivariate polynomials, as polynomials having many monomials (or of

high degree) can sometimes be represented by small circuits. For example, the polynomial∏n
i=1(1 + xi) has 2n many monomials, but it has a circuit of size O(n).

The algebraic complexity class VP contains families of n-variate polynomials of low

(nO(1)) degree computed by small (nO(1)) sized circuits. For example, the family of poly-

nomials defined by the determinant of the symbolic matrix X = (xij)1≤i,j≤n is in VP

[SY10]. For more on arithmetic circuits and various algebraic complexity classes, see the

surveys [Mah14, SY10].

To deal with some problems on polynomials, we may need the more general object
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known as formal power series. Formal power series can be informally described as a

polynomial with infinitely many terms. For example,
∑

i≥0 x
i is a formal power series.

Here x is a formal variable, we do not substitute it by any number.

To show the applicability of formal power series in algebraic complexity, we discuss the

following well-known example. Suppose, in an arithmetic circuit, we allow division gates.

A natural question is whether division gates add more power to the model of arithmetic

circuits. Strassen [Str73] showed that if a polynomial p(x1, . . . , xn) of degree d can be

computed by an arithmetic circuit (with division gates) of size s, we can compute the

same polynomial by an arithmetic circuit of size poly(n, s, d) that uses only addition and

multiplication gates. Strassen’s proof goes via computing a power series truncated up to

some degree. See Lemma 2.8.3 for the details.

In the problems studied in this thesis, power series techniques turn out to be useful.

The first problem is about testing whether there exists a nontrivial dependence, captured

by a nonzero polynomial, between some polynomials over a finite field. If we ask a more

general question, whether there exists a nontrivial relationship, captured by a formal power

series, it gives a better understanding of the former question. The second problem we study

is about multivariate polynomial factorization. Here also, if we extend the context to the

formal power series ring and compute factors there, we get insights into the arithmetic

circuit complexity of the factors. Finally, in the problem of hitting set construction for

the closure of VP, formal power series concepts are used again.

Now, we discuss the problem of testing algebraic dependence of polynomials over finite

fields. For a quick introduction to finite fields, see Section 2.2.2 in Chapter 2.

1.1 Algebraic Dependence of Polynomials

Algebraic dependence is a fundamental concept in algebra that captures the phenomena

when a tuple of numbers or polynomials over a field satisfy a nonzero polynomial equation.

Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are called algebraically dependent over field F if

there exists a nonzero polynomial A(y1, . . . , ym) ∈ F[y1, . . . , ym] such that A(f1, . . . , fm) =
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0 and such a polynomial A is called an annihilating polynomial/annihilator of f1, . . . , fm.

If no such nonzero polynomial exists, then the polynomials are called algebraically inde-

pendent over F.

For example, f1 = (x + y) and f2 = (x + y)2 are algebraically dependent over any

field, and y2
1 − y2 is an annihilating polynomial of them. For any prime number p, the

polynomials x+ y and xp + yp are algebraically dependent over the fields of characteristic

p (as (x + y)p = xp + yp in characteristic p). But they are algebraically independent

over fields of characteristic zero (for example, Q) and over fields of positive characteristic

` 6= p. Polynomials x1, . . . , xn are examples of algebraically independent polynomials over

any field.

Algebraic dependence is a natural generalization of linear dependence. Linear depen-

dence implies algebraic dependence. Both algebraic dependence and linear dependence

satisfy the matroid properties [Oxl06]. For example, if a set of polynomials is algebraically

(linearly) independent, then any subset of them is algebraically (linearly) independent.

Steinitz exchange lemma, the other key axiom of matroids, holds for both.

A transcendence base of a given set of polynomials is a maximal subset of algebraically

independent polynomials. It follows from the matroid properties, that any two transcen-

dence bases have the same cardinality. The transcendence degree/algebraic rank (trdeg or

algRank) of a set of polynomials is defined as the cardinality of a transcendence base of

the set. Any n+ 1 vectors from Fn are always linearly dependent. Analogously, any n+ 1

polynomials from F[x1, . . . , xn] are always algebraically dependent. So the transcendence

degree of a set of n-variate polynomials is at most n.

We are interested in the following two computational problems related to algebraic

dependence.

Problem 1 (Algebraic Dependence Testing (AD(F))). Given polynomials f1, . . . , fm ∈

F[x1, . . . , xn], test if they are algebraically dependent or not.

Problem 2 (Computing an Annihilator). If the polynomials f1, . . . , fm ∈ F[x1, . . . , xn]

are algebraically dependent, compute an annihilating polynomial of them.
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A direct approach of testing algebraic dependence of f1, . . . , fm goes via testing linear

dependence of polynomials {fe11 fe22 ...femm } for all possible nonnegative integer exponents

e1, . . . , em. If we know an upper bound on ei’s, this would give an algorithm to test for

dependence and compute an annihilator if it exists. Perron [Per27, P lo05] gave an upper

bound on the degree of an minimal annihilating polynomial, proving that it is bounded by

the product of the degrees of the input polynomials. Note that this bound is exponential

even for the case of n quadratic polynomials and there are examples known for which this

bound is tight [Kay09].

Perron’s bound reduces the problem of computing the annihilating polynomial to solv-

ing a system of exponentially many linear equations, where the coefficients of the annihi-

lator are regarded as the unknown variables of the linear system. Solving a linear system

is known to be in logspace-uniform NC [Csa75, BvzGH82, Mul87], which is contained in

polylogarithmic space. Thus, solving a system of exponentially many linear equations is in

PSPACE. So, algebraic independence testing (and computing an annihilator if it exists)

over any field, can be solved in PSPACE.

Is there an efficient algorithm to compute an annihilator (represented by an arith-

metic circuit)? Kayal [Kay09] proved the problem of deciding if the constant term of a

minimal annihilating polynomial is zero is NP-hard. [Kay09] also showed that arithmetic

circuit size of an annihilating polynomial may not be polynomial (wrt the input size) in

general, otherwise the polynomial hierarchy collapses. Thus, computation of annihilating

polynomial in general seems to be hard.

Surprisingly the decision question AD(F) is much more efficient over zero or large

characteristic using a classical result, known as the Jacobian criterion [Jac41, BMS13]

for testing algebraic dependence. The Jacobian criterion reduces algebraic dependence

testing of f1, . . . , fm over F to linear dependence testing of the differentials df1, . . . , dfm

over F(x1, . . . , xn), where dfi is the vector
(
∂fi
∂x1

, . . . , ∂fi∂xn

)
. The Jacobian matrix J of

f1, . . . , fm has dfi in the i-th row.

The Jacobian criterion states that if the characteristic of the field is zero, or large

enough (greater than the product of degrees of the given polynomials), then the algebraic
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rank equals the linear rank (over F(x1, . . . , xn)) of the Jacobian matrix of the polynomials.

This gives a simple randomized polynomial time algorithm for checking algebraic indepen-

dence, as we can use random evaluations to compute the rank of the Jacobian matrix. It

can be proved that the rank of the Jacobian matrix evaluated at a random point equals

the rank of the Jacobian matrix with high probability using the Schwartz-Zippel-DeMillo-

Lipton lemma [Sch80, DL78, Zip79].

If the polynomials are algebraically dependent, then their Jacobian matrix does not

have full rank. But the converse fails if the characteristic is small compared to the product

of the degrees of input polynomials. For example, xp is algebraically independent of Fp,

yet its derivative vanishes. Similarly, the determinant of the Jacobian of xp, y is zero,

though xp, y are independent. Note that if two algebraically independent polynomials over

characteristic p have zero Jacobian determinant, then it does not imply that one or both of

them has an exponent p. Consider, for example, {xp−1y, xyp−1} over Fp for prime p > 2.

There are infinitely many sets of algebraically independent polynomials, for which the

Jacobian criterion fails. These examples come from inseparable algebraic field extensions.

We give a quick informal introduction to the phenomena of inseparability here, as we need

this concept to describe our results.

As mentioned before, any n + 1 polynomials xi, f1, . . . , fn ∈ F[x1, . . . , xn] are always

algebraically dependent. Let Ai(y0, y1, . . . , yn) be an annihilating polynomial of minimal

degree such that Ai(xi, f1, . . . , fn) = 0. If the polynomials f1, . . . , fn are algebraically inde-

pendent, y0 must occur in any annihilator Ai(y0, y1, . . . , yn) of xi, f1, . . . , fn. Algebraically

independent polynomials f1, . . . , fn, where y0 always occur with exponent pk for some

k ≥ 1 in the annihilator of xi, f1, . . . , fn are known as inseparable examples. Over fields of

characteristic p, the Jacobian criterion fails for such polynomials.

If pk is the highest exponent of p that divides every exponent of y0 in Ai(y0, y1, . . . , yn),

we define the inseparability degree measure of f1, . . . , fn wrt to xi to be pk. The overall

inseparability degree of f1, . . . , fn is the maximum of the inseparability degrees wrt xi

for i ∈ [n]. For more discussions on inseparability degree, see Section 2.4. Now we give

a few examples to explain the definition. Let f1 = xp1, f2 = x2. A minimal annihilator
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of x1, f1, f2 is xp1 − f and in this annihilator x1 has exponent p. Inseparability degree of

{f1, f2} is p here. Inseparability degree of f1 = xp1, f2 = xp
2

2 is p2. When the inseparability

degree is 1, it is called a separable case, where the Jacobian criterion always works. For

example, the inseparability degree of {x1, x2} is p0 = 1.

For a fundamental problem like algebraic dependence testing, we would like to find an

efficient (randomized poly-time) algorithm over small characteristic as well. Several papers

[DGW09, Kay09, BMS13] posed this as an open question. [MSS14] gave a criterion, called

Witt-Jacobian, that slightly improved the complexity of independence testing problem,

over positive characteristic, from PSPACE to NP#P.

Before we discuss our results, we mention a few applications of algebraic dependence

in computer science and other areas. Algebraic dependence is a fundamental concept in

mathematics that appears in field theory, commutative algebra, algebraic geometry, invari-

ant theory, theory of algebraic matroids. See [Ros15] for various applications of algebraic

matroids in algebraic statistics and other areas. [L’v84] used annihilating polynomials in

the analysis of program invariants of arithmetic circuits. To prove lower bounds on the

formula size of determinant, [Kal85] used transcendence degree of polynomials as a tool.

[DGW09, Dvi09] constructed explicit deterministic randomness extractors for sources

which are polynomial maps over finite fields. They used algebraic independence (and rank

of the Jacobian) as a characterization of entropy of low degree polynomials. [DGRV11]

gives a cryptography application. [BMS13, ASSS16] used the Jacobian criterion for de-

signing deterministic polynomial time hitting sets for some special cases of the polynomial

identity testing problem (PIT) and proving circuit lower bounds for restricted low depth

circuits. Thus, an efficient criterion similar to Jacobian (in small characteristic) would

generalize the PIT and lower bound results in [ASSS16], and explicit constructions of

algebraic extractors in [DGW09] to arbitrary fields.

1.1.1 Our results on algebraic dependence over finite fields

We have two main results on algebraic dependence testing over finite fields. The first one

is a generalization of the Jacobian criterion to arbitrary fields. This criterion is efficient
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only in a special case. Our second result improves the complexity of algebraic dependence

testing over finite fields, putting it in AM ∩ coAM.

Algebraic Dependence and Functional Dependence.

We mentioned earlier that transcendence basis is analogous to basis in linear algebra,

but here is a difference between them. If polynomials f1, . . . , fm are linearly dependent,

for all i, each of fi can be expressed as a linear combination of a subset of the polyno-

mials from {f1, . . . , fm} (forming the basis). The analogous property does not hold for

algebraic dependence. If f, g1, . . . , gn are algebraically dependent, f may not be a polyno-

mial function in g1, . . . , gn, even if g1, . . . , gn is a transcendence basis. For example, x, x2

are algebraically dependent and {x2} is a transcendence basis for {x, x2}. But x is not a

polynomial function in x2, as a polynomial in x2 cannot have a linear term like x.

Nevertheless, Kumar and Saraf [KS17] showed an analog, coming up with the notion

of functional dependence. They showed that over fields of zero, or large characteristic, if

polynomials f, g1, . . . , gn are algebraically dependent and g1, . . . , gn form a transcendence

basis, then one can always approximate the polynomial f (shifted by a random point)

as a polynomial function in the correspondingly shifted polynomials g1, . . . , gn. The ap-

proximation is in the sense that we ignore the monomials with degree greater than the

precision we want (in this case, the degree of f). For example, we can approximate x+ a

as a polynomial in (x+ a)2 by truncating up to degree one: x+ a = (x+a)2

2a + a
2 mod x2.

Kumar and Saraf [KS17] asked if this structural property of functional dependence

holds true for small characteristic. They also left open the question whether the converse

of functional dependence is true, i.e. whether functional dependence implies algebraic

dependence? We answer these questions, for arbitrary characteristic, in the affirmative.

Before stating the main theorems, we need the following notation. Let f = {f1, . . .,

fm} ⊂ F[x1, . . ., xn] be a set of polynomials, where F is any field, and t ∈ N. For

a polynomial h ∈ F[x], h≤d extracts out the degree ≤ d part of h. Note that by

h(g1(x), . . . , gn(x))≤d we mean: first compute the composition h(g(x)) and then extract

out the part with degree ≤ d.

First, we show algebraic dependence implies functional dependence.
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Theorem (Algebraic Dependence to Functional Dependence, Theorem 3.2.3). If transcen-

dence degree of {f1, . . . , fm} is k, then there exist algebraically independent {g1, . . . , gk} ⊂

f , such that for random a ∈ Fn, there are polynomials hi ∈ F[Y1, . . . , Yk] satisfying,

∀i ∈ [m], fi(x + a)≤t = hi(g1(x + a), . . . , gk(x + a))≤t.

We also show the following converse.

Theorem (Algebraic independence to functional independence, Theorem 3.2.7). Let f ⊂

Fq[x] be algebraically independent polynomials (wlog n-variate n polynomials) with insep-

arable degree pi. Then, for all t ≥ pi, for random a ∈ Fnq , fn(x + a)≤t cannot be written

as h(f1(x+ a), . . ., fn−1(x + a))≤t, for any h ∈ Fq[Y1, . . . , Yn−1].

Generalization of the Jacobian criterion.

Our theorems (Theorem 3.2.7 and Theorem 3.2.3) can be seen as a natural generaliza-

tion of the Jacobian criterion. In the Jacobian criterion, we take t to be 1. Let F be any field

of characteristic zero. Let f1, f2, . . . , fn be a set of algebraically independent polynomials.

Then, for a random a, there is no polynomial h(y1, . . . , yn−1) such that fn(x + a)≤1 =

h(f1(x+ a), . . . , fn−1(x+ a))≤1. Conversely, if fn depends on f1, f2, . . . , fn−1, then for a

random a, there is a polynomial h such that fn(x+a)≤1 = h(f1(x+a), . . . , fn−1(x+a))≤1.

The above two statements are direct consequences of the Jacobian criterion.

Algebraic independence testing using our criterion.

Suppose we are given polynomials (of total circuit size s) f1, . . . , fn ∈ Fq[x1, . . . , xn] and

a positive integer k, that is a power of p, such that either of the following two cases holds:

(1) f1, . . . , fn are algebraically dependent or (2) f1, . . . , fn are algebraically independent.

Moreover, for ∀i ∈ [n], the inseparable degree with respect to xi, is bounded by k.

Using Theorem 3.2.7 and Theorem 3.2.7, we give an algorithm to separate the two

cases in randomized poly(s,
(
k+n
n

)
)-time. This is efficient if k is a small constant. See

Section 3.3 for the details.

Interpretation using Hasse Derivative and Taylor shift. A different interpretation

of our criterion can be given via Hasse derivatives (Jacobian criterion uses only first order
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partial derivatives, whereas our criterion uses higher order Hasse derivatives). Here we

give an overview of that interpretation.

To get a Jacobian like criterion in the inseparable case, we want an operator that has

nice properties analogous to partial derivatives, but does not map xp to zero. This leads to

Hasse derivatives, a variant of usual higher order derivatives, that were originally defined

by Hasse and Schmidt [HS37], and independently by Teichmüller [Tei36]. The k-th order

Hasse derivative wrt a variable x is simply the k-th order usual derivative (wrt the variable

x) divided by k!. Note that this is well defined even if k is divisible by characteristic of

the field p. The p-th order Hasse derivative of xp wrt x is 1.

In general, Hasse derivatives can be defined via multivariate Taylor expansion of a

polynomial (around a generic point z = (z1, . . . , zn)). The coefficients of monomials (in

x = (x1, . . . , xn)) in the shifted polynomial f(x1 + z1, . . . , xn + zn) are Hasse derivatives

(see the Definition 2.6.1). To generalize the Jacobian criterion, we work with the following

generalization of differential operator Df . We use the operator Hk, on Fp[x], for all k ≥ 1.

Hkf(x) contains all the terms, of the polynomial f(x + z) − f(x) ∈ Fp(x)[z], that are of

degree (wrt z) ≤ k. Note that H1 operator is same as differential operator D, which is

Df = (∂f/∂x1)z1 + · · ·+ (∂f/∂xn)zn.

Now, we want to relate the algebraic independence of f := {f1, . . . , fn} with the Fp(x)-

linear independence of Hkf := {Hkf1, . . . ,Hkfn} for a large enough k (≥ inseparability

degree). We can not directly reduce to linear independence of Hkf := {Hkf1, . . . ,Hkfn},

we have to go modulo a subspace generated by t-wise products of the set {Hkf1, . . . ,Hkfn}

for all 2 ≤ t ≥ k (additionally we have to go modulo 〈z〉k+1, essentially truncating the

polynomials up to degree k). For the precise statement, see Section 3.4 in Chapter 3.

Algebraic dependence over finite fields in AM ∩ coAM.

Our generalization of the Jacobian criterion does not improve the complexity status

of dependence testing over small characteristic fields. Can it happen that the problem is

NP-hard over small characteristic? In [GSS18], we improve the complexity of the problem,

putting it in AM ∩ coAM. This result rules out the possibility of the problem being NP-

hard or coNP hard (unless polynomial hierarchy collapses).
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In Chapter 4, we prove the theorem.

Theorem (Theorem 4.2.1). Algebraic dependence testing of polynomials in Fq[x] is in

AM ∩ coAM.

Arthur-Merlin class (AM) is a randomized generalization of the class NP [AB09]. AM

∩ coAM is the class of decision problems for which both YES and NO answers can be

verified by an AM protocol. It can be thought of as a randomized version of NP ∩ coNP.

If such a problem is NP-hard or coNP-hard (even under random reductions) then the

polynomial hierarchy collapses to its second-level [Sch88]. See Section 2.10.1 for more

discussions on the AM class.

We use a standard AM protocol, the Goldwasser-Sipser set lower bound method, to

separate the cases when a set S (whose membership can be tested in NP) has small or

large cardinality. The set S in our context is the image of the given polynomial map (for

the AM protocol) and preimage set corresponding to a random point in the image (for the

co-AM) protocol. See Chapter 4 for the details.

1.2 Factor Conjecture

A basic theorem in algebra states that every polynomial f ∈ F[x1, . . . , xn] can be uniquely

decomposed as a product of finitely many irreducible polynomials over F. The standard

proof of this theorem does not solve the algorithmic problem of polynomial factorization,

which is: Given a polynomial, compute all its irreducible factors (with the corresponding

multiplicities).

Kaltofen [Kal82] gave a polynomial-time algorithm to compute factors of bivariate

polynomials using Hensel lifting (and univariate polynomial factoring). The algorithm

of Kaltofen generalizes to polynomials with number of variables n ≥ 2 and is efficient

if the input polynomial is given in the dense representation (where all the coefficients

corresponding to every monomial in n variables of degree ≤ d are given) and the output

factors are also in dense representation. Dense representation is not a space efficient way to

represent multivariate polynomials. A better way is to use sparse representation (where
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the polynomial is given as a sum of monomials with nonzero coefficients) or the more

succinct representation of arithmetic circuits. The size of a polynomial in a particular

representation corresponds to the size needed to encode it. For the sparse representation,

size is the sparsity of the polynomial (the number of monomials with nonzero coefficients

in it) and for arithmetic circuits, size is the number of edges in the circuit. There are

various other representations, for example, arithmetic formula, which is a special kind of

arithmetic circuit having the structure of a directed tree.

Given a representation of multivariate polynomials, we are interested in the following

two questions.

1. Closure question/ Factor size upper bound: Given a polynomial (in n variables) of

size s and degree d in some representation, give an upper bound of the size of the all the

factors in the same representation.

2. Algorithmic question: Given a polynomial of size s in some representation, output

(in the same representation) all the irreducible factors (with the corresponding multiplic-

ities).

Note that the first question is nontrivial for the sparse representation. The polynomial

xd − 1 has sparsity 2, but its factor 1 + x + . . . + xd−1 has sparsity d. The polynomial∏n
i=1(xdi − 1) has sparsity 2n, but its factor

∏n
i=1(1 + xi + x2

i + ... + xd−1
i ) has sparsity

dn = (2n)log d. Thus, the sparsity of the factors may not be polynomially upper bounded

by the sparsity of the polynomial.

However, a remarkable result of Kaltofen [Kal89] shows that if a polynomial is given

by an arithmetic circuit of size s, the factors have circuits of size polynomially bounded

by s and the total degree of the input polynomial. Furthermore, Kaltofen in [Kal89] gave

a randomized polynomial time algorithm to output the irreducible factors representation

by circuits. This result is often stated as VP is (uniformly) closed under factors i.e. if a

polynomial family {fn(x1, . . . , xn)}n is in VP, then a polynomial family {gn(x1, . . . , xn)}n

is also in VP, where gn is an arbitrary factor of fn.

