
A CANTOR-ZASSENHAUS TYPE ALGORITHM FOR POLYNOMIAL
FACTORING OVER FINITE FIELDS

HIMANSHU SHUKLA
MENTORS: DR. NITIN SAXENA & DR. RAJAT MITTAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

Abstract. Cantor-Zassenhaus [1] algorithm is a randomized algorithm to factor polynomi-
als over finite fields. We give a Cantor-Zassenhaus type randomized algorithm to get pseudo
factors of polynomials over finite fields and use Extended Riemann’s Hypothesis (ERH) to
get factors of the polynomial.

1. Intorduction

In Number Theory at times to get intuition about what is happening in Z or Fp where p
is a prime, we move to the suitable Galois’ extensions K of Q and look at the primes of Z
in the number ring OK of K. One of the most interesting Galois’ extensions of Q are nth
cyclotomic extensions of Q. A nth cyclotomic extension is the smallest Galois’ extension of
Q containing all the nth roots of unity. The irreducible cyclotomic polynomial has a lot of
nice properties and we use the way they factor over Fp[X] and few simple properties of Ring
theory to come up with a Cantor-Zassenhaus type algorithm. We first get a pseudo factor

of the polynomial over the factor ring Rr = Fp[Y ]

(Φr(Y ))
. and then from these pseudo factors we

get factors of the polynomial using ERH.
In Section 2 we give the algorithm and in section 3 we give the intuition and a formal
understanding of the algorithm and why does it give the factors of the polynomial at hand.
In Section 4 we state two conjectures and in section 5 we talk about few of the emperical
results and a informal justification behind the emperical results. In section 6 we conclude
the report.

2. C-Z type Algorithm

The input to the algorithm is polynomial which is an output of distinct degree factorisation
algorithm. We show the algorithm for f(X) which completely splits in Fp[X] for other
polynomials one can move to degree d extension of Fp and take the extensions of this d
degree extension instead of Fp. The pre-processing involved in getting the polynomial f is
as follows.

• Given a polynomial g(X) ∈ Fp[X]. get a polynomial g′(X) such that g′(X) is square
free and contains the same irreducible factors as g(X).
• Then run DDF (Distinct Degree Factorisation) algorithm over g′(X) and get f(X)

which contains all the linear factors of g′(X).

1



Result: This algorithm factors the given polynomial over finite field Fp[X]
Input: polynomial f(X) in Fp[X] with all irreducible factors of degree 1;
initialise r = 2;
while r ≤ log2p do

Rr := Fp[Y ]

(Φr(Y ))
;

let Y be the root of Φr(Y ) in the ring Rr;

let q = pOrdr(p);
Run the Euclidean GCD algorithm with respect to X to compute

(f(X + Y ), X
q−1

2 − 1);
if The algorithm goes through then

if (f(X + Y ), X
q−1

2 − 1) = 1 OR (f(X + Y ), X
q−1

2 − 1) = f(X + Y ) then
r=r+1;
continue;

else

Output: f1 = f(X+Y )

(f(X+Y ),X
q−1

2 −1)
and f2 = (f(X + Y ), X

q−1
2 − 1);

And run the whole algorithm recursively on f1 and f2 if their degree is not 1
end

else
We will have a zero divisor let it be A(Y );

Now factor the ring using A(Y ) as, Rr := R1
r ⊕R2

r where R1
r = Fp[X]

(A(Y ),Φr(Y ))
and

R2
r = Fp[X]

Φr(y)
(A(Y ),Φr(Y ))

Run the while loop again with Rr = R1
r and R2

r ;
end

end
Algorithm 1: Our Algorithm

3. Understanding the algorithm

First of all we note that the factor ring Rr is not always an integral domain. Also note
that its is a finite ring. Hence it is a finite field iff Φr(Y ) is irreducible over Fp. For this
we look at the following lemma.

Lemma 1. : Write n = pm ∗ l such that (p, l) = 1 where p is a prime. Then the prime
ideal pOK where K = Q[ζ] and ζ is nth primitive root of unity, splits with ramification index
e = Φ(pm) and inertial degree f = Ordn(p).

Proof: This is theorem 26 in [3].

Lemma 2. : Suppose OK = Z[θ] and let f(X) be the irreducible polynomial of theta over

Z[X]. If f =
k∏
i=1

f eii mod(p), where p is prime. Then the ideal pOK factorises as
k∏
i=1

(fi(θ, p)
ei).

2



Proof: This is theorem 5.5.1 in [4].

Theorem: If r < p then Φr(X) =
k∏
i=1

fi(X), where k = φ(r)
Ordr(p)

fi(X)

Proof: Proof of this theorem immediately follows from Lemma 1 and Lemma 2.
Hence one can write

Rr
∼=

k∑
i=1

Fp[X]

(fi(X))
Rr
∼=

k∑
i=1

Fiq ∼=
k∑
i=1

Fq

where q = pOrdr(p) and sum represents the direct sum. Fiq is the finite extension of Fp of
degree Ordr(p) containing Ordr(p), rth primitive roots of unity which satisfy the polynomial
fi and as all the finite fields of same order are isomorphic, hence Fiq ∼= Fq. where Fq contains
the roots of polynomial f1(X).

In the next step of the algorithm we choose Y ∈ Rr, note that Y is a root of Φr(X) in Rr

and run the Euclidean GCD algorithm to compute gcdX(f(X +Y,X
q−1

2 − 1). Now there are
two bad cases and one good case.

