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1 Notation and Definitions
We use F to represent fields. We will mainly be working with function fields, and the vari-
ables will be denoted mainly by x1, . . . , xn with n denoting the number of indeterminants.
F[x1, . . . , xn] will denote the polynomial ring over F. Polynomials are usually denoted by
f1, . . . , fm, with m denoting the number of polynomials. Arithmetic circuits are the most
natural and standard model for computing polynomials and we will be using these to repre-
sent polynomials. We use the following definition of Arithmetic circuits

Definition 1.1. (Arithmetic circuits) An arithmetic circuit C over the field F and the
set of variables x1, . . . , xn is a directed acyclic graph as follows. The vertices of C are called
gates. Every gate of C of in-degree 0 is labelled by either a variable or a field element. Every
other gate is labelled by either + or ×. An edge is labelled with field constants, which is 1
by default.

An arithmetic circuit computes a polynomial in a natural way : An input gate labeled
by α ∈ F ∪ {x1, . . . , xn} computes the polynomial α. A product gate (gate with label ×)
computes the product of the polynomials computed by its children. Similarly a sum gate
(gate with label +) computes the sum of the polynomials computed by its children. An
example of an arithmetic circuit is given below.
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Figure 1: Circuit computing xy + 2y2

We define the size of an arithmetic circuit to be the number of edges in the graph. We
define the depth of a gate to be the length of the longest directed path to it. The depth of a
circuit is the maximal depth of a gate in it. We refer to the input degree of a gate as its fanin,
and output degree of a gate as its fanout. We can also see an arithmetic circuit as layers of
+ and × gates, as consecutive + or consecutive × gates can be combined just by increasing
the fanin. Hence, a depth3 circuit is frequently represented as ΣΠΣ or ΠΣΠ. The fanins
are often written in superscript, for eg., ΣkΠΣ represents depth3 circuit with top gate fanin k.

As we saw in the model of arithmetic circuits, the two main resources are size and depth.
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Based on size, we define class VP as the family of circuits {Cn} computing polynomials such
that n is number of variables , degree and size of the circuit is bounded by poly(n). The
class is the arithmetic analog of P . For more details in the algebraic complexity area, refer
to the survey [SY10].

We will further need a few definitions of a few terms which we give below.

Definition 1.2. (Ideal) The ideal generated by f1, . . . , fk is the set {
∑
i hi ·fi : h1, . . . , hk ∈

F[x1, . . . , xn]} and denoted by 〈f1, . . . , fk〉.

We will denote the quotient ring of an ideal by F[x1, . . . , xn]/I. We will use Id to denote
the polynomials in I of degree d.

Definition 1.3. (Radical) The radical of an ideal I is the set {g ∈ F[x1, . . . , xn] : ge ∈
I for some integer e ≥ 1} and is denoted by

√
I.

There many different definitions of variety but we will be using the following in this
report

Definition 1.4. (Variety) The variety of a set of polynomials f1, . . . , fk ∈ F[x1, . . . , xn] is
the set of all their common zeroes in Fn,i.e. the set {(a1, . . . , an) ∈ Fn : f1(a1, . . . , an) =
. . . = fk(a1, . . . , an) = 0}. It is denoted by V (f1, . . . , fk).

2 Introduction

2.1 The Problem
In this report we will be studying the problem of Polynomial Identity Testing (PIT). It is
the problem in which we are given a polynomial as an arithmetic circuit C(x), over a ring R,
to efficiently test whether the C is identically zero. In this report we will focus on the case
of R being a field. By efficient we mean the algorithm should run in poly(size(C)) many F
operations. The problem is trivial if the polynomial is given as a vector of coefficients, for
which we only need to check if any of the coefficient is non-zero. It also has an easy solution
for univariate polynomials, which requires it to be evaluated at degree+ 1 many points, and
it is an identity iff all the evaluations are zero. This method doesn’t work for multivariate
polynomials, as there can be infinite solution for a simple bivariate polynomial (eg. xy = 0
over R). There are 2 versions to this problem, Blackbox PIT and Whitebox PIT. In the
Blackbox version, we are only allowed evaluations of C at points from Fn, and cannot look
inside the computations at inner gates. In the whitebox version we have access to the inner
gates of C. Let us give formal definition of the problem

Definition 2.1.1. [For14] (Polynomial Identity Testing) Let C be a class of circuits
having size ≤ s, which computes polynomials in F[x1, . . . , xn] of degree < d. The PIT
problem for this class C asks for a deterministic algorithm to test whether a polynomial fC ,
computed by a circuit C ∈ C, is identically zero or not. The algorithm is considered efficient
if it uses only poly(s, n, d)F operations.
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Definition 2.1.2. [For14] (Hitting Set) Let C be a class of circuits having size ≤ s, which
compute polynomials in F[x1, . . . , xn] of degree < d. A Hitting set H ⊆ Fn for the circuit
class C is a set of points such that if a circuit C ∈ C computes a non-zero polynomial fC ,
then ∃(α1, . . . , αn) ∈ H such that f(α1, . . . , αn) 6= 0.