Closure under factoring has important applications in algebraic complexity, especially

in hardness versus randomness tradeoff results [KI03, AV08, DSY09, AGS18, KST19]. It
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is natural to ask whether classes other than VP are also closed under factoring. In VP,

the polynomials are of low degree. In general, the degree of a polynomial computed by an

arithmetic circuit can be exponential in the size of the circuit. For example, the polynomial

x2s has a size s circuit, obtained by repeated squaring. What can be said about complexity

of factors of polynomials computed by arithmetic circuits of high (exponential in size)

degree? Note that Kaltofen’s result [Kal89] gives an upper bound that is polynomially

bounded in size, number of variables and the degree of the polynomial to be factored.

Can we give a better bound, that is polynomially bounded only in the circuit size of

the polynomial to be factored? This question was answered in negative by Lipton and

Stockmeyer [LS78]. [LS78] proved there exist factors of x2n−1 that requires size ≥ Ω(2n/2
√
n

).

Recall that x2n − 1 =
∏2n

j=1(x − ζj), where ζ denotes 2n-th root of unity. x2n − 1 has a

circuit of size O(n), but [LS78] showed that a random factor (of exponentially high degree)∏
i∈S(x− ζi) where S ⊂ [2n], require an exponentially large circuit.

Now we shift our focus to the low degree (polynomially bounded wrt input size) factors.

In the case of univariate polynomials, a factor of degree d has a size O(d) arithmetic circuit.

Can we say that the low degree factors of high degree circuits (of small size) computing

multivariate polynomials have small size? This question was asked by Kaltofen [Kal87].

Bürgisser [Bür13, Conjecture 8.3] posed the above question as factor conjecture.

Suppose g is a factor of a polynomial f ∈ F[x1, . . . , xn]. If f has an arithmetic

circuit of size s, g has an arithmetic circuit of size poly(s, n, dg), where dg is

the total degree of g.

Kaltofen [Kal87] proved that the factor conjecture is true when f is of a very special

form: f = ge for some g ∈ F[x1, . . . , xn]. Kaltofen [Kal87] also showed that if f = geh

has an arithmetic circuit of size s, where g and h are coprime, then g has an arithmetic

circuit of size poly(s, n, dg, e), where dg is the total degree of g. Thus, the factors with

low multiplicity, have small circuits. In an interesting result [Bür04], Bürgisser proved

that approximative complexity of the factors is polynomially bounded in the degree of the

factor and size of the circuit. See Section 1.3 and Section 2.8.1, for an introduction to
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approximative algebraic complexity.

1.2.1 Our result on factor conjecture

If polynomial f can be completely factorized as
∏m
i=1 f

ei
i , where fi are irreducible poly-

nomials,
∏m
i=1 fi is called the squarefree part/radical of the polynomial. Note that the

degree of the squarefree part can be exponentially smaller than the original polynomial.

We give further evidence towards factor conjecture by proving the following theorem that

relates the circuit complexity of the squarefree part of a polynomial and the polynomial

itself.

In Chapter 5, we prove the following result. The proof of this given in Chapter 5 is

different from the one in [DSS18, Theorem 1].

Theorem (Theorem 5.3.1). Every factor of a polynomial computed by size s circuit has

circuits of size polynomially bounded by s and degree of the squarefree part of the polyno-

mial.

1.3 Explicit Hitting Set Construction for Closure of VP

A set of points H is called a hitting set for a set of polynomials C if any nonzero polynomial

in C evaluates to a nonzero value in at least one point in H. For example, any set of d+ 1

distinct numbers is a hitting set for the set containing all univariate polynomials of degree

≤ d.

The notion of hitting set is important in the problem of black-box Polynomial Identity

Testing (PIT): Given an arithmetic circuit of size s computing a polynomial P (x1, . . . , xn)

of degree at most d, test if it computes the zero polynomial. In black-box PIT, the

algorithm is allowed to use the circuit only to evaluate it at some points. In white-box

PIT, the algorithm is allowed to access the internal structure of the circuit given. The

famous Schwartz-Zippel-DeMillo-Lipton lemma [Sch80, Zip79, DL78] gives a randomized

polynomial time black-box algorithm for PIT. A challenging question in complexity theory

is derandomization of PIT, i. e. giving a deterministic polynomial time algorithm.
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It can be proved that the black-box PIT for a class of polynomials C is equivalent

to the problem of constructing a hitting set for C [For14]. It was shown by [HS80] that

poly(n, s) sized hitting sets exist for the class of n-variate polynomials computed by size

s arithmetic circuits over arbitrary fields. [HS80] proved that a random set of sufficiently

large cardinality is a hitting set for the above class with high probability. The question of

interest now is to give a deterministic polynomial time construction of a hitting set. We

formalize the question below.

Problem 3 (Explicit construction of small hitting set). Given inputs n, s, d (in unary),

compute a set of points of size poly(n, s) and bit complexity bounded by poly(n, s, d), that is

guaranteed to be a hitting set for the class of size s circuits computing n-variate polynomials

of degree d.

We expect this problem to be in P, but currently the best unconditional upper bound

of this problem is PSPACE. Note that this does not directly follow from the trivial deran-

domization of black-box PIT in PSPACE. In the hitting set construction problem, we are

in interested in constructing an explicit hitting set of poly(n, s) size. The hitting set we

get from the direct PSPACE derandomization of PIT is of exponential size ((d+ 1)n).

The PSPACE construction for VP goes via trying all possible candidate hitting sets

and verifying if a candidate set is a hitting set for the class of size s circuits computing

n-variate polynomials of degree d. As there are infinitely many polynomials in this class

(over Q), we can not go over all the polynomials to check whether or not one of them

evaluates to zero at all the points in a given set. This verification problem can be solved

via checking the existence of a solution (over the algebraic closure of the base field) of a

system of polynomial equations. The latter problem is solved via Hilbert’s Nullstellensatz

(HN), that reduces to checking whether 1 is in the ideal generated by the given polynomials.

Using effective Nullstellensatz [Kol88], this can be tested in PSPACE by solving a system

of exponentially many linear equations in exponentially many unknowns1.

Now we come to the explicit construction of hitting set for the approximative closure of

VP. First, we discuss the notion of approximation in algebraic complexity. A polynomial

1Over the field of complex, assuming GRH, Hilbert’s Nullstellensatz is in AM [Koi96].
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p(x1, . . . , xn) over an algebraically closed field F is said to be infinitesimally approximated

by a circuit C of size s, if the circuit C computes a polynomial of the form p+ εp1 + ε2p2 +

. . . + εmpm, where the circuit C uses constants from the rational function field F(ε) (for

example, 1
ε can be used as a constant) and p1, . . . , pm ∈ F[x1, . . . , xn]. Over the field R,

if ε → 0, then the polynomial computed by the approximating circuit C tends to p (the

polynomial it approximates).

The size of an approximating circuit can be much smaller than size of any circuit

exactly computing the polynomial. In general, we can convert an approximative circuit to

a circuit exactly computing the polynomial with exponential blow-up in size [Bür04] and

it is an open question whether this exponential bound can be improved.

Given the notion of approximation, one can define approximative closure of any al-

gebraic complexity class. The closure of the class VP (denoted as VP) contains families

of low degree (nO(1)) polynomials approximated by small sized (nO(1)) circuits. Now the

hitting set construction problem for VP asks to output an explicit set of points that is

a hitting set for the class of n-variate polynomials of degree at most d, infinitesimally

approximated by size s arithmetic circuits. The above problem is interesting as natural

questions like explicit construction of the normalization map (in Noether’s Normalization

Lemma) reduce to the construction of a hitting-set of VP [Mul17].

The proof [HS80] that poly(n, s) sized hitting sets exist for the class of n-variate

polynomials of degree at most d computed by size s arithmetic circuits extends to the the

class of n-variate polynomials of degree at most d, infinitesimally approximated by size s

arithmetic circuits. So the hitting set construction algorithm iterates over all candidate

hitting sets and verifies if a candidate set is indeed a hitting set. Here also the verification

can be reduced to checking for solution of a system of polynomial equations, but the

number of equations are exponentially many. So the trivial upper bound of this problem

is EXPSPACE. Mulmuley [Mul17, Mul12] asked whether this EXPSPACE bound can

be improved. This was recently shown to be in PSPACE, over the fields of real and

complex numbers, by Forbes and Shpilka [FS18]. Their proof technique is analytic (uses

the existential theory of reals) and does not apply to finite fields. In [GSS18], we give a
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PSPACE construction over arbitrary fields.

1.3.1 Our results

In Chapter 6, we show how to reduce the hitting set construction problem to a new

problem: approximate polynomials satisfiability. See Theorem 6.2.2 in Chapter 6.

A polynomial system with no solution may have an approximate solution in the fol-

lowing sense. The system x = xy− 1 = 0 has no solution. However, it has an approximate

solution {x = ε, y = 1/ε}, in the sense that if ε→ 0, both the polynomials → 0.

This motivates the following problem, where we check whether there exist Laurent

polynomials (polynomials in ε and ε−1) that can be plugged in the given polynomials so

that the evaluated polynomials are in the ideal generated by ε (polynomials in ε with

constant term zero).

Problem (Approximate polynomials satisfiability (APS)). Given f1, . . . , fm ∈ F[x1, . . . , xn],

determine if f1 = . . . = fm = 0 have a common approximate solution, i.e., ∃x1, . . . , xn ∈

F[ε, ε−1] such that fi(x1, . . . , xn) ∈ εF[ε] for i = 1, . . . ,m.

Note that the exact version of APS is the well-known problem of polynomial system

satisfiability— Does there exist β ∈ Fn such that for all i, fi(β) = 0? Hilbert’s Nullstel-

lensatz (HN) says that there is no solution to this system iff 1 is in the ideal of f1, . . . , fn.

If the system f = {f1, . . . , fm} has an exact solution, then it is trivially in APS. But the

converse is not true. As we have seen, {x, xy−1} is in APS, but there is no exact solution

in F. Also, the instance {x, x+ 1} is neither in APS nor has an exact solution.

Using classical ideas from algebraic geometry, it can be proved that APS is equivalent

to the following problem.

Problem (AnnAtZero). Test if the constant term of every annihilator, of a set of poly-

nomials (computed by algebraic circuits) f = {f1, . . . , fm}, is zero.

AnnAtZero is known to be NP-hard [Kay09]. The NP-hardness of APS follows from its

equivalence with AnnAtZero. In [GSS18], we give a PSPACE algorithm for AnnAtZero,

thereby also solving APS in PSPACE. If the ideal of the annihilating polynomials is
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principal (generated by a single polynomial), AnnAtZero is in directly in PSPACE, as we

need to check only one annihilating polynomial’s constant term. The idea of annihilators

may not be principal always. In [GSS18], we show AnnAtZero in PSPACE by giving a

reduction to the principal ideal case. The proof of correctness of this reduction is presented

in [GSS18].

Using the PSPACE algorithm for AnnAtZero, finally we get the following result.

Theorem (Theorem 6.2.4). There is a PSPACE algorithm that (given input n, s, r in

unary & suitably large Fq) outputs a set, of points from Fnq of size poly(ns, log qr), that

hits all n-variate degree-r polynomials over Fq that can be infinitesimally approximated by

size s circuits.

1.4 Organization of the thesis

In Chapter 2, we present some basic concepts used in the thesis. In Chapter 3, we give

a generalized Jacobian criterion for testing algebraic dependence over finite fields. In

Chapter 4, we show algebraic dependence testing over finite fields is in AM ∩ coAM.

In Chapter 5, we present our results on factor conjecture. In Chapter 6, we present a

reduction of hitting set construction for polynomials with small approximative circuits to

the problem approximate polynomials satisfiability.





Part I

Algebraic Dependence

19





Chapter 2

Preliminaries

In this chapter, we will present a few basic results on algebraic dependence that we use in

this thesis. We also give some definitions and notations.

2.1 Notations

A few notations that we use in all the chapters are the following. We use the standard

notations for the field of reals (R), the field of complex numbers (C), the set of integers

(Z) and the set of natural numbers (N). A list of other notations is as followed.

• x denotes the variables x1, . . . , xn.

• xa denotes the monomial
∏n
i=1 x

ai
i .

• f(x) denotes the polynomials f1, . . . , fn ∈ F[x1, . . . , xn].

• [n] denotes the set {1, 2, . . . , n}.

• F is an arbitrary field. A := F is its algebraic closure.

• Fq is a finite field of size q and characteristic p ≥ 2.

• F/K denote a field extension, where F is the bigger field.

• F[x1, . . . , xn] is the polynomial ring in x1, . . . , xn over F.
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• F[f1, . . . , fn] is the subring of F[x1, . . . , xn] generated by f1, . . . , fn.

• F[[x1, . . . , xn]] denotes the formal power series ring over field F.

• F(x1, . . . , xn) denote the field of rational functions in n variables over the field F.

• A polynomial of degree d can be decomposed into its homogeneous components,

f(x) = f0(x) + f1(x) + · · · + fd(x), where all monomials in fi(x) has degree i. A

polynomial is called homogeneous if all its monomials have same degree.

• If f(x) is a polynomial or power series, f(x) mod 〈x〉t means f(x) up to degree (t−1)

part. If the homogeneous decomposition of f(x) is f0(x) + f1(x) + · · ·+ fd(x), then

f(x) mod 〈x〉t = f0(x) + f1(x) + · · ·+ ft−1(x).

2.2 Basics of Algebra

We use the Schwartz-Zippel-DeMillo-Lipton lemma [Sch80, Zip79, DL78] several times in

this thesis.

Lemma 2.2.1 (Schwartz-Zippel-DeMillo-Lipton lemma). Let P (x1, . . . , xn) be a nonzero

polynomial of degree d over a field F. Let S be a finite subset of F. If (α1, . . . , αn) is picked

randomly from Sn, Pr[P (α1, . . . , αn) = 0] ≤ d
|S| .

This lemma has a simple proof using induction (on number of variables). The base

case follows from the fact that a univariate polynomial of degree d has at most d roots.

For the details, see [AB09, Lemma A.36].

2.2.1 Formal Power Series

The ring of formal power series in x contains expressions of the form
∑
a∈Nn αax

a. In-

finitely many a (of different degree) with nonzero coefficients are allowed. Addition and

multiplication are defined like polynomials.

In the ring of formal power series, 1− x can be inverted (
∑

i≥0 x
i is the inverse). The

following lemma gives the criterion for invertibility.
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Lemma 2.2.2 (Existence of inverse). A power series over a ring is invertible iff its con-

stant term is invertible in that ring.

Proof. Suppose a power series f is invertible and g is its inverse. The product of the

constant terms of f and g has to be 1. Thus, the constant term of f is invertible.

Conversely, suppose the constant term of a power series f is invertible. Assume wlog

that the constant term of f is 1. Now, 1− f is constant free and
∑

i≥0(1− f)i is a formal

power series. It is easy to see that (1− (1− f))−1 =
∑

i≥0(1− f)i.

2.2.2 Basics of finite fields

Finite field Fp can be modeled as a set of numbers 0, 1, . . . , p − 1, on which addition,

subtraction, multiplication and division are defined. Addition and multiplication are done

modulo p, where p is a prime number. It can be seen that modulo a prime p, any number

from the set {1, . . . , p−1}, has a unique multiplicative inverse, thus division is well-defined.

For the formal definition and the axioms of the structure of field, see [LN94].

The characteristic of a field is the smallest positive number (if it exists) n, such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
n-times

= 0, where 1 is the multiplicative identity and 0 is the additive identity

of the field. If no such positive number exists, for example in the fields of rationals, reals

or complex numbers, the characteristic is defined to be zero. The characteristic of Fp

is p. There are infinitely many finite fields of characteristic p. For any positive integer

n, there is a field of size pn, denoted as Fq where q = pn that contains the field Fp as a

subfield. The algebraic closure of Fp is an infinite field of characteristic p. In characteristic

zero, any derivative of a nonconstant polynomial is always nonzero. But in characteristic

p, derivative of xp is zero (as pxp−1 is zero modulo p). In characteristic p, the binomial

theorem takes a simpler form: (x+ y)p = xp + yp. For more details on finite fields, see the

book [LN94].
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2.3 Basic properties of algebraic dependence

Here we give a few propositions we use in our results. For more on algebraic dependence,

see [Mit13].

For the sake of testing algebraic independence of a given set of polynomials, we can

assume without loss of generality that the number of variables is equal to the number of

polynomials, using Lemma 2.3.1 and Lemma 2.3.4. The following lemma is a well-known

basic fact in algebra.

Lemma 2.3.1 (Extra polynomials). If m > n then any f1, . . . , fm ∈ F[x1, . . . , xn] are

algebraically dependent.

This can be proved using the matroid structure of algebraic dependence. See [ER93]

for a proof that algebraic dependence satisfies the matroid properties. In linear algebra,

any two basis of a finite dimensional vector space have same cardinality. Similarly it can

be proved, any two transcendence bases of a set of polynomials have same cardinality.

Clearly {x1, . . . , xn} is a transcendence basis of F[x1, . . . , xn]. If n + 1 polynomials from

F[x1, . . . , xn] are algebraically independent, they would be part of a transcendence basis

of cardinality more than n. That would lead to contradiction.

For a different proof of this fact using a dimension counting argument, see [DGW09,

Theorem 3.3]. We just sketch the main idea of the proof. We want to show that there

exists a nonzero annihilating polynomial A(y1, . . . , yn+1) of total degree D such that

A(f1, . . . , fn+1) = 0. From the equation, A(f1, . . . , fn+1) = 0, we get a system of ho-

mogeneous linear equations (with coefficients of A as unknown variables). If this system

has a nontrivial solution, A is an annihilating polynomial. We can show that for a large

enough D, the number of unknowns (degree of freedom) exceeds the number of equations

(constraints).

If we count the number of unknowns, we get
(
D+n+1
n+1

)
. If we count the number of

equations, we get an upper bound of
(
dD+n
n

)
, where d is the maximum degree of the given

polynomials. It can be shown that if D > (n+ 1)dn,
(
D+n+1
n+1

)
>
(
dD+n
n

)
.

This argument can be used to give the following degree bound ([DGW09, Theorem
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3.3]) on an annihilating polynomial of a set of algebraically dependent polynomials.

Lemma 2.3.2 (Degree bound of annihilator). Let f1, . . . , fm ∈ F[x1, . . . , xn] be a set of

algebraically dependent polynomials of degree at most d. Then, there is an annihilating

polynomial of them of degree at most (n+ 1)dn.

The following degree bound is from [BMS13].

Lemma 2.3.3 (Degree bound [BMS13] ). Let f1, . . . , fm ∈ F[x1, . . . , xn] be a set of alge-

braically dependent polynomials of degree at most d. Assume the transcendence degree of

f1, . . . , fm is r. Then, there is an annihilator of f1, . . . , fm of degree at most dr.

The next lemma deals with the case when the variables are more than the number of

polynomials. We can use this lemma to project n variables to a random m dimensional

subspace (over a large enough field extension L of F) in our input polynomials. Thus, in

case n > m, we reduce to the case of m polynomials with m variables.

Lemma 2.3.4 (Extra variables). Let f1, . . . , fm ∈ F[x1, . . . , xn] with m < n and the

transcendence degree of the set {f1. . . . , fm} be r. Then, there exists a linear map φ :

L[x1, . . . , xn] 7→ L[y1, . . . , ym] such that trdegL{φ(f1), . . . , φ(fm)} is also r.

For a proof, see [BMS13, Lemma 16].

Can it happen that a given set of polynomials are algebraically independent over some

field but become dependent over some extension of the field? The answer is no. For testing

algebraic independence over a field, it suffices to work over the algebraic closure.

Lemma 2.3.5 (Closed field). Consider polynomials f(x) over any field F. Their tran-

scendence degree remains invariant if we go from F to any algebraic extension.

Proof. Let B = {g1, . . . , gr} be a transcendence basis of f over F. Let us move to the

algebraic closure F. Clearly, any fi ∈ f continues to be algebraically dependent on B as

the original annihilating polynomial works.

Suppose polynomials in B become algebraically dependent over F. Then, by Perron’s

bound [P lo05] we know that {ge | |e| ≤
∏
i deg(fi)} has to be F-linearly dependent. But
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these polynomials are in F[x], so they must be F-linearly dependent, implying that B is

algebraically dependent over F. This contradiction proves the lemma.

2.4 Inseparability & separating transcendence basis

For this section, let E ⊇ F be fields. The failure of the Jacobian criterion over finite

fields can be explained using the fundamental concept of inseparability from Galois theory

[Isa94].

Definition 2.4.1. An f ∈ F[x] is separable if it has no multiple roots (i.e. all the roots

are distinct) in its splitting field (where it completely factorizes into linear factors).

It is easy to prove that– For an irreducible f , separability is implied by the non-

zeroness of ∂xf . Thus, if char(F) = 0, then any irreducible polynomial is separable. It

further implies that if char(F) = p > 0 then, an irreducible f is separable if and only

if f /∈ F[xp]. We have this notion of separability in case of field extensions as well. A

field extension E/F is said to be algebraic if every element α ∈ E is root of a univariate

polynomial (called minimal polynomial) over F. An algebraic extension E/F is said to be

separable if every element α ∈ E has a minimal polynomial over F that is separable.