Good Case: The gcd algorithm goes through and we get a non trivial factor of f(X + Y ).
In this situation we output two polynomials f1 and f2 ∈ Rr[X].

f1 = f(X+Y )

(f(X+Y ),X
q−1

2

f2 = (f(X + Y ), X
q−1

2 − 1)

The factors which we get are pseudo factors as Y is not known. But using ERH we have
polynomial time algorithm to compute factors of f(X) from factors of f(X + Y ).

Bad Case 1 : If the gcd algorithm outputs a trivial gcd. In this case we change the value
of r and continue.

Bad Case 2 : Suppose the gcd algorithm does not go through, this implies that we en-
counter a zero divisor say A(Y ). But then this means that (A(Y ),Φr(Y )) is non trivial and
using this we factor the ring Rr as

Rr = R1
r ⊕R2

r

where R1
r = Fp[Y ]

(G(Y ))
and R2

r = Fp[Y ]

(
Φr(Y )
G(Y )

and G(Y ) = (A(Y ),Φr(Y )).

Then we continue the same algorithm over both the components with the same r. So during
the course of algorithm either one factors f(X + Y ) or will factor the ring Rr if we do not
encounter a trivial gcd with respect to X. Else we change the value of r.

3.1. Relation with roots of unity. On a closer inspection of the algorithm we get the

following, Y is a root of Φr(y) in Rr, and as Rr
∼=

k∑
i=1

Fq we see that there exists and isomor-

phism such that Y under this isomorphism goes to (α1, α2, . . . , αk), where αi is primitive rth
root of unity and is one of the roots of polynomial f1. All αi’s need not be distinct. Now
we look at the gcd operations as they will look in this isomorphic ring of Rr. Under the

3



isomorphism the following happens

f(X + Y ) 7→ f((X + α1, X + α2, . . . , X + αk)) = (f(X + α1), f(X + α2), . . . , f(X + αk))

X
q−1

2 − 1 7→ (X
q−1

2 − 1, X
q−1

2 − 1, . . . , X
q−1

2 − 1)

Now if the gcd is a trivial gcd, then this means that f(X+αi)∀i ∈ [k] is a factor of X
q−1

2 −1

or (f(X + αi), X
q−1

2 − 1) = 1, which means that the roots of f(X + αi) are all quadratic
residues in Fq or quadratic non-residues in Fq respectively ∀i ∈ [k]. Otherwise if

(f(X + αi), X
q−1

2 − 1) = gi(X) ∈ Fq[X]

is non-trivial ∀i ∈ [k] then we factor (f(X + α1), f(X + α2), . . . , f(X + αk)) as

(f(X+α1, X+α2, . . . , X+αk)) = (g1(X), g2(X), . . . , gk(X))∗(f(X+α1)
g1(X)

, f(X+α2)
g2(X)

, . . . , f(X+αk)
gk(X)

).

Now in case the algorithms is stuck this means that we are not able to compute the gcd and
hence we encounter an element of the form (βi), i ∈ [k] such that at least one of βi is 0. Note
that each of βi ∈ Fq.

Now if the algorithm does not factors f and terminates then this means that all the roots
of f(X + αi)∀i ∈ [k]∀r ∈ [log2p] are either quadratic residues or non-residues. Fq. But
conjecturally this cannot happen as the emperical results in [2] show. Hence this algorithm
should factor the polynomial f(X).

4. Conjecture

We state the following conjectures:
Conjecture 1: Let r ∈ [logp] and ζr be the rth primitive root of unity. Also let α, β ∈ Fp

such that χp(α) = χp(β), where χp(.) is the quadratic character in Fq. Then ∃ ro ∈ [log2p]
such that χp(α + ζro) 6= χp(β + ζro).

Conjecture 2: Let r ∈ [logp] and α, β ∈ Fp and α 6= β. Then < {(α + r) ∗ (β + r)|r ∈
[log2p]} >= Fp. Where < {} > represents subgroup generated by the set {.}.

5. Emperical results

We wrote the code for Conjecture 2 for the primes till 106 and for 1000 random pairs
(α, β). The empirical results show that it is correct with random (a, b). Also We checked
this conjecture exhaustively for primes till 104. Further emperically checked the following
statement:
Let α, β ∈ Fp and χp(α) 6= χp(β), then < {Φr(α) ∗ Φr(β)|r ∈ [log2p]} >= Fp.

But this statement turns out to be false but in very rare cases in fact there may not be
quadratic residue in the set {Φr(α) ∗ Φr(β)|r ∈ [log2p]}. One such case occurs when p =
1009, r ∈ [99] and (a, b) = (58, 87).

4



This statement turns out to be false because of the fact that degree of Φr(X) can be φ(r)
which may be large and if α and β have very low order in Fp. then the higher powers will
be truncated, hence the set {Φr(α) ∗ Φr(β)|r ∈ [log2p]} is much smaller than log(p).

6. Conclusion:

The algorithm which we present is helpful is giving greater insights into the problem of
solving the problem of polynomial factoring over finite fields as the emperical results show.
The future work on this will be to deterministically prove the conjecture 1, that will in
essence solve the problem of polynomial factoring over finite fields.

References

[1] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Mathematics of Computation, 36(154):pp. 587–592, 1981.

[2] Kundan Kumar. Deterministic polynomial factorisation over a finite fields. 2014.
[3] Daniel A. Marcus. Number Fields. Springer-Verlag, 1977.
[4] M. Ram Murty and Jody Esmonde. Problems in Algebric Number Theory. Springer-Verlag, 2005.

5