From it’s definition giving a poly(s, n, d) sized Hitting set for a circuit class C, gives an
efficient blackbox PIT for C. It is notable that the problem of PIT has a very simple and
elegant randomized solution thanks to the PIT lemma.

Lemma 2.1.3. (PIT Lemma)(Schwartz-Zippel[Sch80]) Let f ∈ F[x1, . . . , xn] be a non-
zero polynomial of total degree d ≥ 0. Let S be any finite subset of F, and let α1, . . . , αn be
elements selected independently, uniformly and randomly from S. Then,

Prα1,...,αn∈S[f(α1, . . . , αn) = 0] ≤ d

|S|

The above lemma can be easily proved inductively, with the base case being the univariate
case. This puts PIT in coRP . The problem of derandomizing PIT, so as to put it in P is
still open. One trivial derandomization is to check (d + 1)n many points, but is inefficient.
It is formally stated below

Lemma 2.1.4. (Combinatorial Nullstellensatz)[AT99] Let f ∈ F[x1, . . . , xn] be a non-
zero polynomial of individual degree d. Let S be a set of distinct values of size > d. Then,
there exists (α1, . . . , αn) ∈ Sn such that f(α1, . . . , αn) 6= 0.

We will look in this report at a special case where the circuits will be have depth 4. As
per results in [AV08], solving the problem for depth4 circuits gives us solution for PIT of all
circuits in VP. Therefore, we look at an even more restricted case with the top and bottom
fanin are also just O(1). The depth 4 circuits can be of two types ΣΠΣΠ and ΠΣΠΣ. The
case of ΠΣΠΣ is reduced to simply checking the smaller ΣΠΣ circuits which multiply in the
final multiplication gate, which itself is a different problem of depth-3 circuits. Hence, we
look at only inputs of the form ΣkΠΣΠr, where k ≥ 3 = O(1) and r ≥ 2 = O(1). The case
of k = 2 is solved in whitebox case by division of the common factors in both terms and
just comparing the left constants (as F[x1, . . . , xn] is Unique Factorization Domain). The
Blackbox case for the problem is open for even k = 2. While, the case of r = 1 is the case of
depth-3 constant top fanin which is discussed in section 3.1. Let us give a formal definition
of the bounded case:

Consider the input circuit be C such that it has a form C = ΣkΠΣΠr, i.e. the circuit
has alternate + and × gates where the fanin of the top + gate is ≤ k and the fanin of the
bottom × gate is ≤ r. Such a circuit C computes the polynomial of the form

C(x1, . . . , xn) =
k∑
i=1

Ti =
k∑
i=1

di∏
j=1

Lij
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where di is the fanin of the ith × gate on the second level. The circuit is said to be simple
if gcd(T1, . . . , Tk) = 1. It is minimal if no proper subset of T ′s sum upto 0, i.e. for every
φ ⊂ A ⊂ [k] : ∑i∈A Ti 6= 0. We assume the input circuit to be simple and minimal as if it’s
not simple it breaks into 2 different smaller simpler circuits by taking out the gcd from all
terms, and if it’s not minimal we can decrease the top fan-in. To even simplify the circuits
further we assume that it is a homogeneous circuit, i.e. all the T ′is are homogeneous of the
same degree (and therefore Lij are homogeneous).

2.2 The Motivation
The problem of PIT has many applications like the problem of deciding existence of perfect
matching in a graph efficiently can be seen as a question of finding efficient PIT algorithm
for the determinant polynomial of the graph’s Tutte matrix. The idea of PIT was also
very useful in the proof of the complexity result IP = PSPACE. Even the problem of
Primality testing was solved by working with a PIT formulation. It was observed that a pos-
itive integer n is prime iff (x + 1)n = (xn + 1)(modn), which can be considered as checking
P (x) = (x+1)n− (xn+1) to be identity over Z/nZ. The problem of derandomizing PIT has
relations to complexity results like PIT ∈ P =⇒ NEXP 6⊆ P/poly or V P 6= V NP . For
more details into PIT and it’s application, look at the surveys [Sax09], [Sax14] and [SY10].