For the polynomials f1, . . . , fm ∈ F[x1, . . . , xn], we deal with the extension F(x1,

. . . , xn)/F(f1, . . . , fm). This extension is algebraic iff trdeg(f)= n (by Lem.2.3.1, ev-

ery xj depends on f). In which case, the extension F(x)/F(f) is separable iff the minimal

polynomial of xj over F(f) is separable, for all j ∈ [n]. The latter, clearly, is the case when

char(F) = 0. When char(F) = p > 0, the extension is inseparable if there exists j ∈ [n],

such that the minimal polynomial of xj over F(f) lives in F(f)[yp]. Thus for every xj , we

have an mj such that xp
mj

j has a separable minimal polynomial over F(f).

The inseparable degree of the extension F(x)/F(f) is defined as the minimum pm such

that the minimal polynomial of xp
m

j over F(f) is separable, for all j ∈ [n]. We also associate

this inseparable degree with the set f . Note that pm will divide the degree of the extension

F(x)/F(f), and could be as large.



27

Corollaries 3.2.10 and 3.2.11 to our main theorems relate the failure of the Jacobian

criterion to the inseparability of the extension F(x)/F(f).

The notion of perfect fields is relevant to the above discussion. A field F is called perfect

if every irreducible polynomial in F[x] is separable. If a field has characteristic zero, it is

perfect. All the finite fields and algebraically closed fields are perfect. In characteristic p,

a field is perfect iff every element of the field is a power of p. For an example of a field

which is not perfect, take Fp(x). The polynomial xp − y ∈ Fp(x)[y] is irreducible, but not

separable.

In the case when f are algebraically dependent, we would like to use a “good” tran-

scendence basis. This is captured by:

Definition 2.4.2 (Separating transcendence basis). A field extension E/F is called sep-

arably generated if there exists an algebraically independent set (i.e. transcendence basis)

S = {f1, . . . , fr} ⊂ E such that E/F(S) is algebraic and separable. S is called a separating

transcendence basis of E/F.

It is a classical result that separating transcendence bases exist for the perfect fields.

Theorem 2.4.3. Consider a finite set of polynomials f ⊂ F[x]. If F is a finite field (or,

an algebraically closed field) then there exists a separating transcendence basis, of F(f)/F,

in f .

In case F is a zero characteristic field then every transcendence basis of f is a separating

one of the extension F(f)/F.

Proof. It is clear that if F has characteristic zero then there is no possibility of insepara-

bility.

Let F be a finite (or algebraically closed) field. [Kna07, Thm.7.20] shows that the

extension F(f)/F is separably generated. Furthermore, [Kna07, Thm.7.18] shows that f

contains a subset that is a separating transcendence basis of the extension.

Examples. Extension F3(x3)/F3 has {x3} as a separating transcendence basis. Con-

sider the two transcendence bases of the extension F3(x2, x3)/F3 – {x3} and {x2}. The

latter is a separating transcendence basis, but the former is not.
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2.5 Proof of the Jacobian criterion

The central object related to the testing of algebraic independence of polynomials is the

Jacobian matrix.

Definition 2.5.1 (Jacobian). The Jacobian of polynomials f = {f1, · · · , fm} in F[x1,

· · · , xn] is the matrix Jx(f) = (∂xjfi)m×n, where ∂xjfi := ∂fi/∂xj.

We state the classical Jacobian criterion [Jac41]. For a proof, see [BMS13].

Theorem 2.5.2 (Jacobian criterion for algebraic dependence). Let f ⊂ F[x] be a finite

set of polynomials of degree at most d, and trdegF f ≤ r. If char(F) = 0, or char(F) > dr,

then trdegF f = rankF(x)Jx(f).

Here we give a proof for the case when the number of polynomials equals the number

of variables. We use the differential operator H1f = (∂f/∂x1)z1 + · · · + (∂f/∂xn)zn.

Note that H1(fg) = fH1(g) + gH1f (product rule). Let 〈H1f1 . . . ,H1fn〉F(x) denote the

F(x)-linear span of the polynomials H1f1 . . . ,H1fn.

Theorem 2.5.3 (Jacobian rephrased). Let f1, . . . , fn ∈ F[x1, . . . , xn] be algebraically inde-

pendent polynomials such that the extension F(x1, . . . , xn)/F(f1, . . . , fn) is separable. Then

H1f1, . . . ,H1fn are F(x)-linearly independent. Conversely, if f1, . . . , fn ∈ F[x1, . . . , xn] are

algebraically dependent, then H1f1, . . . ,H1fn are F(x)-linearly dependent.

Proof. Algebraic independence of f1, . . . , fn together with Lemma 2.3.1 asserts the exis-

tence of the minimal annihilating polynomial Aj ∈ Fp[y0, y1, . . . , yn] for the polynomials

xj , f1, . . . , fn, for all j ∈ [n]. Now, the separability of the extension F(x)/F(f) implies that

∂Aj/∂y0 6= 0, for all j ∈ [n]. We start with the equation

A1(x1, f1, . . . , fn) =
∑
e`

αe` · x
e0`
1 fe1`1 · · · fen`

n = 0.

We apply the operator H1 on the above equation, and use the product rule of H1 to

get

H1(A1(x1, f1, . . . , fn)) =
∑
e`

αe`e0`x
e0`−1
1 ·z1·(fe1`1 · · · fen`

n )+
∑
e`

αe`x
e0`
1 H1(fe1`1 · · · fen`

n ) = 0.
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Note that separability implies the presence of at least one e0` in A1 which is not

a multiple of p. So, we have at least one non-zero summand in the first sum. Also,∑
e`
αe`e0`x

e0`−1
1 · (fe1`1 · · · fen`

n ) cannot be zero, else we get a lower degree annihilating

polynomial of x1, f , which contradicts the minimality of A1. Using this observation and the

fact that the product rule on H1(fe1`1 · · · fnen`) breaks it into an F(x)-linear combination

of H1f1, . . . ,H1fn, we deduce that z1 ∈ 〈H1f1 . . . ,H1fn〉F(x) .

Similar operation on A2, . . . , An gives z2, . . . , zn ∈ 〈H1f1 . . . ,H1fn〉F(x) . So, we have

n linearly independent elements z1, . . . , zn in 〈H1f1 . . . ,H1fn〉F(x). Thus, we get that

rank〈H1f1 . . . ,H1fn〉F(x) ≥ n.

The converse can be proved similarly, applying H1 operator on the annihilator. Let

A(y1, . . . , yn) be a polynomial of smallest degree such that A(f1, . . . , fn) = 0. Using the

product rule of H1, we get that
∑n

i=1 ∂iA(f1, . . . , fn)H1fi = 0. Over characteristic zero, if

∂iA(f1, . . . , fn) = 0, then there is an annihilator of smaller degree. Over the finite fields, if

∂iA(f1, . . . , fn) = 0 for all i, then A is a power of p. That contradicts the smallest degree

assumption.

The failure of the Jacobian happens in inseparable cases.

Theorem 2.5.4 (Jacobian fails for inseparable). For algebraically independent polynomi-

als f1, . . . fn ∈ Fp[x1, . . . , xn] with the extension Fp(x)/Fp(f) being inseparable, we have

H1f1, . . . ,H1fn F(x)-linearly dependent.

Proof. Algebraic independence of f1, . . . , fn asserts the existence of minimal annihilating

polynomial Aj ∈ Fp[y0, y1, . . . , yn] for the polynomials xj , f1, . . . , fn, for all j ∈ [n]. Now

the inseparability of the extension Fp(x1, . . . , xn)/Fp(f1, . . . , fn) implies that there exists

at least one j such that Aj lives in Fp[yp0 , y1, . . . , yn]. Thus, we have

Aj(xj , f1, . . . , fn) =
∑
e`

αe` · (x
p
j )
e0`fe1`1 · · · fen`

n = 0.

Next, we apply the operator H1 on the above equation, which gives
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∑
e`

αe` · (x
p
j )
e0` · H1(fe1`1 · · · fen`

n ) = 0

as H1(xpj )
e0` = 0, i.e. H1 treats p-powers as constants. Now, because of the product

rule of H1, this gives an Fp(x)-linear dependence of H1f1, . . . ,H1fn. (Note that we also

used the nontriviality of Aj to get this linear dependence.) Hence the Jacobian criterion

fails!

2.6 Taylor expansion and Hasse derivatives

We apply shift (or translation) of variables to our polynomials. We view this as writing

the Taylor expansion of a polynomial f(x) at a “generic” point z [For14, Sec.C.1]. A

second view is that of computing the Hasse-Schmidt higher derivatives of f at the point

z [For15, DKSS13]. A third view is seeing the shifted polynomial as a Hasse-Schmidt

differential [Tra98]. We collect these equivalent viewpoints in a single definition.

Definition 2.6.1 (Formal shift). We see f(x + z) as a polynomial in R := Fp(z)[x] where

the variables x1, . . . , xn are shifted respectively by the function field elements z1, . . . , zn.

Now the coefficient of m := x`11 · · ·x`nn in the Taylor-series expansion of f(x + z) can

be written as 1
`1!···`n!

∂(`1+···+`n)f

∂x
`1
1 ···∂x

`n
n

(z).

This is called the Hasse-Schmidt derivative of f wrt m evaluated at the point z. It can

be denoted, by some abuse of notation, as ∂mf(x)|z.

Finally, we can see the formal shift as a Hasse-Schmidt differential, namely, f(x + z) =∑
mm · ∂mf(x)|z (sum over all monomials m in x).

Example. We have ∂2x2/∂x2 = 0 over F2, but ∂2x2/2!∂x2 = 1. Thus, Hasse-Schmidt

derivatives offer a natural solution to this vanishing problem.

This connection between the shifts and Hasse-Schmidt higher derivatives is what mo-

tivated us to search for the right framework to study algebraic independence.

Now the Jacobian criterion is given in terms of the first order derivatives of the polyno-

mials and the failure of Jacobian essentially exposes the inability of first order derivative
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in capturing independence. Intuitively, it seems that going to higher derivatives may help.

The above connection points out that perhaps we need to look at higher degree terms (wrt

x) of f(x + z) to get an algebraic independence criterion in cases where Jacobian fails.

Eventually, we will see that the intuition is indeed true.

Operator H. For notational convenience, we define the non-constant part of f(x + z) up

to degree≤ t wrt x, as Htf := f≤t(x + z)− f(z).

This is easier to work with when we do manipulations modulo the ideal 〈x〉t+1
R .

2.7 Leading monomials and algebraic independence

A monomial/term ordering σ is a total order on the monomials in F[x1, . . . , xn], that

satisfies the property: if m1 �σ m2, then for any other monomial m3, m1m3 �σ m2m3.

The leading monomial/term of a polynomial wrt σ is the monomial that is greatest wrt

the order σ. Graded lexicographic monomial ordering is an monomial ordering such that

if two monomials have different degree, the one with smaller degree is considered to be

smaller and in case two monomials have same degree, lexicographic order is followed.

The following standard lemma give a sufficient condition for algebraic independence

via leading monomials.

Lemma 2.7.1. [KR05, Prop.6.6.11] Let f1, . . . , fn ∈ F[x1, . . . , xn] be non-zero polyno-

mials. If under some (strict) monomial ordering σ, leading monomials of f1, . . . , fn are

algebraically independent over F, then f1, . . . , fn are algebraically independent over F.

Proof. Let us fix the monomial ordering σ, and let the leading monomials of f1, . . . , fn

wrt σ be LM(f1), . . . , LM(fn) respectively (they uniquely exist as σ is strict and total).

By the hypothesis the leading monomials are algebraically independent. Recall that for

h1, h2 ∈ F[x1, . . . , xn], the LM operator has the properties [Kem10, Sec.9.1]:

• LM(h1 · h2) = LM(h1) · LM(h2) ,

• LM(h1 + h2) �σ max{LM(h1), LM(h2)} .
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We use the above two properties to prove the lemma. Consider any nonzero polynomial

g ∈ F[y1, . . . , yn], and let m be the monomial in the support of g such that m(LM(f1), . . . ,

LM(fn)) is maximal with respect to σ. Hence, for any monomial m′ in the support of g,

and any monomial ki in the support of fi ,

m′(k1, . . . , kn) �σ m′(LM(f1), . . . , LM(fn))

�σ m(LM(f1), . . . , LM(fn)) .

In this case the last inequality cannot be equality, unless m′ = m. Otherwise, m′ −m is

the annihilating polynomial of the leading monomials, contradicting the hypothesis.

This proves that the monomial m(LM(f1), . . . , LM(fn)) cannot cancel with other

monomials in g(f(x)). This implies that there is no nonzero annihilating polynomial for

f1, . . . , fn .

2.8 Basic results in algebraic complexity

We use the following standard result to truncate a polynomial given by a circuit up to

some degree.

Lemma 2.8.1 (Homogenization [Str73]). If f is a polynomial given by a size s circuit,

all the homogeneous components of f up to degree r, can be computed by a size O(r2s)

circuit.

The idea is to create a new circuit where we keep track of all the homogeneous com-

ponents separately and simulate the original circuit’s additions and multiplications. For a

proof, see [SY10, Thm.2.2].

We use the following result from [Kal87, Thm.1] to compute k-th derivative of an

arithmetic circuit.

Lemma 2.8.2 (k-th derivative computation). Let a polynomial f ∈ F[x1, . . . , xn] be given

by an arithmetic circuit of size s. Then, for any i ∈ [n], ∂kf
∂xik

can be computed by a circuit

of size k2s.
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The key idea here is to use Leibniz product rule of k-th order derivative inductively,

keeping track of all the derivatives up to order k of the polynomials computed at each

gate.

We use the following classical result to compute the power series approximation of a

rational function and to eliminate division gates from an arithmetic circuit.

Lemma 2.8.3 (Eliminating division [Str73]). Let f, g ∈ F[x] be two degree-d polynomials,

each computed by a circuit of size-s with g(0) 6= 0. Then f/g mod 〈x〉d+1 can be computed

by poly(s, d) size circuit.

For a complete proof, see [SY10, Thm.2.11]. Here we give a proof sketch.

Proof. By appropriate normalization, assume wlog that g(0) = 1. As 1 − g is constant

free, we have the following power series identity in F[[x]]:

f/g = f/(1− (1− g)) = f + f(1− g) + f(1− g)2 + f(1− g)3 + · · · .

For all d ≥ 0, taking modulo 〈x〉d+1 in both sides, the left hand side equals the right

hand side of the above identity.

Now, if we want to compute f/g mod 〈x〉d+1, we compute the circuit of f + f(1− g) +

f(1− g)2 + · · ·+ f(1− g)d and finally truncate up to degree d using homogenization (use

Lemma 2.8.1). It is easy to see that the size of the final circuit is poly(s, d).

Remark. It may happen that g(0) = 0, thus 1/g does not exist in F[[x]], yet f/g exists

and is a polynomial of degree d. In that case, we use the following normalization trick.

We shift the polynomials f, g by a random point α ∈ Fn. Using Schwartz-Zippel-DeMillo-

Lipton lemma, the constant term of g(x+α) is non-zero with high probability. Now, we

can compute f(x+α)/g(x+α) using Lemma 2.8.3. Finally, we compute the polynomial

f/g by applying the inverse of the shift x 7→ x−α.

Lemma 2.8.4 (Circuit division elimination). Let f be a polynomial of degree d computed

by a circuit (with division gates) of size s. Then, f can be computed by poly(sd) size

circuit.
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Here we just give the basic idea. See [SY10, Thm.2.12] for a full proof.

Proof idea. If there are many division gates in the circuit, we preprocess the circuit in the

following way. We create a new circuit, separately keeping track of the numerator and the

denominator computed at each gate. Now, in the new circuit, we simulate the addition,

multiplication and division gates of the original circuit, by appropriately adding edges.

This pre-processing incurs poly(sd) blow up of size. Finally, to remove the single division

gate at the top, we use Lemma 2.8.3.

2.8.1 Approximative complexity and Closure of VP

In computer science, the notion of approximative complexity emerged in the context of ten-

sors for matrix multiplication (the notion of border rank, see [LL89, BCS13] and references

therein). [Bür04] used this concept in the context of arithmetic circuits. Approximative

closure of algebraic complexity classes is of great interest in the geometric complexity

theory program (see [GMQ16]).

The notion of border complexity or approximative complexity can be defined in many

ways. Over fields like R or C, it can be defined using metric topology. A polynomial

f(x) ∈ C[x] has approximative/border circuit complexity at most s if there is a sequence

of polynomials {fn(x)}n such that the sequence converge to f (coefficient-wise) in the

limit and for all n, fn(x) can be computed by an arithmetic circuit of size at most s. This

gives a definition of closure (under Euclidean metric topology) of VP. A polynomial family

{fn(x)}n is in VP if and only if ∃fni(x) such that lim
i→∞

fni = fn and {fni(x)}n is in VP.

Thus, VP can be stated as the class containing all the limits of the polynomial families in

the VP.

The closure can be also taken under Zariski topology. Recall that a subset of Cn is

Zariski closed if it is a zero set of a set of polynomials. The algebraic closure of a field

contains all the roots of all the univariate polynomials over the field. Similarly, if a given

set of points S vanishes on a given set of polynomials P , if we add all the common roots of

the polynomials in P to the set S, we get a closed set S, which is defined to be the closure of
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S. A n-variate polynomial of degree d can be seen as a coefficient vector containing
(
n+d
d

)
many coefficients. If we take the closure of the set containing all the coefficient vectors of

the polynomials in VP, we get the class VP. Note that over C, if a set is Zariski-closed, it

is also closed under Euclidean topology and the two definitions of VP coincide [Bür04].

The following definition (equivalent with the previous definitions) of approximation

makes sense over any field and can be used to define closure of VP. Here, ε is a formal

variable and F(ε) is the rational function field of ε. For an algebraic complexity class C,

the approximative closure of C is defined as follows [BIZ18, Defn.2.1].

Definition 2.8.5 (Approximative closure of a class [BIZ18]). Let C be an algebraic com-

plexity class over field F. A family {fn} of polynomials from F[x] is in the class C(F) if

there are polynomials fn;i and a function t : N 7→ N such that gn is in the class C over the

field F(ε) with gn(x) = fn(x) + εfn;1(x) + ε2fn;2(x) + . . .+ εt(n)fn;t(n)(x).

Whether VP is a proper subset of VP is a big open question. See [GMQ16] for more

on this question.

2.9 Basic definitions from algebraic geometry

We work with commutative rings in this thesis. A subset I of a ring R is an ideal if it

forms a subgroup of the additive group of ring R (thus, it is closed under addition and

subtraction) and for every element b in R and a ∈ I, their product ab belong to I. An

ideal I is generated by the elements f1, . . . , fm if and only if every element f ∈ I can be

expressed as f =
∑m

i=1 figi, where gi ∈ R.

An ideal generated by a single element of the corresponding ring is called a principal

ideal. An ideal of R that is not a proper subset of any ideal other than R itself, is called

a maximal ideal. An ideal P of ring R is called a prime ideal if ∀a, b ∈ R, ab ∈ P =⇒

a ∈ P or b ∈ P , and P is not equal to R. The radical of an ideal is an ideal such that

an element x is in the radical iff xk (for some positive integer k) is in the ideal. A radical

ideal is an ideal which is equal to its radical.
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Let A := F be the algebraic closure of a field F. For d ∈ N+, write Ad for the d-

dimensional affine space over A. It is defined to be the set Ad, equipped with the Zariski

topology, defined as follows: A subset S of Ad is closed iff it is the set of common zeros

of some subset of polynomials in A[X1, . . . , Xd]. For other subsets S it makes sense to

consider the closure S— the smallest closed set containing S. Set S is dense in Ad if

S = Ad. Complement of closed sets are called open.

A closed set is called a hypersurface (resp. hyperplane) if it is definable by a single

polynomial (resp. single linear polynomial).

Closed subsets of Ad are also called algebraic sets or zero sets. An algebraic set is

irreducible if it cannot be written as the union of finitely many proper algebraic sets. An

irreducible algebraic subset of an affine space is also called an affine variety.

An algebraic set V can be uniquely represented as the union of finitely many varieties,

and these varieties are called the irreducible components of V .

The ideal-variety correspondence connects algebra and geometry. Given a variety V ,

I(V ) denotes the ideal of the polynomials that vanish on the points in the variety. Given an

ideal I, V (I) denote the variety that contains zeroes of the polynomials from I. Affine zero

sets (resp. varieties) are in 1-1 correspondence with radical (resp. prime) ideals. If I1 ⊆ I2

are ideals, then variety V1 corresponding to I1 contains the variety V2 corresponding to

I2. If variety V1 is contained in variety V2, I(V2) ⊆ I(V1).

The dimension of a variety V is defined to be the largest integer m such that there

exists a chain of varieties ∅ ( V0 ( V1 ( · · · ( Vm = V . More generally, the dimension

of an algebraic set V , denoted by dimV , is the maximal dimension of its irreducible

components. For example, we have dimAd = d. The dimension of the empty set is −1 by

convention. One dimensional varieties are called curves.

The degree of a variety V in Ad is the number of intersections of V with a gen-

eral/random affine subspace of dimension d−dimV . More generally, we define the degree

of an algebraic set V , denoted by deg(V ), to be the sum of the degrees of its irreducible

components.
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2.10 Basics of complexity theory

For the formal definitions of the complexity classes mentioned in this thesis (NC, P, NP,

RP, AM, PH, PSPACE), see [AB09]. Here we give a brief overview of the class AM.