The depth reduction results in algebraic complexity have brought the computation of any
polynomial in VP to computation by circuits of just depth3. The case of depth3 bounded
top fanin case has been solved for both whitebox version in [KS07] and blackbox in [SS12].
Also by results in [AV08], an efficient hsg for Σs∧ω(1) ΣsΠO(log s) gives an nO(logn)-hsg for VP.
Thus, this is one of the open cases near the general case but is also close to already solved
cases.

3 Previous Work
We will look at the case of depth3 circuits with bounded top fanin which have been solved
in both blackbox and whitebox versions, as it is closely related to our case of bounded top
and bottom fan-in depth 4 circuits (if we fix the bottom fanin = 1 , it becomes the depth 3
case). After that we will have look at the work done in [Gup14] where he proposes conjectures
about Sylvester-Gallai Type theorems that can solve the problem completely. We will also
look in the work done in [Shp19] in proving one of the weaker conjectures.

3.1 The Depth 3 Circuits
A lot of work has been done for this case, which eventually was solved with a Blackbox
poly-time algorithm in [SS12]. We will sketch here the basic idea of the proof.
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The basic idea is to first prove that if C 6= 0, then there exists an ideal I with gener-
ators of k − 1 elements chosen from L′ijs such C 6≡ 0 mod I. Then we will use a variable
reduction that conserves the ideal membership, and decreases the number of variables to k,
after which the identity testing can be done by brute-forcing PIT lemma. We assume the
input circuit to be simple and minimal. That means we can assume the terms T1, T2, . . . , Tk
are linearly independent.Let us assume C 6= 0, then we consider C mod 〈T1〉. Since the
terms T1, T2, . . . , Tk are linearly independent, C 6≡ 0 mod 〈Le11

11 L
e12
12 . . . L

e1d1
1d1 〉. By Chinese

remainder theorem, we have C 6≡ 0 mod 〈Le11
11 〉 or 〈Le

12
12 〉 or . . . or 〈Le

1d1
1d1 〉. Say f1 = Le

1p1
1p1

is one such polynomial whose ideal doesn’t contain C. This means T2 + T3 + . . . + Tk 6≡ 0
mod 〈f1〉. Now in this smaller problem we consider the coprime factors of T2 modulo f1.
Again by Chinese remainder theorem there has to be one polynomial f2 in these coprime
factors such that T3 + . . .+ Tk 6≡ 0 mod 〈f1, f2〉. And so on, till only the last term remains,
that is for the selected f1, . . . , fk−1 we have Tk 6≡ 0 mod 〈f1, f2, . . . , fk−1〉. This selection of
polynomials is termed a path. We will formally define these terms

Definition 3.1.1. A Path (p) with respect to an ideal is a sequence of terms {p1, p2, . . . , pb}
(these are products of linear forms) with the property that each pi divides Ti, and each pi is
a node of Ti with respect to the ideal 〈I, p1, . . . , pi−1〉. pi is a node when some non-zero con-
stant multiple of pi is identical to a power-of-a-linear-form mod radsp(〈I, p1, p2, ..., pi−1〉,
where radsp is the ideal generated by the set of all the linear polynomials that divide
pj, j ∈ [i − 1] and the generators of I.This means p1 is a node of T1 wrt 〈I〉, p2 is node
of T2 wrt 〈I, p1〉, and so on.

The above definition with the chinese remaindering idea discussed above is formalized as
the following theorem in [SS12][Theorem 25]

Theorem 3.1.2. (Certificate for non-identity) Let I be an ideal generated by some
multiplication terms. Let C = ∑

i∈[k] Ti be a depth-3 circuit that is nonzero mod I. Then
∃i ∈ [k−1] such that ∑j∈[i] Tj mod I has a path p satisfying C ≡ α ·Ti+1 6≡ 0( mod I+〈p〉)
for some α ∈ F∗.

For better understanding, we give an example (from notes of CS748-IITK) of the above
concept.

Consider the input

C = x2
1x3x4︸ ︷︷ ︸
T1

−x2(x2 + 2x1)(x3 − x1)(x4 + x2 − x1)︸ ︷︷ ︸
T2

+ (x2 + x1)2(x3 + 4x1)(x4 + x2)︸ ︷︷ ︸
T3

which is Σ3Π4Σ4 circuit. We as discussed go modulo T1, and as the terms are linearly
independent

C 6≡ 0 mod 〈x2
1x3x4〉 =⇒ C 6≡ 0 mod 〈x2

1〉 or 〈x3〉 or 〈x4〉
Let us say we chose f1 = x2

1. We have C 6≡ 0 mod 〈x2
1〉 =⇒ T2 + T3 6≡ 0 mod 〈x2

1〉.
Here we consider the coprime factors of T2 modulo f1, which becomes the set S = {x2(x2 +
2x1), (x3 − x1), (x4 + x2 − x1)}. Again, we have
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C 6≡ 0 mod 〈f1〉+ 〈 one of S〉
Let’s say we chose f2 = x3−x1. Now all we have to do is check for all such possibilities of

f1, f2, that T3 ≡ 0 mod 〈f1, f2〉, and if it is non-zero for any one, we have the non-identity
certifying path, otherwise we are sure by the chinese remaindering discussion above that
C = 0.

The idea of the whitebox algorithm in [KS07] was to use a linear map that would take
these f1, . . . , fk−1 to x1, . . . , xk−1, and multiply out the terms with only these variables as
all other terms will be non-zero divisors with respect to this ideal, in poly(dk) operations.
Further they looked at all the dk−1 possibilities for f1, . . . , fk−1. Thus, it gave a poly(n, dk)
time whitebox algorithm. For the blackbox case, it uses the fact that for the product of
linear forms(T ) will lie in the ideal generated by linear forms only when one of the factors
of T will lie in the radsp of the generators. The rank of the set S0 of the linear polynomials
that divide the nodes in the path p is < k(since the path length is below k). Ti+1 factors
into atmost d linear polynomials, denoted by S1. So, if we apply a variable reduction map
that preserves the rank of each of the d sets S0 ∪ {l}, l ∈ S1, we will ensure that the element
from S1 if it’s not in the radsp of nodes in S, it will not be there after application of the
map, hence preserving ideal non-membership. For this we will look into the

Definition 3.1.3. Vandermonde map We define a homomorphism Ψβ, for a β ∈ F, as:

∀i ∈ [n],Ψβ : xi −→
k∑
j=1

βijyj

and Ψβ(α) = α for all α ∈ F.

We have the nice property of Ψβ, which allows us to preserve rank

Lemma 3.1.4. (Ψβ preserves k-rank) Let S be a subset of linear forms in F[x1, . . . , xn]
with rank(S) ≤ k, and |F| > nk2. Then ∃β ∈ F, rank(Ψβ(S)) = rank(S).

The above means that the number of "bad values" of β, i.e. values for which the rank is
not preserved is ≤ nk2. So, if we use more than nk2 values for β one of them will definitely
preserve the rank for S. As discussed earlier, the rank(S0 ∪ {l}, l ∈ S1) ≤ k means that we
can use Ψβ to preserve the sets ranks, and therefore preserve ideal non-membership. Finally,
we have achieved a map Ψβ by looking at > nk2 values for β, which reduces the number of
variables from n to k, and also preserves ideal non-membership for any path of length less
than k − 1, meaning it preserves the non-zeroness of the circuit. Once this is done we can
simply use a brute-force hitting set to give a poly(n, dk) blackbox PIT algorithm.

3.2 The Sylvester-Gallai Approach
Sylvester-Gallai theorem is a famous theorem in incidence geometry, which is stated below
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Theorem 3.2.1. Given a finite number of non-collinear points S in the plane R2, there
always exists a line which passes through exactly two points in S.

The above has a simple proof from geometry. It has a higher dimensional generalization
that says:

Theorem 3.2.2. Let S be a finite set of points spanning an affine space V ⊆ Rn such that
dim(V ) ≥ 2t. Then, there exists (t + 1) points in S that span a t dimensional affine space
H ⊂ V such that |H ∩ S| = t+ 1.