2.10.1 Complexity class AM

Arthur-Merlin protocols, introduced by Babai [Bab85], is a special type of interactive proof

system in which Arthur is the randomized poly-time verifier and Merlin is the all-powerful

prover. They have only constantly many rounds of exchange. Arthur first sends the input

string x and results of random coin tosses (a random string y) to Merlin. After Merlin

sends back a string z which is a proof/witness corresponding to (x, y), Arthur verifies

it (decides whether to accept x or not) in polynomial time. AM is the class of decision

problems for which the yes answer can be verified by such a protocol. For the input strings

in the language (YES instances), Merlin should be able to send a proof such that Arthur

accepts with probability (over the random choices of Arthur) at least 2/3 and if the input

string is not in the language (NO instances), Arthur rejects with probability (over the

random choices of Arthur) at least 2/3, irrespective of Merlin’s message. The class AM

contains interesting problems like verifying if two graphs are non-isomorphic. A language

is in coAM iff its complement language is in AM. If a language is in AM ∩ coAM, it can

not be NP or coNP hard, otherwise the polynomial hierarchy collapses to the second level

[Sch88]. See [Sax06, Proposition 2.5] for a proof of this. See [KS06] for a few natural

algebraic problems in AM ∩ coAM.

In the Chapter 4, an AM protocol will be used to distinguish whether a set S is ‘small’

or ‘large’. This is done using the Goldwasser-Sipser [GS86] set lowerbound method:

Lemma 2.10.1 (Goldwasser-Sipser [GS86]). Let m ∈ N be given in binary. Suppose S is

a set whose membership can be tested in nondeterministic polynomial time and its size is

promised to be either ≤ m or ≥ 2m. Then, the problem of deciding whether |S|
?
≥ 2m is

in AM.

See, [AB09, Chapter 8] or [Sax06, Proposition 2.4] for a complete proof.





Chapter 3

Algebraic Dependence and

Functional Dependence

Abstract

This chapter is based on joint work [PSS18] with Pandey and Saxena.

In a set of linearly dependent polynomials, any polynomial can be written as a lin-

ear combination of the polynomials forming a basis. The analogous property for

algebraic dependence is false, but a property approximately in that spirit is named

as “functional dependence” in [KS17] and proved for zero or large characteristics.

We show that functional dependence holds for arbitrary fields, thereby answering

the open questions in [KS17]. We also show that functional dependence is equiv-

alent to algebraic dependence. A consequence of our characterization of algebraic

dependence is that we get a randomized poly-time algorithm for testing algebraic

independence of polynomials over finite fields (say, Fq of characteristic p) in the cases

when the inseparable degree is constant. This can be seen as a natural generalization

of the classical Jacobian criterion.

39
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3.1 Introduction

In this chapter, we prove two main technical theorems, one about the algebraically depen-

dent polynomials and the other about algebraically independent polynomials. We apply

these two theorems to obtain an algebraic independence testing algorithm.

Algebraic dependence to approximate functional dependence. We show that

over arbitrary fields, algebraic dependence of polynomials f1, . . . , fm implies the existence

of a transcendence basis such that all the polynomials f1, . . . , fm can be obtained (upto

a random shift and a truncation) as a polynomial function of the basis elements (Theo-

rem 3.2.3). Essentially, to obtain the desired polynomial, say fk, we truncate a polynomial

function in the elements of the basis upto the degree of fk. This generalizes the functional

dependence result of [KS17, Lem.3.1] which asserted the same over fields of zero (or large)

characteristic.

Eg. {x1, x2, x1x
2
2} are algebraically dependent over F2. Pick random field elements

a1, a2. The shifted polynomials are {x1 +a1, x2 +a2, (x1 +a1)(x2
2 +a2

2)}. Clearly, (x2 +a2)

is not a function of the other two modulo the ideal 〈x〉2. However, (x1 + a1) is trivially a

function of the other two, namely, (x1 + a1) ≡ a−2
2 · (x1 + a1)(x2

2 + a2
2) mod 〈x〉2.

Algebraically independent polynomials- Criterion. The above example (taking

x1 and x1x
2
2) shows that over fields of positive characteristic, an approximate functional

dependence may exist even in the case of algebraically independent polynomials. We

overcome this issue and show that the independence can be captured by truncating the

polynomial function in the basis elements upto a precise parameter, i.e. if we choose

the truncation point to be greater than that parameter, then algebraically independent

polynomials cannot exhibit functional dependence (Theorem 3.2.7). This parameter is

actually the inseparable degree of an appropriate field extension, which is a well studied

concept in Galois theory (Sec.2.4).

Continuing the above example– {x1, x1x
2
2} are algebraically independent over F2. Pick

random field elements a1, a2. The shifted polynomials are {x1 + a1, (x1 + a1)(x2
2 + a2

2)}.

It can be seen that neither is a polynomial function of the other modulo the ideal 〈x〉3.
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This becomes a certificate of algebraic independence. Note that the inseparable degree of

F2(x1, x2)/F2(x1, x1x
2
2) is 2.

When the inseparable degree is 1 (which means a separable extension), then looking at

the truncation upto the linear term of shifted basis elements would suffice. We show that

separable extension is precisely the case when the Jacobian works (Corollary 3.2.10). For

higher inseparable degree t, our result can be reinterpreted as giving a Jacobian like result:

algebraically independent polynomials have F(z)-linearly independent higher differentials

(Sec.2.6), modulo a carefully chosen subspace Ut (Remark 3.2.2). This follows by consider-

ing the Taylor series, around a “generic” point z, whence, the functional independence of

polynomials shifted by z, implies the linear independence of shifted polynomials modulo

Ut. As shifted polynomials contain all the Hasse-Schmidt higher derivatives (wrt x and

evaluated at the point z), we deduce their F(z)-linear independence modulo Ut. We give a

possible interpretation of the main criterion using Hasse-Schmidt differentials and matri-

ces in Sec.3.4. We illustrate the overall idea, and its comparison with Jacobian criterion,

in Fig.3.1.

The algorithm we get using our criterion is efficient only under the promise that the

inseparability degree is bounded by a small constant. Note that there are situations

where the inseparability degree is quite small compared to the product of the degrees

of the input polynomials. Let m1 and m2 be integers such that m1m2 is coprime to

p, and let f1 = xpm1
1 , f2 = xm2

2 . It is easy to deduce that the degree of the extension

Fp(x1, x2)/Fp(f1, f2) is pm1m2. In fact, the degree of the annihilating polynomial of

{x1, f1, f2} (resp. {x2, f1, f2}) is pm1 (resp. m2). However, the inseparable degree of the

extension is only p, as the former annihilating polynomial (i.e. ypm1
1 −y2) is a polynomial in

yp1 but not in yp
2

1 . Thus, there are cases when the inseparable degree can be much smaller,

even O(1), compared to the extension degree. In general, the inseparable degree is a p-

power that divides the extension degree, which in turn is upper bounded by
∏
i deg(fi)

(by Perron’s bound)– usually an exponentially large parameter (in terms of input size).

Analytic Dependence and Algebraic Dependence. Functional dependence can also

be stated using formal power series, relating to the notion of analytic dependence [Abh56,
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AM76]. A polynomial f is analytically dependent on polynomials g1, . . . , gn if there exists

a formal power series A ∈ F[[x1, . . . , xn]] such that f = A(g1, . . . , gn). Without loss of

generality, we assume that the constant terms of the given polynomials are zero, so that the

above equality is well defined in F[[x1, . . . , xn]]. Our main theorems (Theorem. 3.2.3 and

Theorem. 3.2.7) show that algebraic dependence and analytic dependence are equivalent

for polynomials over arbitrary fields.

3.2 Main structure theorems

We use the following standard notation:

1. Let R ⊇ S be a commutative ring extension over a field F, let v1, . . . , vm ∈ R and

r ≥ 1. Then 〈v1, . . . , vm〉rS is simply the set of all S-linear combinations of products

vi1 · · · vir (ij ’s in [m]). It is both an S-module and an F-vector space. (It is an ideal

when R = S.)

2. For a polynomial h ∈ F[x], h≤d extracts out the degree≤ d part of h and returns it as

an element in F[x] again. Note that by h(g1(x), . . . , gn(x))≤d we would mean that:

first compute the composition h(g(x)) and then extract out the degree≤ d part.

3. For a polynomial h ∈ F[x], h[≤d] extracts out the degree≤ d part of h and returns it

as a d + 1 tuple, where for i ∈ [0 . . . d], i-th entry of the tuple contains h=i which is

defined as the homogeneous component of h of degree i.

4. If I is an ideal of a ring, the t-th power of it, denoted as It, is generated by all the

products of any t (may not be distinct) elements from I.

5. We define the non-constant part of f(x + z) up to degree≤ t wrt x, as Htf :=

f(x + z)≤t − f(z).

In the following section, we prove a few technical lemmas that we use in the proofs

of our main theorems. One may want to skip some of the details in the first reading and

move to Section 3.2.2.
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3.2.1 Technical lemmas

We will use z as a formal variable (n-tuple) and can fix it later to a suitable constant

a. We consider the ring R := F(z)[x] and its ideal I0 := 〈x〉R. This ideal contains all

the constant-free linear polynomials (linear forms) in x1, . . . , xn. Now, define the ideal

It := It+1
0 and the quotient algebra Qt := R/It, i.e. we are filtering out, or truncating, all

the terms of degree > t.

Now Qt can also be seen as a finite
(
n+t
n

)
dimensional vector space over F(z) whose

basis is monomials in x of degree at most t. In our theorems and proofs, most of the

operations happen in this quotient ring Qt for increasing t’s.

In our analysis, we plan to use the shifting of the variables in the evaluated annihilating

polynomial of {fi, g1, . . . , gk}, and it is clear that on applying the shifts, we will end

up having terms of the form (Htfi)j0(Htg1)j1 · · · (Htgk)jk (recall that in Qt, f(x + z) =

f(z) +Htf(x) ).

We consider an appropriate subspace Ut ⊂ Qt generated by such “higher” products,

which we formally define as: U1 := {0} and

Ut := 〈Ht−1fi,Ht−1g1, . . . ,Ht−1gk〉2F(z)
+ · · ·+ 〈H1fi,H1g1, . . . ,H1gk〉tF(z)

, t ≥ 2.

We now prove a (standard) property of ideal powering in a filtration. Essentially, one

needs a “lower accuracy” a1, . . . , ai ∈ Qj to compute their product a1 · · · ai.

Lemma 3.2.1 (Powers in filtration). Recall the algebras R := F(z)[x] and Qt, t ≥ 1. If,

for j ∈ [i], bj ∈ 〈x〉R and aj ≡ bj in Qt, then a1 · · · ai ≡ b1 · · · bi in Qt+i−1, for i ≥ 1.

Proof. The congruence aj ≡ bj in Qt implies that aj − bj is a polynomial αj(x) in It+1
0 .

We write it as aj = bj + αj(x), and take the product on both sides. This yields
∏
j aj =∏

j(bj + αj) which is contained in
∏
j bj + It+1

0 · Ii−1
0 , which is in

∏
j bj + Ii−1+t+1

0 [∵ I0

is an ideal of R, and each bj is in I0]. In other words,
∏
j aj ∈

∏
j bj + Ii+t0 .

Hence,
∏
j aj ≡

∏
j bj in Qt+i−1.

Lemma 3.2.1 tells us that due to the filtration (filtering out the higher degree terms)

in Qt, some of these terms will be equivalent to terms involving Hr with r < t.
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Remark 3.2.2. In Qt, this is the same subspace as 〈Htfi,Htg1, . . ., Htgk〉2F(z)
+ · · ·

+〈Htfi, Htg1, . . . ,Htgk〉tF(z)
by Lemma 3.2.1.

3.2.2 Functional dependence for algebraically dependent polynomials

We show that algebraic dependence implies functional dependence over arbitrary fields (to

arbitrary degree of approximation t).

Theorem 3.2.3 (Functional dependence over arbitrary fields). Let f = {f1, . . ., fm} ⊂

F[x1, . . ., xn] be a set of polynomials, where F is any field, and t ∈ N. If trdeg of

{f1, . . . , fm} is k, then there exist algebraically independent {g1, . . . , gk} ⊂ f , such that for

random a ∈ Fn, there are polynomials hi ∈ F[Y1, . . . , Yk] satisfying, ∀i ∈ [m], fi(x + a)≤t =

hi(g1(x + a), . . . , gk(x + a))≤t.

Remark 3.2.4. Clearly, Fn is an infinite space. What we mean here by a random a is

“random point in any sufficiently large, but finite, subset of the space”. It will be clear

from the proof that it would suffice to sample from any set of size at most exponential in

the input size. We skip the detailed estimate as in this section merely existence of a is

needed. Section 3.3.1 will discuss the estimate.

Pf. of Theorem 3.2.3. Consider the set f := {f1, . . . , fm} ⊂ F[x] with algebraic rank k. If

we work over F, then Theorem 2.4.3 guarantees the existence of a separating transcendence

basis {g1, . . . , gk} ⊆ f . Let g0 := fi for a fixed i ∈ [m]. Now we consider the separable

annihilating polynomial A(y) =
∑

e`
ae`y

e` of the set g := {g0, g1, . . . , gk}, and ae` ’s are

in F (e` is a (k + 1)-tuple (ej` | j ∈ [0 . . . k])). Thus, A(g) =
∑

e`
ae`
∏k
j=0 gj(x)ej` =

0. We now apply the formal shift x 7→ x + z to get A(g0(x + z), . . . , gk(x + z)) = 0,

i.e.
∑

e`
ae`
∏
j gj(x +z)ej` = 0.

We now study this relation in the algebra Qt. By Taylor series expansion, we know

that f(x + z) ≡ f(z) + Htf(x) in Qt, so we get
∑

e`
ae`
∏
j(gj(z) + Htgj)ej` ≡ 0. The

binomial expansion gives a compact expression:

∑
e`

ae`
∑

0≤s≤e`

(
e`
s

)
· (Htg)s · ge`−s ≡ 0 .
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Note that the contribution by s = 0 terms sum up to
∑

e`
ae`

∏k
j=0 gj(z)ej` which is

zero. This implies that an F(z)-linear combination of the products of the form (Htg0)s0 · · · (Htgk)sk ,∑
j sj ≥ 1, vanishes in Qt. Now the key step is to separate out the terms linear in Htgj

and switch the sums, to obtain

Htg0/g0(z) ·

(∑
e`

ae`e0`g
e0`
0 · · · g

ek`
k

)

+
∑
j∈[k]

Htgj/gj(z) ·

(∑
e`

ae`ej`g
e0`
0 · · · g

ek`
k

)

+ (higher terms with
∑
j

sj ≥ 2) ≡ 0 . (3.1)

Further, we argue using the minimality and separability of A (in terms of the first

variable) that the “linear” termHtg0 in the vanishing sum above has a non-zero coefficient:

as it would either mean a lower degree annihilating polynomial A :=
∑

e`
ae`e0`y

e0`−1
0 ·

ye1`1 · · · y
ek`
k i.e. contradicting the minimality, or that all the e0`’s are divisible by p (when

F has characteristic p) which means that fi does not depend separably on {g1, . . . , gk};

which contradicts the fact that {g1, . . . , gk} is a separating transcendence basis.

Thus, we get that Htg0 lives in the F(z)-linear span of Htg1, . . . , Htgk modulo the

subspace generated by the higher terms of the summation in Eqn.3.1. So, Htg0 lives in

the F(z)-linear span of Htg1 . . . , Htgk modulo the subspace Ut (Remark 3.2.2) in Qt.

We got Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) + Ut. Now, we are in a position to apply our

subspace reduction lemma (Lemma 3.2.5) which gives that Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) +

〈Ht−1g1, . . . ,Ht−1gk〉2F(z)
+ · · · + 〈H1g1, . . ., H1gk〉tF(z)

. The latter (by Remark 3.2.2) is

exactly 〈Htg1, . . . ,Htgk〉F(z) + 〈Htg1, . . . ,Htgk〉2F(z)
+ · · ·+ 〈Htg1, . . . ,Htgk〉tF(z)

.

This implies fi(x + z) ∈ 〈1, g1(x + z), . . . , gk(x + z)〉tF(z)
in Qt, which yields the ap-

proximate functional dependence around a generic point z.

Fixing z (avoiding some bad choices that make certain z polynomials in the above

proof zero) to an element a ∈ Fn finishes the proof.

We now prove the subspace reduction lemma, that essentially shows that if Hrfn
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depends on higher order terms (in the sense of Eqn.3.1) then it can be “dropped” from

the ideal manipulations.

Lemma 3.2.5 (Subspace reduction). Let F be any field, R := F(z)[x], Qr := R/〈x〉r+1

for r ≥ 1, and f ⊂ F[x]. Define U1 = V1 = {0}, and for u ∈ 〈x〉R, r ≥ 2, define the

subspaces (in the quotient algebra Qr),

Ur := 〈Hr−1f1, . . . ,Hr−1fn〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn〉rF(z) ,

Vr := 〈Hr−1f1, . . . ,Hr−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

If Htfn ∈ 〈Htf1, . . . ,Htfn−1, u〉F(z) + Ut, then Ut ⊆ Vt (for any t ∈ N).

Remark: If u = 0 then the lemma “reduces” the n polynomial generators, of the

subspace Ut, by one. Hence, the name “subspace reduction”. In general, one can think of

the lemma as replacing Htfn by u everywhere.

Proof. We prove the lemma using induction on t.

Base Case (t = 2): By definition, U2 = 〈H1f1, . . . ,H1fn〉2F(z). Now, from the hypothe-

sis, we have that, in Q1: 〈H1f1, . . . ,H1fn〉F(z) ⊆ 〈H1f1, . . . ,H1fn−1, u〉F(z) .

Apply the powering (Lemma 3.2.1 with t = 1, i = 2) to get, in Q2, 〈H1f1, . . . ,H1fn〉2F(z)

⊆ 〈H1f1, . . . ,H1fn−1, u〉2F(z). So, U2 ⊆ V2 and the base case is true.

Induction Step: The induction hypothesis is that the lemma holds for all t < `.

To prove the lemma for t = `, we take Q` and its subspace U`, and consider its general

summand 〈Hrf1, . . . ,Hrfn〉`+1−r
F(z) from the above sum of subspaces (r ∈ [` − 1]). We try

to show the containment of this summand in a desired subspace. Firstly, note that the

dependence hypothesis (with Lemma 3.2.6) gives, in Qr,

〈Hrf1, . . . ,Hrfn〉F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉F(z) + Ur .

By the induction hypothesis on Ur, r < `, we get, in Qr,
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〈Hrf1, . . . ,Hrfn〉F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉F(z)+

· · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

Apply the powering (Lemma 3.2.1, with t = r and i = `+ 1− r) to get, in Q`,

〈Hrf1, . . .Hrfn〉`+1−r
F(z) ⊆ 〈vq11 · · · v

qr
r |

∑
j∈[r]

qj = `+ 1− r , qj ≥ 0,v〉F(z) (3.2)

where we consider all the possible vj ∈ 〈Hr−j+1f1, . . . , Hr−j+1fn−1, u〉jF(z) for j ∈ [r].

Now observe that, for any f , H1f, . . . ,Hrf, u are all in 〈x〉R.

So, the least degree term (wrt variables x) of the above product vq11 · · · v
qr
r would have

degree at least s := q1 + 2q2 + · · ·+ rqr. In Q`, only the terms with degree ≤ ` survive.

This restricts s in the range: ` + 1 − r ≤ s ≤ ` and we only need to consider the

corresponding r subspaces 〈Hrf1, . . .Hrfn〉sF(z) in the RHS of Eqn.3.2. This allows us to

rewrite Eqn.3.2 as (recall Remark 3.2.2),

〈Hrf1, . . . ,Hrfn〉`+1−r
F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉`+1−r

F(z) +

· · ·+ 〈H1f1, . . . ,H1fn−1, u〉`.

Hence, we now have the desired containment for a general summand of U`. Since in

U`, r is in the range [`− 1], we get that, in Q`,

U` ⊆ 〈H`−1f1, . . . ,H`−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉`F(z) .

This proves U` ⊆ V`, finishing the induction step.

The following lemma implies that proving the linear independence for truncation t

suffices to prove it for every truncation above t. Moreover, it also implies that proving the

dependence for truncation t suffices to prove it for every truncation below t.

Lemma 3.2.6 (Descent). If Htf1, . . . ,Htfn are F(z)-linearly dependent modulo Ut, then

Hrf1, . . ., Hrfn are F(z)-linearly dependent modulo Ur, for all r ∈ [t].

Proof. If we see the linear dependence of Htf1, . . . ,Htfn modulo Ut in the quotient ring
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Qr instead (i.e. reduce modulo 〈x〉r+1
R ), then we get the dependence of Hrf1, . . . ,Hrfn

modulo Ur. This is true since Htf = Hrf+ (degree> r)-terms in x , and Qr filters out

〈x〉r+1
R .

3.2.3 Algebraic independence: Criterion

Having proved the functional dependence for algebraically dependent polynomials, one

naturally asks whether a converse exists (for arbitrary fields). We will characterize this

completely.

We show that if f is algebraically independent of {g1, . . . , gk} then, under a random

shift, f cannot be written as a function of {g1, . . . , gk} when chosen to truncate at (or

beyond) the inseparable degree of the extension Fq(x)/Fq(f, g1, . . . , gk). Moreover, for

each truncation at lower degrees we get functional dependence.

Theorem 3.2.7 (Algebraic to functional independence). Let f ⊂ Fq[x] be algebraically

independent polynomials (wlog n-variate n polynomials) with inseparable degree pi. Then,

1. for all t ≥ pi, for random a ∈ Fnq , fn(x + a)≤t cannot be written as h(f1(x+ a), . . .,

fn−1(x + a))≤t, for any h ∈ Fq[Y1, . . . , Yn−1].