The case of depth3 PIT algorithm led to development of lot of new techniques. Karin
and Shplika showed that if we have a rank bound of R(k, d) for minimal,simple ΣΠΣ(n, k, d)
identities then we have a blackbox PIT algorithm with poly(n, dR(k,d)) many field operations.
By rank of a depth3 circuit we mean the dimension of the vector space spanned by the linear
polynomials that appear int he multiplication terms. In [DS07] it was showed that a minimal
and simple depth-3 identity has rank at most logk d. Sylvester-Gallai theorems were used in
attempts to get a good bound on the rank of identities. In the case of depth3 circuits The
space S is the set of all linear forms that appear in the circuit, hence dim(V ) = rank(C).
Kayal and Saraf [KS09] used Theorem 3.2.2 to get a bound on the rank of minimal,simple
ΣΠΣ(n, k, d) identity.

We will look at the work done by Gupta in [Gup14] to solve the case of PIT of depth 4
bounded top and bottom fanin circuits. It gives solution to the special case when one of the
terms Ti doesn’t lie in the radical generated by other terms . For the other cases, which is
referred to as the Sylvester-Gallai configuration, he proposes conjectures for higher degree
polynomials with bounds on transcendence degree similar to the results known for linear
polynomials and their rank. We first define the Sylvester-Gallai configuration of the PIT
depth4 case.

Definition 3.2.3. (SG-ΣkΠΣΠr circuits A simple, minimal, homogeneous ΣkΠΣΠr cir-
cuit is SG if

∀i ∈ [k]
⋂

j∈[k]\{i}
V (Tj) ⊆ V (Ti)

By Hilbert’s Nullstellensatz, over C this equivalent to

∀i ∈ [k] Ti ∈
√
〈T1, . . . , Ti−1, Ti+1, . . . , Tk〉

Gupta in his paper gave an algorithm to identify if a depth4 circuit is an SG circuit or
not for circuits that work in the Complex field(C). If a circuit is an identity the sum of
all terms is zero,so we know ∀i ∈ [k], Ti ∈ 〈T1, . . . , Ti−1, Ti+1, . . . , Tk〉, and hence definitely
lie in it’s radical. Thus, all Identities are SG circuits, but the reverse is not true. Gupta
gives an algorithm to identify the cases of non-identity in which one of the terms doesn’t
lie in the radical generated by other terms, i.e. without the loss of generality we have
Tk 6∈

√
〈T1, . . . , Tk−1〉. The proof is based on the following proposition:
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Proposition 3.2.4. Let P1, . . . , Pd, L1, . . . , Lk ∈ C[x1, . . . , xn] be homogeneous and degree
of each Li is at most r. Then,

P1 · · ·Pd ∈
√
〈L1, . . . , Lk〉 ⇐⇒ ∃{i1, . . . , irk} ⊆ [d] : Pi1 · · ·Pirk

∈
√
〈L1, . . . , Lk〉

Proof: The reverse direction of the proof is obvious from the definition of radical of an
ideal. For the forward direction assume, V1 ∪ V2 ∪ . . . ∪ Vt be the minimal decomposition of
V (L1, . . . , Lk) where V ′i s are irreducible. Then by Nullstellensatz,

V1 ∪ V2 ∪ . . . ∪ Vt ⊆ V (P1) ∪ . . . ∪ V (Pd)
As Vi’s are irreducible, we have that for each i there is an ij ∈ [d] such that Vi ⊆ V (Pij ).

Therefore

V (L1, . . . , Lk) = V1 ∪ V2 ∪ . . . ∪ Vt ⊆ V (Pi1) ∪ . . . ∪ V (Pit)

which by Nullstellensatz means Pi1 · · ·Pit ∈
√
〈L1, . . . , Lk〉. The number of irreducible

components of a variety is bounded by it’s cumulative degree which is the sum of all it’s ir-
reducible components. By Bezout’s Theorem, cumulative degree of V (L1, . . . , Lk) is at most
Πideg(Li). Hence, t ≤ rk. In simpler words the proposition says that if a product of polyno-
mials lies inside the radical generated by k polynomials of degree atmost r, then the product
of the elements of a subset of size rk from the product will also lie in radical. This enables us
to create whitebox algorithm straight by checking all rk subsets, which since both r and k are
constant will be polynomial in d and also there products degree will be small(= rk+1). For
the blackbox algorithm of the same Gupta proves that radical non-membership is preserved
under random linear projections, which allows to decrease the number of variables and hence
gives us a poly sized hitting set.

For the SG-circuit, he proposes that the transcendence degree (trdeg) is small(O(1)). We
state the conjecture below

Conjecture 3.2.5. Let T1, . . . , Tk be finite sets of irreducible homogeneous polynomials in
C[x1, . . . , xn] of degree ≤ r st. ∩iTi = φ and for every k−1L1, . . . , Lk−1, each from a distinct
set Tj being the remaining set st. Tj ∈

√
〈L1, . . . , Lk−1〉. Then, trdegC(∪iTi) ≤ λ(k, r) for

some function λ.