2. for all 1 ≤ t < pi, ∃j ∈ [n], for random a ∈ Fnq , fj(x + a)≤t can be written as

hjt(f1(x + a), . . . , fj−1(x + a), fj+1(x + a), . . . , fn(x + a))≤t, for some hjt ∈ Fq[Y].

Remark: Our proof works for any field F (manipulate in F). In the case of prime

characteristic we get the above statement, while in the zero characteristic case one should

set the inseparable degree = 1 to read the above statement. The meaning of ‘random a’

was explained in Remark 3.2.4.

Proof idea- By the hypothesis we have that each monomial xp
i

j , j ∈ [n], algebraically

depends on f with a separable annihilating polynomial over Fq. Consider ring R :=

Fq(z)[x]. The basic idea is to consider the minimal annihilating polynomial Aj of {xp
i

j , f}

and formally shift the relevant polynomials by z. From the proof of Theorem 3.2.3 we get

a functional dependence of xp
i

j on f(x + z) up to any degree t.
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Interestingly, when we take t < pi the monomial xp
i

j vanishes mod 〈x〉t+1. This means

that the above yields, in fact, a functional dependence among f(x + z).

On the other hand, for t ≥ pi, we get a nontrivial functional dependence of xp
i

j on

f(x + z), for all j ∈ [n]. In this case we give an argument using monomial ordering that

there exists no functional dependence among f(x + z) (Lemma 3.2.8).

Pf. of Theorem 3.2.7. [t < pi part.] We first prove the dependence part of the theorem.

We use the shifts on the annihilating polynomial of the algebraically dependent set {xj , f}

and then argue about desired dependence by making use of the arguments used in the

proof of Theorem 3.2.3.

The descent principle (Lemma 3.2.6) implies that we need to prove it only for t = pi−1.

Algebraic independence of f asserts the existence of the minimal annihilating polynomial

Aj ∈ Fq[y0, y1, . . . , yn] for the polynomials {xj , f}, for all j ∈ [n] (because of Lemma 2.3.1).

Now the inseparable degree of the extension Fq(x)/Fq(f) being pi implies that there exists

a j such that Aj lives in Fq[yp
i

0 , y1, . . . , yn] but not in Fq[yp
i+1

0 , y1, . . . , yn]. Let us fix that

j. Thus, we have Aj(xj , f) =
∑

e`
αe` · (x

pi

j )e0`fe1`1 · · · fen`
n = 0, where αe` ∈ Fq.

Next we apply the shift and note that truncating Aj(xj , f) at degree ≤ pi − 1 is same

as looking at Aj(xj , f) in Qpi−1. In Qpi−1, the above equation gives us
∑

e`
αe` · (z

pi

j )e0` ·

fe1`1 (x + z) · · · fen`
n (x + z) ≡ 0, since in Qpi−1, (xj + zj)

pi ≡ zp
i

j .

We can now repeat the arguments used in Eqn.3.1 (Sec.3.2.2) to get that for some

j′, fj′(x + z)≤p
i−1 = hj′(f1(x + z), . . . , fj′−1(x + z), fj′+1(x + z), . . . , fn(x + z))≤p

i−1 for

some hj′ ∈ Fq[Y1, . . . , Yn−1] to finish the proof of the dependence part of the theorem.

[t ≥ pi part.] Next, we prove the independence part of the theorem which gives us

the independence testing criterion, and we do it by contradiction. The contrapositive of

Lemma 3.2.6 implies that proving the theorem for t = pi suffices. For contradiction, as-

sume that (wlog) fn(x + z)≤p
i

can be written as h(f1(x + z), . . . , fn−1(x + z))≤p
i

for some

h ∈ Fq[Y1, . . . , Yn−1] which implies that the non-constant part of fn(x + z) Fq(z)-linearly

depends on the non-constant parts of f1(x + z), . . . , fn−1(x + z) modulo the subspace Upi .

Thus, Hpifn Fq(z)-linearly depends on Hpif1, . . . ,Hpifn−1 modulo the subspace Upi .
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We are given that the inseparable degree of the field extension Fq(x)/Fq(f) is pi. This

by the definition of inseparable degree (Sec.2.4) implies that the minimal annihilating

polynomial Aj ∈ Fq[y0, . . . , yn] of {xp
i

j , f} is separable with respect to y0, for all j, i.e. the

derivative of Aj does not vanish with respect to y0.

Let us consider such an Aj =
∑

e`
ae`y

e` . We begin by applying the variable shift

as we did in the dependent case, and get that Aj((xj + zj)
pi , f(x + z)) ≡ 0 in Qpi . Now

Taylor expansion allows us to write f(x + z) as f(z)+Hpif(x) in Qpi (i.e sum of constant

terms and non-constant terms of degree ≤ pi). Using this, we expand the congruence as∑
e`
ae` · (z

pi

j + xp
i

j )e0` · (f1(z) +Hpif1)e1` · · · (fn(z) +Hpifn)en` ≡ 0.

Note that (zp
i

j + xp
i

j )e0` ≡ zp
ie0`
j + e0` · z

pi(e0`−1)
j xp

i

j . Using this, we further expand to,

∑
e`

ae` ·
(
zp

ie0`
j + e0` · z

pi(e0`−1)
j xp

i

j

)
·(f1(z) +Hpif1)e1` · · ·

(fn(z) +Hpifn)en` ≡ 0 .

Observe that xp
i

j · Hpif` ≡ 0 in Qpi , for ` ∈ [n]. Thus, the above equation reduces to

∑
e`

ae`z
pie0`
j (f1(z) +Hpif1)e1` · · ·(fn(z) +Hpifn)en` +

xp
i

j

∑
e`

ae`e0` · z
pi(e0`−1)
j fe` ≡ 0 .

Thus, an Fq(z)-linear combination of xp
i

j and the products of the form (Hpif1)t1 · · · (Hpifn)tn

vanishes in Qpi .

By the separability of Aj at least one e0` is not a multiple of p. Now having shown

that there is at least one non-zero term in the sum
∑

e`
ae`e0` · (zp

i

j )e0`−1 · fe` , we argue

that the overall sum cannot be zero. This follows immediately from the minimality of Aj

again since the zero sum would imply the existence of an annihilating polynomial with

degree less than the degree of Aj . Thus, we get that xp
i

j lives in the subspace generated

by the terms of the form (Hpif1)t1 · · · (Hpifn)tn , with
∑

j tj ≥ 1. (Note that the x-free

terms cancel out.)

We write the above subspace as 〈Hpif〉Fq(z) + 〈Hpif〉2Fq(z) + · · ·+ 〈Hpif〉
pi

Fq(z) which, by

Remark 3.2.2, is the same as the subspace 〈Hpif〉Fq(z) +Upi =: U ′
pi

. Using the assumption
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of the linear dependence of Hpif modulo Upi , and subspace reduction (Lemma 3.2.5),

we get that xp
i

j lives in U ′
pi

= V ′
pi

:= 〈Hpif1, . . . ,Hpifn−1〉Fq(z) + Vpi , where Vpi :=

〈Hpif1, . . . ,Hpifn−1〉2Fq(z) + · · ·+ 〈Hpif1, . . ., Hpifn−1〉p
i

Fq(z).

On repeating this for all the Aj ’s, we get that {xp
i

1 , . . . , x
pi
n } ⊆ V ′pi . This contradicts

(the impossible containment) Lemma 3.2.8, and hence finishes the proof. (One can easily

see that we get functional independence for random fixing of z in the space Fnq .)

Now we show that n ‘pure’ monomials cannot functionally depend on < n polynomials.

This is at the heart of our criterion.

Lemma 3.2.8 (Impossible containment). Let F be any field. Consider the subspace

V ′t := 〈Htf1, . . . ,Htfn−1〉F(z) + . . . + 〈H1f1, . . . , H1fn−1〉tF(z) of Qt, for t ≥ 1. Then,

{xt1, . . . , xtn} 6⊆ V ′t.

Proof. Remark 3.2.2 suggests that V ′t equals the subspace 〈Htf1, . . . , Htfn−1〉F(z) + · · ·

+〈Htf1, . . ., Htfn−1〉tF(z) in Qt.

Intuitively, these n ‘pure’ monomials xt1, . . . , x
t
n should not all appear in the subspace V ′t

as it has merely n−1 many “key” generators. However, assume for the sake of contradiction

that {xt1, . . . , xtn} ⊆ V ′t. We rewrite this in absolute terms (in R) as:

xti + αi ∈ 〈Htf1, . . . ,Htfn−1〉F(z) + · · ·+ 〈Htf1, . . . ,Htfn−1〉tF(z) ,

for some αi ∈ 〈x〉t+1
R , for all i ∈ [n]. This simply means xti + αi = Pi(Htf1, . . . , Htfn−1),

for some polynomial Pi ∈ F(z)[Y1, . . . , Yn−1] of degree at most t, for i ∈ [n] . Notice that

the degree of αi (in x) is ≥ t + 1. Thus, by choosing a graded lexicographic monomial

ordering [CLO07, Pg.58] in which lower degree terms lead, we get the leading monomials

of the set {xti + αi | i ∈ [n]} to be {xt1, . . . , xtn}.

Now, using the fact that the algebraic independence of leading monomials imply the

algebraic independence of the corresponding polynomials (Lemma 2.7.1), we get that

trdegF(z){xti + αi | i ∈ [n]} = n. On the other hand, clearly,

trdegF(z){Pi(Htf1, . . . ,Htfn−1) | i ∈ [n]} ≤ n− 1.
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This makes the containment impossible.

Remark 3.2.9. The proof works if we replace the n pure monomials by any polynomials

whose leading monomials are algebraically independent and appear in degree≤ t part (under

some strict monomial ordering in which lower degree terms lead).

We can see the classical Jacobian criterion as a special case of Theorems 3.2.3 and

3.2.7.

3.2.4 Recovering the classics

As a corollary of Theorem 3.2.3 and Theorem 3.2.7, we get the classical Jacobian criterion

for the separable case (i.e. inseparable degree = p0 = 1).

Corollary 3.2.10 (Jacobian rephrased). Let F be any field. Let f ⊂ F[x] be such that the

field extension F(x)/F(f) is separable, then the linear terms (in x) of f1(x + z), . . . , fn(x + z)

are F(z)-linearly dependent iff f1, . . . , fn are algebraically dependent.

The dependence part of Theorem 3.2.7 helps us in characterizing the failure of the

Jacobian.

Corollary 3.2.11 (Jacobian fails for inseparable). For algebraically independent polyno-

mials f ⊂ F[x] such that the field extension F(x)/F(f) is inseparable, the linear terms (in

x) of f1(x + z), . . . , fn(x + z) are F(z)-linearly dependent.

Thus, Jacobian being zero implies that either the n-variate n polynomials are alge-

braically dependent, or they are independent but inseparable.

Now we describe the algorithm to test algebraic independence using our criterion.

3.3 Application: Algebraic independence testing algorithm

An easy consequence of Theorem 3.2.3 and Theorem 3.2.7 is that we get a randomized

poly-time algorithm for testing algebraic independence of polynomials over finite fields

(say, Fq of characteristic p) in the cases when the inseparable degree is constant.



53

Theorem 3.3.1 (Independence testing). For circuits f ∈ Fq[x] we have a randomized

poly(s,
(
t+n
n

)
)-time algebraic independence testing algorithm, where the inseparable degree

of the field extension Fq(x)/Fq(f) is t (assuming f algebraically independent) and s is the

total input size.

Algorithm idea: The criterion (by Theorems 3.2.3 & 3.2.7) essentially involves test-

ing Htfn ≡ 0 modulo the subspace V ′t := 〈1,Htf1, . . . ,Htfn−1〉tFq(z) in Qt, where t is

the inseparable degree of the field extension Fq(x)/Fq(f). (In fact, one needs to check

whether Htfj functionally depends on the remaining n − 1 polynomials, for all j ∈ [n].)

Implementing the criterion involves three main steps:

Step 1: Computing the arithmetic circuits for Htf1, . . . ,Htfn in Qt using the fact that

Htf = f(x + z)− f(z) in Qt.

Step 2: Computing the arithmetic circuits for the basis vectors generating the subspace

V ′t in Qt.

Step 3: Testing the nonzeroness of Htfn modulo the linear space V ′t given its basis vectors

as circuits, in Qt.

A subroutine that we use several times in our algorithm computes a basis of a given

subspace, over the field F(z), generated by given arithmetic circuits in F[z][x]. Let us call

this subroutine BASIS.

3.3.1 The subroutine BASIS

Suppose we are given m circuits a1, . . . , am ∈ Fq[z][x] and we want to compute a basis B

of the subspace generated by a1, . . . , am over Fq(z). Let d be a degree bound (wrt x, z),

and s a size bound, for these circuits.

We invoke the Alternant criterion as proven in [Mit13, Lem.3.1.2]. It says that– If

a1, . . . , am are Fq(z)-linearly independent, then for “random” points αi, i ∈ [m], in Fnq ,

det(aj(αi)) 6= 0. For this to work we need q > 2dm. Note that such a field extension

Fq/Fp can be constructed in polylog(dm)-time by [AL86]. Once we have fixed the x

variables we still have to test det(aj(αi)) 6= 0. This we can do by, again, randomly fixing
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the z variables to a single point in Fnq [Sch80, DL78, Zip79].

Moreover, to compute a basis B we merely have to find a column-basis of the matrix

(aj(αi))i,j . This can be done by basic linear algebra (using minors and random evaluations

as above), in randomized poly(sm log d)-time. So BASIS runs in randomized poly-time in

the input size.

3.3.2 Computing the arithmetic circuits for Htf1, . . . ,Htfn

Recall that Htf = f(x + z) − f(z) in Qt. Since Htf is nothing but the non-constant

part of the shifted f , truncated at degree t, we can get the circuit for Htf by shifting the

variables of f(x) and using standard circuit reductions.

Given an arithmetic circuit for f(x), we easily get the circuit for f(x + z). Now to

get the terms with degree ≤ t wrt x, from the above circuit, use Strassen’s homogeniza-

tion technique [Str73, SY10, Thm.2.2] which gives a homogeneous circuit of size O(t2s)

computing the homogeneous parts of Htf upto degree t.

3.3.3 Computing the basis vectors of V ′t

Recall that V ′t is generated as 〈1,Htf1, . . . ,Htfn−1〉tF(z) , t ≥ 1, in Qt. Now, having com-

puted the circuits for Htfj in Qt, we compute the generators for V ′t iteratively.

We first compute the linear basis B1 of the set, of above computed circuits {1,Htf1, . . .,

Htfn−1}, using the subroutine BASIS.

Next, we multiply every element of the obtained basis to every element of the set

{1,Htf1, . . . ,Htfn−1} in Qt and compute the basis B2 of the corresponding set of products

obtained.

We repeat the procedure and multiply every element of B2 to every element of {1,Htf1, . . .,

Htfn−1} and compute the basis to obtain B3, and so on.

Clearly, the size of the intermediate basis Bi remains bounded by the dimension of Qt

which is
(
n+t
n

)
. Further, we only need to go up to i ≤ t.

Hence, we compute the final basis, using BASIS, in randomized poly(s,
(
n+t
n

)
)-time.
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Figure 3.1: Our criterion
Jacobian Criterion Our Criterion

The approach: reduces algebraic indepen-
dence to linear indepen-
dence testing

reduces algebraic indepen-
dence to linear indepen-
dence testing

Related “approximate”
shift :

f(x) 7→ f(x + z)
mod 〈x〉2F(z)[x]

f(x) 7→ f(x + z) mod Ut

Vectors for F(z)-
dependence:

H1f mod U1 Htf mod Ut

Certifies alg. independence
if:

F(x)/F(f) is separable separable or inseparable
F(x)/F(f)

Efficiency in char(F) = 0: randomized poly-time al-
gorithm

t = 1, (same as Jacobian
criterion)

Efficiency in char(F) = p,
inseparable degree ≤ pe:

fails randomized poly
(
n+pe

n

)
-

time algorithm

3.3.4 Testing nonzeroness modulo the subspace V ′t

We now test nonzeroness of Htfn modulo V ′t. This is simply the question of computing the

dimension of the subspace spanned by {Htfn}∪Bt and the one by Bt, and checking whether

the difference is 1. Clearly, BASIS can be used to do this in randomized poly(s,
(
t+n
n

)
)-

time.

Thus, we have a poly(s,
(
t+n
n

)
)-time randomized algorithm for testing algebraic inde-

pendence, where t upper bounds the inseparable degree of the field extension Fq(x)/Fq(f)

and s is the input size. This finishes the proof of Theorem 3.3.1.

3.4 Interpretation of the criterion via Hasse-Schmidt dif-

ferential

Motivated by the classical Jacobian criterion, we try to generalize the criterion to positive

characteristic. Jacobian criterion can be proved using the differential operator (denoted

by H1) defined as follows,

H1 :=
∂

∂x1
z1 + · · ·+ ∂

∂xn
zn .

H1 acts on f ∈ F[z] as H1f = (∂f/∂x1)z1 + · · ·+ (∂f/∂xn)zn.
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The key idea of Jacobian criterion is that the differential operator can reduce the non-

linear problem of testing algebraic independence to linear algebra (testing linear indepen-

dence over function fields) in zero, or large characteristic. Formally, polynomials f1, . . . , fn

are algebraically dependent iff polynomials H1f1, . . . H1fn are linearly dependent over the

function field F(x1, . . . , xn). If we see the proof of Jacobian, we observe that four prop-

erties of differential operators (acting on some annihilating polynomial) crucially help to

achieve this reduction: linearity, product rule (Leibniz rule: H1(fg) = fH1g+ gH1f), the

fact that differentiating a polynomial reduces its degree, and differentiation does not make

a nonconstant polynomial zero. The last property fails over small characteristic, as we

know that the partial derivatives vanish for p-powers over characteristic p. This leads to

failure of Jacobian criterion.

Let us start with the question of finding analogs of differential operator in positive

characteristic that may help to reduce our problem to linear algebra. In our search for

nice derivative-like operator which may not kill p-powers, and that satisfies an analogous

product rule, Hasse derivative (Eqn.3.3) naturally comes up. Although derivative of xp

with respect to x is zero over characteristic p, the p-th order Hasse derivative of xp is 1

(essentially, differentiate it p-times over Q, divide by p!, and return back to Fp). Hasse

derivatives also satisfy a product rule analogous to the product rule (Sec.2.6) of higher

order derivatives. Hasse derivatives can be used to construct higher order differentials

and such differentials are known as Hasse-Schmidt higher order differentials. For example,

we can define a second order differential operator using the second order Hasse-Schmidt

derivatives: H2 := H2
1/2!, with its action on f given as

H2f :=
H2

1

2!
f =

∑
i,j∈[n]

1

2!

∂2f

∂xi∂xj
zizj .

More generally, we can define:

Hkf :=
Hk

1

k!
f

=
∑

k1+···+kn=k

1

(k1)!(k2)! . . . (kn)!
· ∂kf

∂xk11 ∂x
k2
2 · · · ∂x

kn
n

· zk11 · · · z
kn
n . (3.3)
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So, the natural choice of differential operator for getting a Jacobian like criterion

over characteristic p would be Hasse-Schmidt derivation of order pi, for a large enough

i. Hasse-Schmidt operator gets us through one direction (algebraic dependence implies

linear dependence), but this operator vanishes for polynomials of degree < pi, so it cannot

be used to certify independence in all cases. This problem can be avoided by considering

instead the sum of Hasse-Schmidt higher order differentials up to k, where k ≥ pi. Let us

call this operator Hk (Sec.2.6).

But taking higher derivative does not immediately give a generalization of Jacobian.

A major problem is, one wants to reduce the question of deciding algebraic independence

of n polynomials to deciding the linear independence of n polynomials/vectors. As in

the case of the proof of Jacobian criterion, ideally we want a bijection between algebraic

dependencies amongst the polynomials and the linear dependencies of the corresponding

vectors. But simple counting shows that there are n first derivatives in n variables, but

the number of higher derivatives is > n. We can fix this issue by reducing algebraic

dependence of n polynomials to linear dependence of n polynomials modulo a carefully

chosen subspace (by stuffing higher-products of the higher differentials in that subspace).

This gets implemented by working modulo Ut in Sec.3.2.2.

Now we give a version of generalized Jacobian criterion described in terms of Hasse-

Schmidt differentials. We describe the notation first. Hif(x) contains all the terms, of

the polynomial f(x + z)− f(x) ∈ Fp(x)[z], that are of degree (wrt z) ≤ i.

Let S ⊇ R be a ring extension over a field F, and let v1, . . . , vm ∈ S. Then the R-module

〈v1, . . . , vm〉R is simply the set of linear combinations of the vi’s where the coefficients come

from R. It is also a vector space over F. We extend this notation to powers (r ≥ 1):

〈v1, . . . , vm〉rR :=

∑
αi∈R

αi · vq11 · · · v
qm
m | q1 + · · ·+ qm = r, qj ≥ 0

 .
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Using the above notation, we define Uk, a subspace of Fp(x)[z].

Uk := 〈Hk−1f〉2Fp(x) + · · ·+ 〈H1f〉kFp(x) + 〈z〉k+1
Fp(x)[z] ,

U1 := 〈z〉2Fp(x)[z] .

Now we are ready to state the theorems.

Theorem 3.4.1 (Dependent). Let f ⊂ Fp[x] be a set of n n-variate polynomials. If f is

algebraically dependent, then Hkf is Fp(x)-linearly dependent modulo the subspace Uk, for

all k ≥ 1.

Theorem 3.4.2 (Independent). If f ⊂ Fp[x] is algebraically independent with insepa-

rable degree (of the field extension Fp(x)/Fp(f)) equal to pi, then Hkf is Fp(x)-linearly

independent modulo the subspace Uk, for k ≥ pi.

Moreover, Hkf is Fp(x)-linearly dependent modulo Uk, for every 1 ≤ k < pi.

These two theorems together give a Jacobian like criterion for testing algebraic inde-

pendence of n polynomials, assuming we are given a promise that the inseparable degree

is bounded by pi. The proofs of these two theorems are essentially same as the the proofs

of Theorem 3.2.3 and Theorem 3.2.7.

Matrix version of the criterion. From the above two theorems, we can get a Jacobian

like matrix J with entries in Fp[x]. The rows of the matrix J are indexed by Hkf and the

columns of the matrix are indexed by the monomials in z with degree ≤ k. The entry, in

the i-th row and the column indexed by a monomial m, is the coefficient of monomial m

in the polynomial Hkfi. Clearly, the entries of J are order ≤ k Hasse-Schmidt derivatives

of fi’s.

The subspace Vk of the ambient vector space Fp(x)(
n+k
k ) is defined by taking all the

coefficient vectors (corresponding to the coefficients of z-monomials of degree ≤ k) of the

polynomials in Uk.

It can be seen directly from our theorems that the row-span of the matrix J has full

rank modulo the subspace Vk iff the polynomials f are algebraically independent (assuming

that inseparability degree is ≤ k).
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3.5 Discussions

We give a criterion for testing algebraic independence over positive characteristic, in the

spirit of Jacobian criterion, that works for any field. Its complexity is parameterized by

the inseparable degree bound t. Bringing down the complexity from randomized poly(s,(
t+n
n

)
) to randomized poly(s, n, t) can be the next target.

The complexity of computing annihilating polynomials is well understood, but the

complexity of computing an approximate functional relation is not yet clear. Is there a

randomized poly(s, n, t)-time algorithm to compute an approximate functional dependence

up to precision t, given a set of dependent polynomials?

Following Kumar and Saraf [KS17], another interpretation of our criterion can be

given via implicit function theorem/ Newton iteration (see Lemma 5.1.1). Given a poly-

nomial p(x1, . . . , xn), let us view it as c0 + c1xn + . . . + cdxn
d, where the coefficients

ci ∈ F[x1, . . . , xn−1]. A polynomial g(x1, . . . , xn−1) is a root of p(x1, . . . , xn) wrt xn if

p(x1, . . . , xn−1, g) = 0. Using Newton iteration, a beautiful lemma of [DSY09] showed that

g≤t (for all nonnegative integer t) can be written as a truncated polynomial Ft(c0, . . . , cd)
≤t

if the polynomial p satisfies a non-degeneracy condition: ∂xnp(x1, . . . , xn) evaluates to a

nonzero constant at (0, g(0)). If A(f1, . . . , fn) = 0 for a set of polynomials f1(x), . . . , fn(x),

fn can be seen as a root of A(f1, . . . , fn−1, y) wrt y. Now using Lemma 3.1 of [DSY09], one

of the polynomials fi can be approximately written as a function of the other polynomi-

als if the annihilator A satisfies the above non-degeneracy condition. Over characteristic

zero, it is easy to see that an annihilator of minimal degree satisfies the non-degeneracy

condition if the variables of the given polynomials are shifted by a random point a. Using

the ideas presented in this chapter, we can generalize this to positive characteristic.

It is known that algebraic matroids over fields of positive characteristic may not have

any linear representation (unlike the zero characteristic case, where using the Jacobian

criterion any algebraic matroid can be represented by a linear matroid) [Lin85]. Does this

suggest that algebraic dependence of polynomials may not be directly reducible to linear

dependence over finite fields?
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Finally, we mention an interesting application of our criterion. [BMS13] defined tran-

scendence degree preserving homomorphisms as faithful homomorphism and showed that

this concept has applications in the derandomization of polynomial identity testing prob-

lem. Over characteristic zero or large, constructing faithful homomorphism boils down to

preserving the rank of the Jacobian. For several interesting special cases, [ASSS16] gave

such constructions. Over small characteristic, they do not work due to failure of the Jaco-

bian. Using our criterion, Chatterjee and Saptharishi [CS18] gave an explicit construction

of faithful maps for some special classes over small characteristic. Similar to our criterion,

the construction of [CS18] is efficient only in the bounded inseparability degree setting.

Improving the construction of [CS18] is another problem of interest.



Chapter 4

Algebraic Dependence over Finite

Fields is in AM ∩ coAM

Abstract

This chapter is based on joint work with Guo and Saxena [GSS18].

In this chapter, we give a different approach of testing algebraic dependence over

finite fields, using basic algebraic geometry. We show: For finite fields, algebraic

dependence testing (AD(Fq)) is in AM ∩ coAM. This result vastly improves the

current best upper bound known for AD(Fq)– from being ‘outside’ the polynomial

hierarchy (namely NP#P [MSS14]) to ‘lower’ than the second-level of polynomial

hierarchy (namely AM ∩ coAM). Our result rules out the possibility of the problem’s

NP-hardness, under standard complexity theory assumptions.

4.1 Proof overview

Now, we present a different approach of testing algebraic dependence over finite fields using

some basic tools from algebraic geometry. We view the given polynomials f1, . . . , fn ∈

F[x1, . . . , xn] as a polynomial map f : Fn → Fn. This map is defined as: a 7→ (f1(a), . . . ,
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fn(a)), where a denote a point (a1, . . . , an).

Note that if f1, . . . , fn are algebraically dependent and A is an annihilator of them,

then for any point a ∈ Fn, A(f1(a), . . . , fn(a)) = 0. Thus, the image of the polynomial

map f is contained in the zero set of the polynomial A(y1, . . . , yn). By the Schwartz-

Zippel-DeMillo-Lipton lemma [AB09, A.36], the size of this set is small. On the contrary,

the image of the polynomial map defined by algebraically independent polynomials is

large. For example, the image of algebraically independent polynomials x1, . . . , xn is the

full ambient space Fn. Exploiting the gap of the size of the image set in these two cases,

we can show algebraic dependence testing is in AM.

For the coAM protocol, we study the cardinality of a different set: the set of preimage

for a random point in the image of the polynomial map. In the case of algebraically

independent polynomials, the size of this set is small. On the other hand, as the image of

algebraically dependent polynomials is small, the preimage set is large for most points.

The main idea here can be expressed using basic algebraic geometry extending an

intuition from linear algebra. If the given polynomials are all linear, then for any point a

in the image of the given linear polynomials, dimension (Image) + dimension (Preimage of

a)=n. This is known as the rank-nullity theorem in linear algebra. In algebraic geometry,

this relation generalizes to polynomials of higher degree as well, but now it holds only for

a random/generic point in the image (not for all the points in the image) [Eis13, Section

14.3]. The transcendence degree is equal to the dimension of the variety corresponding to

the closure of the image of f1, . . . , fn. If the polynomials are independent, the dimension

of the image is n. Thus the dimension of the preimage for a random point is zero. If

the polynomials are dependent, for a random point, the dimension of the preimage is at

least one. Exploiting the gap of the size of the preimage set (for a point in the image

randomly picked by Arthur) in these two cases, we can show algebraic dependence testing

is in coAM.

Remark: Note that there is no general relationship between the transcendence degree

of f1, . . . , fn and the dimension of the zero set corresponding to the system of equations

{f1 = 0, . . . , fn = 0}[MSS14]. Dimension of the zero set V1 corresponding to the equation
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x1 = 0 is same as dimension of the zero set V2 corresponding to the equations {x1 =

x1x2 = 0}. But transcendence degree of {x1} is one, whereas the transcendence degree of

{x1, x1x2} is two.

It is known that computing the dimension of the zero set of f1, . . . , fn (or the decision

version whether the dimension is at least d for a given number d) is NP-hard [Koi97]. But,

we show that computing the dimension of the closure of Im(f) is unlikely to be NP-hard.

One advantage in our problem is that we could sample a random point in the set Im(f).

In contrast, it is not clear how to sample a random point in the zero set of f1, . . . , fn.

4.2 Proof of the main result

Now, we will prove the main result of this chapter.

Theorem 4.2.1. Algebraic dependence testing of polynomials (given as arithmetic cir-

cuits) in Fq[x] is in AM ∩ coAM.

Given f1, . . . , fm ∈ Fq[x1, . . . , xn], we want to decide if they are algebraically depen-

dent. We could assume, with some preprocessing (Lemma 2.3.1, Lemma 2.3.4), that

m = n. So, we assume the input instance to be f := {f1, . . . , fn} with nonconstant poly-

nomials.

In the following, let D :=
∏
i∈[n] deg(fi) > 0 and D′ := maxi∈[n] deg(fi) > 0. Let d be

a positive integer and q′ = qd. The value of d will be determined later. Let f : Fnq′ → Fnq′

be the polynomial map a 7→ (f1(a), . . . , fn(a)). For b = (b1, . . . , bn) ∈ Fnq′ , denote by Nb

the size of the preimage f−1(b) =
{

x ∈ Fnq′ | f(x) = b
}

.

Define A := Fq and N b := #{x ∈ An | fi(x) = bi, for all i ∈ [n]} which might be

∞. Let Q ∈ Fq[y1, . . . , yn] be a nonzero annihilator, of minimal degree, of f1, . . . , fn. If it

exists then deg(Q) ≤ D by Perron’s bound.

4.2.1 AM protocol

First, we study the independent case.
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Lemma 4.2.2 (Dimension zero preimage). Suppose f are independent. Then Nf(a) is

finite for all but at most (nDD′/q′)-fraction of a ∈ Fnq′.

Proof. For i ∈ [n], let Gi ∈ Fq[z, y1, . . . , yn] be the annihilator of {xi, f1, . . . , fn}. We have

deg(Gi) ≤ D by Perron’s bound. Consider a ∈ Fnq′ such thatG′i(z) := Gi(z, f1(a), . . . , fn(a))

∈ Fq[z] is a nonzero polynomial for every i ∈ [n]. We claim that Nf(a) is finite for such a.

To see this, note that for any b = (b1, . . . , bn) ∈ An satisfying the equations fi(b) =

fi(a), i ∈ [n], we have

0 = Gi(bi, f1(b), . . . , fn(b)) = Gi(bi, f1(a), . . . , fn(a)) = G′i(bi), ∀i ∈ [n] .

Hence, each bi is a root of G′i. It follows that Nf(a) ≤
∏
i∈[n] deg(G′i) <∞, as claimed.

It remains to prove that the number of a ∈ Fnq′ satisfying G′i = 0, for some index i ∈ [n],

is bounded by nDD′q′−1 ·q′n. Fix i ∈ [n]. Suppose Gi =
∑di

j=0Gi,jz
j , where di := degz(Gi)

and Gi,j ∈ Fq[y1, . . . , yn], for 0 ≤ j ≤ di. The leading coefficient Gi,di is a nonzero

polynomial. As f1, . . . , fn are algebraically independent, the polynomialGi,di(f1, . . . , fn) ∈

Fq[x1, . . . , xn] is also nonzero. Its degree is ≤ D′ deg(Gi,di) ≤ D′ deg(Gi) ≤ DD′. By the

Schwartz-Zippel-DeMillo-Lipton lemma, for all but at most (DD′/q′)-fraction of a ∈ Fnq′ ,

we have Gi,di(f1(a), . . . , fn(a)) 6= 0 which implies

G′i(z) = Gi(z, f1(a), . . . , fn(a)) =

di∑
j=0

Gi,j(f1(a), . . . , fn(a))zj 6= 0 .

The claim now follows from the union bound.

We need the following affine version of Bézout’s Theorem. Its proof can be found in

[Sch95, Theorem 3.1].

Theorem 4.2.3 (Bézout’s). Let g1, . . . , gn ∈ A[x1, . . . , xn]. Then the number of common

zeros of g1, . . . , gn in An is either infinite, or at most
∏
i∈[n] deg(gi).

Combining Lemma 4.2.2 with Bézout’s Theorem, we obtain

Lemma 4.2.4 (Small preimage). Suppose f are independent. Then Nf(a) ≤ D for all but

at most (nDD′/q′)-fraction of a ∈ Fnq′.

Next, we study the dependent case (with an annihilator Q).
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Lemma 4.2.5 (Large preimage). Suppose f are dependent. Then for k > 0, we have

Nf(a) > k for all but at most (kD/q′)-fraction of a ∈ Fnq′.

Proof. Let Im(f) := f(Fnq′) be the image of the map. Note that Q vanishes on all the

points in Im(f). So, |Im(f)| ≤ Dq′n−1 by the Schwartz-Zippel-DeMillo-Lipton lemma

[AB09, A.36].

Let B := {b ∈ Im(f) : Nb ≤ k} be the “bad” images. We can estimate the bad domain

points as,

#{a ∈ Fnq′ : Nf(a) ≤ k} = #{a ∈ Fnq′ : f(a) ∈ B} ≤ k|B| ≤ k|Im(f)| ≤ kDq′n−1 .

which proves the lemma.

Theorem 4.2.6 (AM). Testing algebraic dependence of f is in AM.

Proof. Fix q′ = qd > 4nDD′ + 4kD and k := 2D. Note that d will be polynomial in the

input size. For an a ∈ Fnq′ , consider the set f−1(f(a)) := {x ∈ Fnq′ | f(x) = f(a)}.

By Lemma 4.2.4 and Lemma 4.2.5: When Arthur picks a randomly, with high prob-

ability, |f−1(f(a))| = Nf(a) is more than 2D in the dependent case while ≤ D in the

independent case. Note that an upper bound on
∏
i∈[n] deg(fi) can be deduced from the

size of the input circuits for fi’s; thus, we know D. Moreover, containment in f−1(f(a))

can be tested in P. Thus, by Lemma 2.10.1, AD(Fq) is in AM.

4.2.2 coAM protocol

We first study the independent case.

Lemma 4.2.7 (Large image). Suppose f are independent. Then Nb > 0 for at least

(D−1 − nD′q′−1)-fraction of b ∈ Fnq′.

Proof. Let S := {a ∈ Fnq′ : Nf(a) ≤ D}. Then |S| ≥ (1− nDD′q′−1) · q′n by Lemma 4.2.4.

As every b ∈ f(S) has at most D preimages in S under f , we have |f(S)| ≥ |S|/D ≥

(D−1 − nD′q′−1) · q′n. This proves the lemma since Nb > 0 for all b ∈ f(S).

Next, we study the dependent case.
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Lemma 4.2.8 (Small image). Suppose f are dependent. Then Nb = 0 for all but at most

(D/q′)-fraction of b ∈ Fnq′.

Proof. By definition: Nb > 0 iff b ∈ Im(f) := f(Fnq′). It was shown in the proof of Lemma

4.2.5 that |Im(f)| ≤ Dq′n−1. The lemma follows.

Theorem 4.2.9 (coAM). Testing algebraic dependence of f is in coAM.

Proof. Fix q′ = qd > D(2D+ nD′). Note that d will be polynomial in the input size. For

b ∈ Fnq′ , consider the set f−1(b) := {x ∈ Fnq′ | f(x) = b} of size Nb.

Define S := Im(f). Note that: b ∈ Fnq′ has Nb > 0 iff b ∈ S. Thus, by Lemma

4.2.7 (resp. 4.2.8), |S| ≥ (D−1 − nD′q′−1)q′n > 2Dq′n−1 (resp. |S| ≤ Dq′n−1) when f

are independent (resp. dependent). Note that an upper bound on
∏
i∈[n] deg(fi) can be

deduced from the size of the input circuits for fi’s; thus, we know Dq′n−1. Moreover,

containment in S can be tested in NP. Thus, by Lemma 2.10.1, AD(Fq) is in coAM.

Proof of Theorem 4.2.1. The statement directly follows from Theorem 4.2.6 and Theorem

4.2.9.

4.3 Discussions

We give protocols to distinguish the two cases, whether the dimension of the closure of the

image is n or less. Can we extend the ideas further to give a randomized polynomial-time

algorithm? An intermediate problem (suggested by Ilya Volkovich) is to prove the result

AD(F) ∈ SBP ∩ coSBP. Here SBP stands for “small bounded-error probability” and is a

subclass of AM introduced in [BGM06].

As discussed in [DGW09, Dvi09, DGRV11], transcendence degree is a measure of en-

tropy of a polynomial source f : Fnq → Fnq , where Fq is a finite field. A polynomial source

[BSG13] can be seen as a random variable f(U), where f : Frq → Fnq is a polynomial map

and U is a random variable uniformly distributed over Frq. The problem of approximat-

ing entropy of polynomial sources over finite fields is another related problem of interest

[DGRV11].
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Chapter 5

Towards Factor Conjecture

Abstract

The factor conjecture states that low degree factors of high degree polynomials

computed by small-sized arithmetic circuits have small-sized circuits. In this chapter,

we give a simple proof of this conjecture for a special case. If the polynomial f =∏m
i=1 f

ei
i is given by a size s circuit, we show that the squarefree part

∏m
i=1 fi can be

computed by a circuit of poly(s, d) size, where d is the degree of the squarefree part.

This shows that the factor conjecture is true when squarefree part of the polynomial

has low degree. We assume that the underlying field has characteristic zero.

This chapter is partially based on joint work with Dutta and Saxena [DSS18]. The

proof of Theorem 5.2.1 presented in this chapter also appeared in the thesis [Dut18].

The proof of the main result in this chapter (Theorem 5.3.1) differs from the proof

given in [DSS18, Dut18].

5.1 Preliminaries

First, we present some preliminary results. Recall that the notation x stands for the

variables x1, . . . , xn. 0 denote the point (0, . . . , 0). I := 〈x〉 is the ideal of the polynomial
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ring F[x1, . . . , xn] generated by x1, . . . , xn. 〈x〉d is the d-th power of ideal I. 〈x〉d is

generated by all monomials of degree d. If f(x) is a polynomial or power series, f(x) mod

〈x〉d equals part of f(x) up to degree (d− 1).

The following classical result ([BCS13, Theorem.2.31]) says power series roots of a

polynomial can be approximated to arbitrary degree using Newton iteration. It is a key

tool used in this chapter.

Lemma 5.1.1 (Implicit Function Theorem [BCS13]). Let P (x, y) ∈ F(x)[y], P ′(x, y) =

∂P (x,y)
∂y and µ ∈ F be such that P (0, µ) = 0 but P ′(0, µ) 6= 0. Then, there is a unique

power series S such that S(0) = µ and P (0, S) = 0.

Furthermore, the power series root S can be approximated to arbitrary degree using

Newton iteration. Let y0 = µ and ∀t ≥ 0,

yt+1 = yt −
P (x, yt)

P ′(x, yt)
.

Then, ∀t ≥ 0,

S ≡ yt mod 〈x〉2t .

Proof. The proof is by induction on t. Let y0 := µ. Thus, base case is true. Define

yt+1 := yt − P (x,yt)
P ′(x,yt)

. As, yt ≡ yt−1 mod 〈x〉2t−1
=⇒ yt(0) = µ. Hence P ′(x, yt)|x=0 =

P ′(0, µ) 6= 0 and so P ′(x, yt) is invertible in the power series ring. So, yt+1 ∈ F[[x]].

Now, use Taylor expansion to complete the induction step.

P (x, yt+1) = P

(
x, yt −

P (x, yt)

P ′(x, yt)

)
= P (x, yt)− P ′(x, yt)

P (x, yt)

P ′(x, yt)
+
P ′′(x, yt)

2!

(
P (x, yt)

P ′(x, yt)

)2

− . . .

= 0 mod 〈x〉2t+1
.

Thus, P (x, yt+1) ≡ 0 mod 〈x〉2t+1
and yt+1 ≡ yt mod 〈x〉2t .

Remark. In the above theorem, we crucially need that P (x, y) is a polynomial in y, not

a power series. Thus, we can evaluate P (x, y) at a power series with a nonzero constant

term. In [BCS13, Theorem.2.31], the theorem is stated in full generality where P (x, y)
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can be a power series in y. In that case, µ must be zero.

Lemmas for pre-processing:

A polynomial is squarefree if it has no factor with multiplicity greater than one. The

following standard lemma gives a criterion of a polynomial to be squarefree (over charac-

teristic zero).

Lemma 5.1.2 (Squarefree criterion). Let f ∈ F(x)[y] be a polynomial with degy(f) ≥ 1.

f is squarefree if and only if f and f ′ := ∂yf are coprime.

Proof. We show that there does not exist g ∈ F(x)[y] with positive degree in y such that

g | gcdy(f(x, y), f ′(x, y)). Suppose g is an irreducible polynomial with positive degree in

y that divides both f(x, y) and f ′(x, y). If f(x, y) = gh, then f ′(x, y) = gh′ + g′h. Thus,

g | g′h. As g is irreducible and degy(g
′) < degy(g), we get that g | h. Hence, g2 | f . This

contradicts the hypothesis that f is squarefree.

We need the following property of resultants. Given two polynomials f(x, y) and

g(x, y), the resultant of f and g wrt y is the determinant of the Sylvester matrix. For the

definition of the Sylvester matrix, see [LN97].

Proposition 5.1.3 (Resultant and gcd). 1. Let f, g ∈ F[x, y] be polynomials with posi-

tive degree in y. Then, Resy(f, g) = 0 ⇐⇒ f and g have a common factor in F[x, y]

which has positive degree in y.

2. There exists u, v ∈ F[x] such that uf + vg = Resy(f, g).

A proof of this can be found in [VZGG13, Sec.6].

The following standard lemma states that coprimality (wrt a variable) of two polyno-

mials are preserved under random projections of the remaining variables.

Lemma 5.1.4 (Coprimality). Let f, g ∈ F(x)[y] be coprime polynomials wrt y (& non-

trivial in y). Then, for β ∈r Fn, f(β, y) and g(β, y) are coprime (& nontrivial in y).

Proof. Let f =
∑d

i=1 fiy
i and g =

∑e
i=1 giy

i. Choose a random β ∈r Fn. Then, by

Proposition 5.1.3 & Schwartz-Zippel-DeMillo-Lipton lemma , fd ·ge ·Resy(f, g) at x = β is

nonzero. This implies that Resy(f(β, y), g(β, y)) 6= 0. This implies, by Proposition 5.1.3,

f(β, y) and g(β, y) are coprime.
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Transforming the polynomial into a monic polynomial: A polynomial f(x, y) is

called monic wrt y if the coefficient of the highest degree (degree wrt y) monomial in y is

a constant. The given polynomial to be factored f(x) may not be monic wrt any of the

variables x1, . . . , xn. We can transform to a monic polynomial by applying an invertible

linear transformation on the variables. After getting the factors of the monic polynomial,

we get the factors of the original polynomial by applying the inverse of the transformation.

Lemma 5.1.5 (Transform to monic). For a polynomial f(x) of total degree d ≥ 0 and

random αi ∈r F, the transformed polynomial g(x, y) := f(αy+x) has a nonzero constant

as coefficient of yd, and degree wrt y is d.

Proof. The transformation we apply is xi 7→ xi + αiy where i ∈ [n]. Now, we write

f =
∑
|β|=d cβx

β + lower degree terms . Coefficient of yd in g is
∑
|β|=d cβα

β. For a

random α this coefficient will not vanish with high probability (using the Schwartz-Zippel-

DeMillo-Lipton lemma). As it is the highest degree monomial in g, degy(g) = deg(f) = d

and g is monic wrt y.

Kaltofen proved that the factor conjecture is true when f is of a very special form:

f = ge for some g ∈ F[x1, . . . , xn].

Theorem 5.1.6 ([Kal87]). Suppose f = ge has a circuit of size s. Then g has a circuit

of size poly(s, dg) where dg is the degree of g.

This theorem can be proved by reducing factoring to root finding using an auxiliary

equation T e − ge = 0. Note that the equation P (T ) = T e − ge = 0 has a root T = g of

multiplicity one. We can inductively build a circuit for the root g using Lemma 5.1.1. See

Theorem 2 in [Kal87] for the details of the circuit construction.

5.2 Factorization via power series root approximation

Most of the works in multivariate polynomial factorization use the concept of Hensel lifting.

A closely related (and mathematically equivalent [VzG84]) approach is via approximation

of the power series roots of the polynomial to be factored. The idea of computing factors

via finding approximate power series root was used in bivariate factoring [Kal82] and
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for general circuit factoring [Bür04]. Recently, [Oli16] showed how to reduce polynomial

factoring (of bounded individual degree polynomials given by low depth circuits) to finding

approximations of power series roots. In [DSS18], we give another reduction of factoring

to root approximation and show its applications in proving various closure under factoring

results for different classes. Here, we closely follow the exposition of [DSS18].

The following basic theorem in algebra relates factors and roots of a polynomial. A

polynomial f(x) over a field F has a factor x − a iff f(a) = 0. This generalizes this to

multivariate polynomials as well: y − g(x) is a factor of f(x, y) iff f(x, g(x)) = 0.

Thus, if there is a factor of the form (y − g(x)), it can be found by finding roots of

the polynomial f(x, y) with respect to y. But, a polynomial may not have any factor of

the form y− g(x), where g(x) is a polynomial. Nevertheless, we show that after applying

a random shift on the variables, a polynomial can be written as product of factors of the

form y − g(x), where g(x) is a formal power series in x1, . . . , xn. We formalize this in the

following theorem.

Theorem 5.2.1 (Power Series Complete Split). Let f ∈ F[x] and d0 be the degree of the

squarefree part of f . Consider αi, βi ∈r F and the map τ : xi 7→ αiy + xi + βi, i ∈ [n],

where y is a new variable. Then, over F[[x]], f(τx) = k ·
∏
i∈[d0](y − gi)γi, where k ∈ F∗,

γi > 0, and gi(0) := µi. Moreover, µi’s are distinct nonzero field elements.

Remark. Note, that a polynomial P ∈ F(x)[y] can be completely factored in the algebraic

closure of F(x). For example, take P (x, y) = y2 − x. The roots of this polynomial are

√
x and −

√
x. Theorem 5.2.1 says, after a random linear transformation, P completely

splits over F[[x]]. For example, shifted P (x+ 1, y) = y2 − (1 + x) has roots
√

(1 + x) and

−
√

(1 + x). Now,
√

(1 + x) can be written as a formal power series in x (recall Newton’s

binomial theorem with fractional exponent).

Proof. Let the complete irreducible factorization of f be
∏
i∈[m] f

ei
i . We apply a random

linear map τ so that f become monic in y (Lemma 5.1.5), this implies that all factors

also would become monic. As the map τ is invertible, the factors f̃i := fi(τx) remain

irreducible.

As fi(τx) is irreducible, applying Lemma 5.1.4, we see f̃i(0, y) = fi(αy + β) and
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∂yf̃i(0, y) remain coprime. Thus, using Lemma 5.1.2, f̃i(0, y) is square free.

Now, we can write f̃1(0, y) as
∏deg(f1)
i=1 (y−µ1,i) for distinct nonzero field elements µ1,i.

Using classical Newton Iteration (Lemma 5.1.1) on f̃1(x, y), we can write f̃1(x, y) as a

product of power series
∏deg(f1)
i=1 (y − g1,i), with g1,i(0) := µ1,i. Similarly, each fi(τx) can

be factored into linear factors in F[[x]][y].

As fi’s are irreducible coprime polynomials, by Lemma 5.1.4, it is clear that ∀i ∈ [m],

f̃i(0, y) are mutually coprime. In other words, µj,i are distinct and they are
∑

i deg(fi) =

d0 many. Hence, f(τx) can be completely factored as
∏
i∈[m] fi(τx)ei =

∏
i∈[d0](y − gi)γi ,

with γi > 0 and the field constants gi(0) being distinct.

The following proposition is a classical theorem, that says factorization over power

series ring is unique.

Proposition 5.2.2. [ZS75, Chap.VII] Power series ring F[[x]] is a unique factorization

domain (UFD), and so is F[[x]][y].

Computing a factor via power series root approximation: Suppose g is a non-

trivial factor of the polynomial f . If the degree of the input polynomial is d, the degree

of g would be ≤ (d − 1). Assume without loss of generality (Theorem 5.2.1) that the

polynomial f completely splits into factors of the form (y− ri(x)) where ri(x) is a formal

power series. Now, some of these factors combine to give g. Assume, we know all the

power series roots of g. If g =
∏m
i=1(y− ri(x)). If we approximate ri’s up to the precision

equal to the degree of g (at most d− 1), we can recover g completely by multiplying these

m factors and truncating up to degree of g. Thus, to prove size upper bound of factors,

we need to only bound the circuit size of the approximate roots.

How do we algorithmically find the right subset of roots that correspond to g? The

brute force method considers all possible combinations. An efficient approach is via finding

a minimal polynomial of the approximate root using linear algebra. This is a classical idea

from [Kal82], see [Bür04, DSS18] for the details.
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5.2.1 VP closed under factors: a proof via power series roots.

There are several proofs of closure of VP under factoring. The first proof by Kaltofen

[Kal89] used Hilbert’s irreducibility theorem and gave an efficient algorithm to compute

the factors. There is another proof by Kaltofen [Kal87], where he uses a technique called

single factor Hensel lifting. See [Bür04, Thm.1.2] for another exposition of this proof.

Inspired by Kaltofen and Trager’s [KT90] famous black-box factoring result, Bürgisser

[Bür13, Thm.2.21] has given an elegant proof. Recently, [CKS19] has given another proof

using Newton iteration for several variables.

Using the reduction of factoring to power series approximation, we can give a short

proof of the fact that VP is closed under factors.

Theorem 5.2.3 ([Kal87]). Let f = geh be given by a size s arithmetic circuits. Assume

g, h are coprime and let dg be the degree of g. Now, g can be computed by size poly (e, dg, s)

sized circuit.

Proof. Suppose f(x) = geh is a polynomial of degree d, given by a circuit of size s.

After applying a random shift, we can assume that the polynomial has become monic

and completely splits into power series roots. Using Theorem 5.2.1, f̃(x, y) = f(τx) =

k ·
∏d0
i=1(y − gi)γi , with gi(0) := µi being distinct. For the sake of simplicity, we rename

f̃(x, y) to f(x, y) and rename g̃(x, y) to g(x, y).

Now, g is a factor of multiplicity e. All the power series roots of g have multiplicity

e. If a power series root has multiplicity greater than one, we can not approximate it

using the classical Newton iteration formula, as the denominator become non invertible.

To handle this, we do the following preprocessing.

If we take (e− 1)-th derivative of f̃(x, y) with respect to y, we get a polynomial which

has all the power series roots of g, but with multiplicity one. Using Lemma 2.8.2, we

compute the circuit of (e−1)-th derivative of f , incurring size blow-up of e2s. Henceforth,

we work with this circuit (for simplicity, we rename the polynomial to f again) to get

approximations of the power series roots of the factor g.

Now we show, if a power series root gi of a polynomial f of circuit size s has multiplicity

one, it can be approximated up to degree δ, by an arithmetic circuit of size poly(s, δ).
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Using Newton iteration formula, gi,t+1 := gi,t − f
∂yf

∣∣
y=gi,t

mod 〈x〉2t , where gi,t ≡

gi mod 〈x〉2t . We compute gi,t’s incrementally, 0 ≤ t ≤ log δ+ 1, by a circuit with division

gates (keeping track of numerator and denominator separately).

Suppose gi,t has a circuit of size st. Now, from the Newton iteration formula, st+1 =

st + poly(s). Thus, gi,δ can be computed by a circuit (with division gates) of size

poly(s, log δ). Finally, we use Strassen’s division elimination and homogenization (Lemma

2.8.3) to compute a circuit of size poly(s, δ) without any division gate. Using the above,

all power series roots of g up to degree of g, (g
≤dg
i ) can be computed by circuits of size

poly(e, dg, s).

To get the circuit of the factor g =
∏
i(y− gi) of degree dg, we have to multiply all the

circuits of (y− g≤dgi ) and finally truncate (using Lemma 2.8.1) up to degree dg. The final

size of the circuit of the factor is poly(e, dg, s).

Remark. To compute roots of multiplicity e, we take derivatives of order (e−1) to reduce

to the case of multiplicity one. Taking e-th derivative using Lemma 2.8.2 causes a blow-up

of size by a factor of poly(e). It is unlikely that e-th derivative of a size s circuit can be

computed by a poly(s, log e) sized circuit, otherwise, VP=VNP [Kal87].

Newton iteration with multiplicity: The following formula is known as general-

ized/modified Newton Iteration, as it works with any multiplicity e > 0. When e = 1,

this is same as classical Newton iteration. See [DSS18] for a proof.

Lemma 5.2.4. If f(x, y) = (y−g)eh, where h|y=g 6= 0 mod 〈x〉 and e > 0, then the power

series for g can be approximated by the recurrence:

yt+1 := yt − e · f

∂yf

∣∣∣∣
y=yt

(5.1)

where yt ≡ g mod 〈x〉2t.

When e ≥ 2, the denominator ∂yf |y=yt is zero mod〈x〉, thus, its reciprocal does not

exist. However, the ratio (f/∂yf)
∣∣
y=yt

does exist in F[[x]].

Can we use modified Newton Iteration to prove factor conjecture? The answer is yes, if

we can solve the following problem of modular division [DSS18, Theorem 2]. The modular
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division problem is to show that if f/g is defined in F[[x]], where polynomials f and g can

be computed by a circuit of size s, then f/g mod 〈x〉d can be computed by a circuit of

size poly(sd). Note that if g is invertible in F[[x]], then the question of modular division

can be solved using Strassen’s division elimination [Str73]. But, here we have to handle

the case when g is not invertible in F[[x]] (though f/g is well-defined). If we shift the

numerator and denominator, we would get f(x + a)/g(x + a) mod 〈x〉d, but we do not

know how to recover f(x)/g(x) mod 〈x〉d from it (unless f/g is a polynomial).

To handle factors with high multiplicity, Bürgisser [Bür04] worked with the perturbed

polynomial F (x, y) = f(x, y+ ε)− f(0, ε) instead of the original polynomial f(x, y). Note

that (0, 0) is a simple root of F (x, y). Now, the partial derivative ∂yF (0, 0) does not

vanish over F(ε). So, a power series root of F can be approximated iteratively by Newton

iteration. This would give an approximative circuit of the factors. See [Bür04] for the

details.

5.3 Factors of arithmetic circuits of low degree radical

Now we prove the main theorem of this chapter. We assume the characteristic of the

underlying field to be zero.

Theorem 5.3.1. Every factor of a polynomial computed by size s circuit has circuits of

size polynomially bounded by s and degree of the squarefree part of the polynomial.

Proof. Suppose f =
∏m
i=1 f

ei
i is the complete irreducible factorization of f . The squarefree

part of f is
∏m
i=1 fi. Now, ∂x1f =

∏m
i=1 f

ei−1
i u, where u =

∑m
i=1 eif1 · · · fi−1 · (∂x1fi) ·

fi+1 · · · fm. We multiply this derivative by a new variable z. Now, if we take the polynomial

F := f + z∂x1f , it would be factorized as
∏m
i=1 f

ei−1
i (

∏m
i=1 fi + z ·u). Note that the factor

G := (
∏m
i=1 fi + z · u) has multiplicity one. Also note

∏m
i=1 f

ei−1
i and (

∏m
i=1 fi + z · u) are

coprime. So, invoking Theorem 5.2.3 on F , the factor G can be computed by a poly(s, d′)

sized circuit, where d′ is the degree of the squarefree part. After finding the circuit of∏m
i=1 fi + z · u, we put z to zero to get a circuit for the squarefree part

∏m
i=1 fi. After

we get the circuit of the squarefree part, we can compute any irreducible factor of f in
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poly(s, d′) by factoring the squarefree part using Theorem 5.2.3.

Remark. In [DSS18], we proved Theorem 5.3.1 using a different technique that we call

allRootsNI (recursive root finding using matrices). In allRootsNI, we simultaneously find

the approximations of all the power series roots gi of f(τ(x)). For all i, from approxi-

mations of gi up to degree δ − 1 (denoted g<δi ), we calculate approximations of gi up to

degree δ.

Assume, the power series split of the shifted polynomial is: f(x, y) =
∏
i(y − gi)

γi

and d0 is the degree of the radical. Now, we analyze the logarithmic derivative identity:

(∂yf)/f =
∑

i γi/(y− gi). We reduce the above identity modulo Iδ+1, where I := 〈x〉 and

µi := gi(0) ≡ gi mod I.

Now, we would get the following.

∂yf

f
=

d0∑
i=1

γi
y − gi

≡
d0∑
i=1

γi

y − g<δi
+

d0∑
i=1

γi · g=δ
i

(y − µi)2
mod Iδ+1.

The above is a linear equation in terms of the d0 unknowns g=δ
i (γi, µi’s are known.)

By fixing y to d0 different elements ci in F, i ∈ [d0], we get a linear system with a

unique solution for the unknowns. By solving this system, we get all the g=δ
i . From the

approximations of these power series roots, we can show that the factors can be computed

by poly(s, d0) sized circuits. See [DSS18, Theorem 1] for the details.

5.4 Discussions

Factor conjecture has interesting implications in algebraic complexity. See [Bür13, Bür04]

for some consequences of factor conjecture, especially in relating decision and computation

in algebraic complexity.

Suppose a polynomial f has a circuit of size s. Can we say that the squarefree part of

f has poly(s) sized circuit [DSS18]? If this is true, the factor conjecture directly follows.

Another question relevant here is about arithmetic circuit complexity of high de-

gree GCD of a set of polynomials. Kaltofen proved [Kal87, Theorem 4] if f1, . . . , fm ∈
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F[x1, . . . , xn] are polynomials given by a size s arithmetic circuit and g is the GCD of

f1, . . . , fm and d be the total degree of g, then g can be computed by size poly(s, d) arith-

metic circuit. Kaltofen asked [Kal87, Problem 4] whether g can be computed by a circuit

of size poly(s). An affirmative answer to this question would show that even high de-

gree GCD of polynomials given by a small-sized circuit can be computed by a small-sized

circuit.

There are several other open questions on closure of different classes under factoring.

Is it true that all factors of a arithmetic formula of size s can be computed by an arithmetic

formula of size polynomially bounded in s? In [DSS18], we show that the reduction to

power series root approximation gives a poly(s, dlog d) size upper bound for the formula

size of factors of a polynomial of degree d computed by a formula of size s. Finally, it is

unknown whether VP over positive characteristic is closed under factors [Bür13]. In fact,

the following question is open [KSS15]. Given a circuit of a polynomial f(x1, . . . , xn) over

Fp, where f(x1, . . . , xn) = gp, for some polynomial g(x1, . . . , xn), it is not known whether

g has a circuit of size poly(s, d), where d is the degree of f .





Part III

Hitting Set for VP

81





Chapter 6

A PSPACE Construction of

Hitting Set for VP

Abstract

This chapter is based on joint work with Guo and Saxena [GSS18].

The hitting set construction problem for VP asks to construct a small hitting set for

the class of n-variate polynomials of degree d, approximated by size s circuits. In

this chapter, we show how this problem can be reduced to a problem, approximate

polynomials satisfiability, that can be seen as a generalization of the well-known

problem of polynomial system satisfiability (Hilbert’s Nullstellensatz). Using basic

algebraic geometry, this reduces to the problem of testing if all the annihilators

of the polynomials in the system have zero in the constant term. Using a result

from [GSS18] that solves the latter problem in PSPACE, we solve the hitting set

construction problem for VP in PSPACE. Mulmuley [Mul17] showed that the hitting

set construction for VP is in EXPSPACE, whereas for VP it is in PSPACE. Forbes

and Shpilka [FS18] showed hitting set construction can be done in PSPACE for VP

as well, but their method is analytic and applicable only for fields like rationals or

83
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reals. Our approach is algebraic and applicable to arbitrary fields.

6.1 PSPACE Construction of Hitting Set for VP

First, we discuss the explicit hitting set construction problem for the class VP. Let C(n, s, d)

be the set of all n-variate degree ≤ d polynomials computable by size ≤ s arithmetic

circuits. We want to find a hitting set of poly(n, s) size for this class.

A counting argument (using Schwartz-Zippel-DeMillo-Lipton lemma and an upper

bound of number of size s circuits of fan-in 2 over a finite field) shows that hitting sets

of size poly(n, s) exist for the class C(n, s, d) over finite fields of size ≥ d2. See [For14,

Lemma 3.2.14] for a proof. This proof shows a random set of size slightly more than s

is a hitting set for the class of size s circuits, with high probability. Over infinite fields,

there are infinitely many circuits of same size, so the counting argument does not work.

Nevertheless, counting and comparing the dimension and degree of the variety containing

the coefficient vectors of the polynomials in the class C(n, s, d), [HS80] showed a random

set (each element picked independently and uniformly at random from a large enough

fixed set) of size poly(n, s) is a hitting set for the class C(n, s, d).

For the hitting-set construction problem, it suffices to focus only on homogeneous poly-

nomials (given a black-box of a polynomial, one can efficiently compute its homogeneous

components in a black-box way [SY10]). Homogeneous polynomials are known to be com-

putable by homogeneous circuits, where each gate computes a homogeneous polynomial

[SY10].

Given inputs n, s, r (in unary), there is a PSPACE construction [FS18, Mul17] of

a set of points of size poly(n, s) and bit complexity bounded by poly(n, s, r), that is

guaranteed to be a hitting set for the class of size s homogeneous circuits computing n-

variate homogeneous polynomials of degree r. The construction has the following two

main steps.

Step 1 (Guess): Enumerate over all possible candidate hitting sets of size bounded by

(ns)c for some large enough constant c (each element of the set is from [r2]n).
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Step 2 (Verify): Check if a candidate set is a hitting set for the class. Is there a circuit

of size s computing a nonzero polynomial of degree r that evaluates to zero at all points

in the candidate set?

Going over all possible hitting sets can be done in PSPACE. The challenging step is

to certify that a candidate set is a hitting set for the given class. If the polynomials are

over some finite field, one can check if a set is hitting set by evaluating all polynomials

in the class, at all the points in the candidate set. This is not possible for infinite fields

like Q or C. Here we need the idea of universal circuits. An universal circuit Ψ(y,x) is

a homogeneous circuit in n essential variables x and s′ := O(sr4) auxiliary variables y of

size O(sr4). By appropriately fixing the auxiliary variables to constants, it can output any

homogeneous n-variate polynomial of degree r which is computable by a size s circuits.

See [Raz08, SY10] for a universal circuit construction.

Now, we show how the hitting set verification problem can be reduced to polynomial

system satisfiability using universal circuits. Given a candidate hitting set {x1, . . . ,xm},

we check the existence for solutions (over the closure of the underlying field) for the

following system of polynomial equations. For all i ∈ [m], Ψ(xi,a) = 0 and Ψ(b,a) = 1.

If there is a solution (b,a) to this system, then there is a nonzero polynomial Ψ(x,a)

that vanishes at all points in the candidate hitting set. On the contrary, if the candidate

set is indeed a hitting set, there would be no solution of this system. Checking whether

a solution exists for a system of polynomials is in PSPACE using an effective version

of Hilbert’s Nullstellensatz [Kol88] and solving a linear system of exponentially many

unknowns and equations.

Finally, note that in the above construction, we actually construct hitting set for a

bigger class than the class of size s homogeneous circuits computing n-variate homogeneous

polynomials of degree r. We give hitting set for the polynomials that are projections of

a O(sr4) sized universal circuit (fixing the auxiliary variables by all possible constants).

Every possible projection of the universal circuit Ψ(y,x) may not be computable by a size

s circuit.

The above construction does not directly generalize to the closure of VP. There are
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several issues. Firstly, as noted by Forbes and Shpilka [FS18], a hitting set for a class of

polynomials, may not be a hitting set for the closure of that class. Secondly, in the verifi-

cation step, this approach leads to a system of exponentially many polynomial equations

(as the best bound known for converting an approximative circuit to a circuit exactly

computing the polynomial is exponential). We show a natural approach to circumvent

this problem in the following section.

6.2 PSPACE Construction of Hitting Set for VPA

Assumptions on the field. The results in this section are valid for any field, though we

describe it only for the closure of finite fields. Suppose p is a prime. Define A := Fp. We

want to find hitting-sets for certain polynomials in A[x1, . . . , xn]. Fix a p-power q ≥ Ω(sr6),

for the given parameters s, r. Assume that p - (r+ 1). Also, fix a model for the finite field

Fq [AL86].

First, we define the notion of ‘infinitesimally approximating’ a polynomial by a small

circuit.

Approximative closure of VP. [BIZ18] A family (fn|n) of polynomials from A[x] is

in the class VPA if there are polynomials fn,i and a function t : N 7→ N such that gn

has a poly(n)-size poly(n)-degree algebraic circuit, over the field A(ε), computing gn(x) =

fn(x) + εfn,1(x) + ε2fn,2(x) + . . .+ εt(n)fn,t(n)(x). That is, gn ≡ fn mod εA[ε][x].

The smallest possible circuit size of gn is called the approximative complexity of fn,

namely size(fn).

Hitting-set for VPA. Given functions s = s(n) and r = r(n), a finite subset H ⊆ An

is called a hitting-set for degree-r polynomials of approximative complexity s, if for every

such nonzero polynomial f : ∃v ∈ H, f(v) 6= 0.

Heintz and Schnorr’s [HS80] proof of the existence of small hitting set for VP uses

concepts from algebraic geometry, essentially counting dimension and degree of the variety

containing coefficient vectors of all low degree polynomials computed by small circuits. As

varieties are closed under Zariski topology, it already contains the polynomials in VPA.



87

Thus, Heintz and Schnorr’s [HS80] result directly extend to degree-r size-s polynomials.

Lemma 6.2.1. [HS80, Theorem 4.4] There exists a hitting-set H ⊆ Fnq of size O(s2n2)

(assuming q ≥ Ω(sr2)) that hits all nonzero degree-r n-variate polynomials in A[x] that

can be infinitesimally approximated by size-s algebraic circuits.

Ultimately, we are interested in computing such a hitting-set in poly(s, log r, log q)-

time. Here we give a PSPACE explicit construction.

Note that for the hitting-set construction problem, it suffices to focus only on ho-

mogeneous polynomials. They are known to be computable by homogeneous circuits,

where each gate computes a homogeneous polynomial [SY10]. We use universal circuits

[Raz08, SY10] that can simulate any circuit of size-s computing a degree-r homogeneous

polynomial in A(ε)[x1, . . . , xn]. Recall that the universal circuit Ψ(y,x) is a circuit in

n essential variables x and s′ := O(sr4) auxiliary variables y. The variables y are the

ones that one can specialize in A(ε), to compute a specific polynomial in A(ε)[x1, . . . , xn].

Every specialization gives a homogeneous degree-r size-s′ polynomial. Moreover, the set

of these polynomials is closed under constant multiples [FS18, Theorem 2.2].

Note that there is a hitting-set, with m := O(s′2n2) points in Fnq (∵ q ≥ Ω(s′r2)), for

the set of polynomials P infinitesimally approximated by the specializations of Ψ(y,x)

[HS80].

In Chapter 1, we already defined the problem of approximate polynomials satisfiability

(APS). Now, we give a criterion to decide whether a candidate set is a hitting-set by

reducing the problem to an APS instance.

Theorem 6.2.2 (hitting-set criterion). Set H =: {v1, . . . ,vm} ⊆ Fnq is not a hitting-

set for the family of polynomials P infinitesimally approximated by the specializations of

Ψ(y,x) iff there is a satisfying assignment (α, β) ∈ A(ε)s
′ × A(ε)n such that:

(1) ∀i ∈ [n], βi
r+1 − 1 ∈ εA[ε], where r is the degree of the specializations of Ψ(y,x),

(2) Ψ(α, β)− 1 ∈ εA[ε], and

(3) ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε].
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Remark– The above criterion holds for algebraically closed fields A of any character-

istic. Thus, it reduces those hitting-set verification problems to APS as well.

Proof. First we show that: ∃x ∈ A(ε), xr+1−1 ∈ εA[ε] implies x ∈ A[[ε]]∩A(ε) (= rational

functions defined at ε = 0).

Claim 6.2.3. ∃x ∈ A(ε), xr+1 − 1 ∈ εA[ε] implies x ∈ Zr+1 + εA[[ε]], where Zr+1 is the

set of (r + 1)-th roots of unity in A.

Proof. Recall the formal power series A[[ε]] and its group of units A[[ε]]∗. Note that for any

polynomial a =
(∑

i0≤i≤d aiε
i
)

with ai0 6= 0, the inverse a−1 = ε−i0 ·
(∑

i0≤i≤d aiε
i−i0
)−1

is in ε−i0 ·A[[ε]]∗. This is just a consequence of the identity (1− ε)−1 =
∑

i≥0 ε
i. In other

words, any rational function a ∈ A(ε) can be written as an element in ε−iA[[ε]]∗, for some

i ≥ 0. Thus, write x as ε−i · (b0 + b1ε+ · · · ) for i ≥ 0 and b0 ∈ A∗. This gives

xr+1 − 1 = ε−i(r+1)(b0 + b1ε+ b2ε
2 + · · · )r+1 − 1 .

For this to be in εA[ε], clearly i has to be 0 (otherwise, ε−i(r+1) remains uncanceled);

implying that x ∈ A[[ε]].

Moreover, we deduce that br+1
0 − 1 = 0. Thus, condition (1) implies that b0 is one of

the (r+ 1)-th roots of unity Zr+1 ⊆ A (recall that, since p - (r+ 1), |Zr+1| = r+ 1). Thus,

x ∈ Zr+1 + εA[[ε]].

[⇒]: Suppose H is not a hitting-set for P. Then, there is a specialization α ∈ A(ε)s
′

of

the universal circuit such that Ψ(α,x) computes a polynomial in A[ε][x]\εA[ε][x], but still

‘fools’ H, that is, ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε]. What remains to be shown is that conditions

(1) and (2) can be satisfied too.

Consider the polynomial g(x) := Ψ(α,x)
∣∣
ε=0

. It is a nonzero polynomial, in A[x]

of degree-r, that ‘fools’ H. By the Schwartz-Zippel-DeMillo-Lipton lemma, there is a

β ∈ Znr+1 such that a := g(β) is in A∗. Clearly, βr+1
i − 1 = 0, for all i. Consider

ψ′ := a−1 · Ψ(α,x). Note that ψ′(β) − 1 ∈ εA[ε], and ψ′(vi) ∈ εA[ε] for all i. Moreover,

the normalized polynomial ψ′(x) can easily be obtained from the universal circuit Ψ by
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changing one of the coordinates of α (For example, the incoming wires of the root of the

circuit). This means that the three conditions (1)-(3) can be simultaneously satisfied by

(some) (α′, β) ∈ A(ε)s
′ × Znr+1.

[⇐]: Suppose the satisfying assignment is (α, β′) ∈ A(ε)s
′×A(ε)n. As shown in Lemma

6.2.3, condition (1) implies: β′i ∈ Zr+1 + εA[[ε]] for all i ∈ [n]. Let us define βi := β′i
∣∣
ε=0

,

for all i ∈ [n]; they are in Zr+1 ⊆ A. By Condition (3): ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε].

Since any rational function a ∈ A(ε) can be written as an element in ε−iA[[ε]]∗, for

some i ≥ 0, we get that Ψ(α,x) is in ε−jA[[ε]][x], for some j ≥ 0. Expand the polynomial

Ψ(α,x), wrt ε, as:

g−j(x)ε−j + · · ·+ ε−2g−2(x) + g−1(x)ε−1 + g0(x) + εg1(x) + ε2g2(x) + . . . .

Let us study Condition (2). If for each 0 ≤ ` ≤ j, polynomial g−`(x) is zero, then

Ψ(α, β′)
∣∣
ε=0

= 0 contradicting the condition. Thus, we can pick the largest 0 ≤ ` ≤ j such

that the polynomial g−`(x) 6= 0.

Note that the normalized circuit ε` · Ψ(α,x) equals g−` at ε = 0. This means that

g−` ∈ P, and it is a nonzero polynomial fooling H. Thus, H cannot be a hitting-set for P

and we are done.

Using Theorem 6.2.2 and assuming Theorem 6.3.3, we get the following result.

Theorem 6.2.4. There is a PSPACE algorithm that (given input n, s, r in unary & suit-

ably large Fq) outputs a set, of points from Fnq of size poly(nsr, log q), that hits all n-variate

degree-r polynomials over Fq that can be infinitesimally approximated by size s circuits.

Proof. Given a prime p and parameters n, r, s in unary (wlog p - (r+1)), fix a field Fq with

q ≥ Ω(sr6). Fix the universal circuit Ψ(y,x) with n essential variables x and s′ := Ω(sr4)

auxiliary variables y. Fix m := Ω(s′2n2).

For every subset H =: {v1, . . . ,vm} ⊆ Fnq solve the APS instance described by Con-

ditions (1)-(3) in Theorem 6.2.2. These are (n + m + 1) algebraic circuits of degree

poly(srn, log p) and a similar bitsize. Using the PSPACE algorithm for AnnAtZero test,

it can be solved in poly(srn, log p)-space as followed.
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The number of subsets H is qnm. So, in poly(nm log q)-space we can go over all of

them. If APS fails on one of them (say H) then we know that H is a hitting-set for P.

Since Ψ is universal, for homogeneous degree-r size-s polynomials in A[x], we output H

as the desired hitting-set.

6.3 APS, Origin in closure and Annihilating at zero

First, we give some notations used. Let A be the algebraic closure of F. Write f : An → Am

for the polynomial map sending a point x = (x1, . . . , xn) ∈ An to (f1(x), . . . , fm(x)) ∈ Am.

For a subset S of an affine or projective space, S denotes its Zariski closure in that space.

We use O to denote the origin 0 of an affine space. Im(f) denote the image of the

polynomial map f .

6.3.1 APS and AnnAtZero

The problem O ∈ Im(f) is same as checking the existence of a solution x ∈ An to fi = 0,

for i ∈ [m]. It is well known in algebraic geometry that checking whether O ∈ Im(f) is

equivalent to the existence of an “approximate solution” x ∈ A[ε, ε−1]n, which is a tuple

of Laurent polynomials in a formal variable ε.

Theorem 6.3.1 (Approx. wrt ε). O ∈ Im(f) iff there exists x = (x1, . . . , xn) ∈ A(ε)n

such that fi(x) ∈ εA[ε], for all i ∈ [m]. Moreover, when such x exists, it may be chosen

such that

xi ∈ ε−∆A[ε] ∩ ε∆′A[ε−1] =


∆′∑

j=−∆

cjε
j : cj ∈ A

 , i ∈ [n],

where ∆ :=
∏
i∈[m] deg(fi) > 0 and ∆′ := (maxi∈[m] deg(fi)) ·∆ > 0.

Its proof is essentially given in [LL89]. See also, [BCS13, Lemma 20.28], [GP18,

Page 37:53], [GSS18].

Now, APS can be reduced to testing the constant term of annihilators using the concept

of ideal-variety correspondence.
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Lemma 6.3.2 (O in the closure). The constant term of every annihilator for f is zero iff

O ∈ Im(f).

Proof. Note that: Q ∈ A[Y1, . . . , Ym] vanishes on Im(f) iff Q(f) vanishes on An, which

holds iff Q(f) = 0, that is, Q is an annihilator for f . So Im(f) = V (I), where the ideal

I ⊆ A[Y1, . . . , Ym] consists of the annihilators for f . Also note that {O} = V (m), where m

is the maximal ideal 〈Y1, . . . , Ym〉.

Let us study the condition O ∈ Im(f). By the ideal-variety correspondence, {O} =

V (m) ⊆ Im(f) = V (I) is equivalent to I ⊆ m, that is, Q mod m = 0 for Q ∈ I. But

Q mod m is just the constant term of the annihilator Q. Hence, we have the equivalence.

As an interesting corner case, the above lemma proves that whenever f are algebraically

independent, we have Am = Im(f). For example, f1 = X1 and f2 = X1X2 − 1. But in

the dependent cases, Im(f) is not necessarily closed in the Zariski topology. Consider the

following example. Let n = 2, m = 3. Consider f1 = f2 = X1 and f3 = X1X2 − 1. The

annihilators are multiples of (Y1−Y2), which means by Lemma 6.3.2 that O ∈ Im(f). But

there is no solution to f1 = f2 = f3 = 0, i. e. , O /∈ Im(f).

Is APS equivalent to a projective version of polynomials satisfiability? The following

remark answers this question. Given a system of polynomial equations f1(x1, . . . , xn) =

0, . . . , fm(x1, . . . , xn) = 0, we can always homogenize fi’s by introducing a new variable

z. The question of projective polynomials satisfiability for a given system of equations is

whether there is a nonzero solution (called a projective solution) to the homogenized sys-

tem. We have seen that APS does not directly reduce to (affine) polynomials satisfiability,

as there are unsatisfiable systems, For example, {x = 0, xy = 1}, that have approximate

solutions. We note that APS does not directly reduce to projective polynomials satisfiabil-

ity either: Consider the system {x+y = 0, x+y = 1}, corresponding to two parallel affine

lines. It has no approximate solution, but the homogenized system {x+y = 0, x+y = z}

has a projective solution (1,−1, 0).

Nonetheless, it is true that if the equations f1 = 0, . . . , fm = 0 have an approximate
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solution, then the homogenized equations f̂1 = 0, . . . , f̂m = 0 have a projective solu-

tion (in Pn). We sketch a proof for this fact: Suppose a1, . . . , an ∈ F(ε) ⊆ F((ε)) form

an approximate solution of the original system. Let an+1 = 1. Then fi(a1, . . . , an) =

f̂i(a1, . . . , an, an+1) for i ∈ [m]. Choose the smallest k ∈ Z such that εkai is in the ring of

formal power series F[[ε]] for all i ∈ [n + 1]. We have k ≥ 0 as an+1 = 1. For i ∈ [n + 1],

let āi ∈ F be the constant term of εkai . Minimality of k guarantees that āi 6= 0 for some

i ∈ [n + 1]. Assigning ā1, . . . , ān+1 to x1, . . . , xn, z then gives a projective solution to the

equations f̂1 = 0, . . . , f̂m = 0.

6.3.2 PSPACE algorithm for APS.

The connection with annihilators lead to a PSPACE algorithm for APS. The annihilators

of f constitute a prime ideal of the polynomial ring F[y1, . . . , ym]. This ideal is principal

(generated by one polynomial) when trdeg of f is m − 1. This is a classical result in

commutative algebra [Mat80, Theorem 47]. See also [Kay09, Lemma 7] for an exposition.

In this case, we can decide if the constant term of the minimal annihilator is zero in

PSPACE, as the unique annihilator (up to scaling) can be computed in PSPACE.

If the transcendence degree of f is less than m − 1, the ideal of the annihilators of f

is no longer principal. Although the ideal is finitely generated, finding the generators of

this ideal is computationally very hard. (For example, using Gröbner basis techniques,

we can do it in EXPSPACE [DK15, Section 1.2.1].) In this case, can we decide if all the

annihilators of f have constant term zero?

In [GSS18], we give a randomized reduction to the principal ideal case by reducing the

number of polynomials from m to k + 1. Fix a finite subset S ⊆ F, and choose ci,j ∈ S at

random for i ∈ [k + 1] and j ∈ [m]. For this to work, we need a large enough S and F.

Now, for i ∈ [k + 1], let gi :=
∑m

j=1 ci,jfj . Let δ := (k + 1)(maxi∈[m] deg(fi))
k/|S|. The

following theorem shows that we can work with g1, . . . , gk+1.

Theorem 6.3.3 (Random reduction). It holds, with probability ≥ (1− δ), that

(1) the transcendence degree of F(g1, . . . , gk+1)/F equals k, and
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(2) the constant term of every annihilator for g1, . . . , gk+1 is zero iff the constant term of

every annihilator for f1, . . . , fm is zero.

See [GSS18, Theorem 4.5] for a proof using techniques from algebraic geometry.

Algorithm for APS.

Given an instance f of APS, we can first find the trdeg k. Fix a subset S ⊆ A to

be larger than 2(k + 1)(maxi∈[m] deg(fi))
k (which can be scanned using only polynomial-

space). Consider the points ((ci,j | i ∈ [k + 1], j ∈ [m])) ∈ S(k+1)×m; for each such point

define g :=
{
gi :=

∑m
j=1 ci,jfj | i ∈ [k + 1]

}
. Compute the transcendence degree of g,

and if it is k then solve AnnAtZero for the instance g. Output NO iff some g failed the

AnnAtZero test.

All these steps can be achieved in space polynomial in the input size, using the unique-

ness of the annihilator for g [Mat80, Theorem 47], Perron’s degree bound [P lo05] and linear

algebra [BvzGH82, Mul87]. [BvzGH82] showed that solving a system of linear equations

reduces to computing rank of a matrix and [Mul87] gave a logspace-uniform NC algo-

rithm for computing rank over arbitrary fields. NC is contained in polylogarithmic space.

Thereby, solving a linear system (of size exponential wrt input size) is in PSPACE.

6.4 Discussions

The problem of hitting set construction for closure of VP has connections with other nat-

ural problems in computational algebraic geometry. As shown in [Mul17], the problem of

constructing a normalizing map in Noether’s Normalization Lemma (NNL) reduces to that

of constructing hitting-sets for VP [Mul17, Theorem 4.5]. Approximate polynomials sat-

isfiability may have further applications to problems in computational algebraic geometry

and algebraic complexity. The null-cone problem defined in [BGO+18] and border rank

computation of a given tensor (over F) can be reduced to an APS instance and, hence,

solved in PSPACE by the algorithm of [GSS18]. Another motivation for AnnAtZero or

APS comes from the geometric ideal proof system in algebraic proof complexity, introduced

in [GP18], where they study AnnAtZero for systems of polynomial equations corresponding
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to Boolean tautologies. See [GP18, Appendix B] for more details.

We conclude with an open question. Polynomial system satisfiability or Hilbert’s Null-

stellensatz is in AM over fields of characteristic zero, assuming GRH [Koi96]. Can we solve

APS (equivalently, AnnAtZero) in AM for fields of characteristic zero assuming GRH?

[Kay09] asked this question for AnnAtZero. It seems plausible that deciding whether the

constant term of an annihilator is zero is not as hard as computing the whole annihilator.

Using our reduction, any improvement in the complexity of APS, would also improve the

complexity status of hitting set construction for VP.



Chapter 7

Conclusion

We give here the main open problems related to this thesis.

Algebraic dependence

We give two different criteria for testing algebraic dependence over finite fields. One is

in the spirit of the Jacobian criterion, reducing the problem to linear dependence testing.

The other uses elementary counting estimates and basic algebraic geometry. It is possible

that extending these approaches would lead to better complexity bound for dependence

testing over finite fields.

Our result on algebraic dependence testing in AM ∩ coAM gives further indication

that a randomized polynomial time algorithm for the problem exists, but currently not

even a sub-exponential time algorithm is known. Studying the following special case might

be helpful to get an idea for designing better algorithms [PSS18].

Given quadratic polynomials f1, . . . , fn ∈ F2[x1, . . . , xn], test if they are algebraically

dependent in randomized polynomial time.

Factor conjecture

We give strong evidence that the factor conjecture is likely to be true. It is possible that

our ideas in tackling the low degree radical case can be extended to prove the conjecture.

Can we transform the input polynomial (without blowing-up the arithmetic circuit size)

95
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with a factor/root of high multiplicity to another polynomial with the same factor/root of

multiplicity one? Can we get a size poly(s, d) circuit computing the power series expansion

(truncated up to degree d) of the rational function (given by a size s circuit) f/g, where

g is not invertible? Positive answers to these questions would prove the factor conjecture.

Approximate Polynomials Satisfiability

As indicated in this thesis, approximate polynomials satisfiability, or equivalently testing

zero-membership in the Zariski closure of the image, may have further applications to

various problems in computational algebraic geometry and algebraic complexity.

Currently, we do not have good understanding of the closure of VP. We can not rule out

the possibility that the closure of VP is same as VP. Better understanding of approximate

polynomials satisfiability may lead to better understanding of the closure of VP. We end

with an interesting open question.

Can we solve AnnAtZero (or APS) in AM for fields of characteristic zero assuming

GRH [Kay09]? This would also imply a better hitting set construction for VP.
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