The above is true for r = 1 and was first proved in [KS09]. He further proposed simpler
conjectures to solve in which he proposed instead of product, individual polynomials to lie in
the radical, and another one in which he took out the elements being from distinct set(colored
version) condition. He says that these could function as stepping stones in proving the main
conjecture.
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3.2.1 Sylvester Gallai Type theorems for Quadratic Polynomials

Some of the conjectures proposed in [Gup14] have been proved for the case of r = 2 and
k = 3, but not conjecture 3.2.5, and hence the case of PIT for even Σ3ΠΣΠ2 remains open.
The following theorems related to the original conjecture were proved in [Shp19]. These
instead of working with the trdeg, prove the linear rank of SG circuit to be small, which is
a stronger result. But these require atleast a quadratic polynomial to lie in the radical to
get the bounds, instead of the products, which is a strong assumption as an counterexample
can be constructed which disproves it’s existence.

Theorem 3.2.1.1. Let {Q1, Q2, . . . , Qm} be m homogeneous quadratic polynomials over
C such that each Qis either irreducible or a square of a linear function. Assume further
that for every i 6= j,∃k 6∈ {i, j} such that whenever Qi and Qj vanish Qk vanishes as
well(V (Qi, Qj) ⊆ V (Qk) =⇒ Qk ∈

√
〈Qi, Qj〉. Then the linear span of Qi’s have dimension

O(1).

He also proved a colored version of this theorem, which is given below. Note the square
of linear function allows to handle linear factors as well as keeping them homogeneous.

Theorem 3.2.1.2. Let T1, T2 and T3 be finite sets of homogeneous quadratic polynomials
over C satisfying the following properties:

• Each Q ∈ ∪iTi is either irreducible or a square of a linear function.

• No two polynomials are multiples of each other (i.e., every pair is linearly independent).

• For every two polynomials Q1 and Q2 from distinct sets there is a polynomial Q3 in
the third set so that Q3 ∈

√
〈Q1, Q2〉

For the proof of the above the theorems, the following structural theorem is very impor-
tant. After that it is just a case by case analysis to get a bound on the linear rank of the
cases created by the structure theorem.

Theorem 3.2.1.3. If Q ∈
√
〈Q1, Q2〉, then one of the following cases hold:

1. Q is in the linear span of Q1, Q2

2. There exists a non trivial linear combination of the form αQ1 + βQ2 = l2 where l is a
linear function

3. There exist two linear functions l1 and l2 such that when setting l1 = l2 = 0 we get
that Q,Q1 and Q2 vanish.

The proof of this theorem involves changing the radical membership from 2 basis ele-
ments to a single basis formed by resultant of Q1, Q2 and look at all the cases how Q can
lie in that radical. A stronger structural theorem is suggested in a talk by Shir Peleg that
deal with the product of quadratics lying in the radical, and hence proving theorem 3.2.1.1
in the case when product is in the radical. But still for a solution to the Σ3ΠΣΠ2 case, it
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requires a colored version of this theorem, which is not known.

Further this style of proof is very tough to extend in both cases of k > 3 and r > 3 as both
will require new structure theorems for each value. Hence to solve the case of ΣO(1)ΠΣΠO(1)

it seems an unlikely method.

4 The main sub-problem
As we saw the Sylvester-Gallai approach is hard to extend for larger k and r, We will focus
on extending the approach used for depth3 circuits in [SS12] to depth4 circuits. A major
difference between the two cases is that for the case of an ideal generated by linear forms,
for the product to lie in the ideal, atleast one of the factors should lie in the ideal too. Hence
a variable reduction preserving k rank space(k− 1 ideal generators, 1 linear factor) was suf-
ficient, and hence gave a homomorphism that preserved ideal membership. To extend, this
approach we need to understand more about the when a product lies in the ideal generated
by polynomials of higher degree. One popular method for such ideal membership, is of using
the Gröbner’s basis, but is used mainly when polynomial to be tested is given in dense
form (that is as a coefficient vector).

The main problem that we will focus in this report from now on, will be to find an effi-
cient way to solve the ideal membership of a polynomial given as a product of degree δ
polynomials, in the ideal generated by 2 degree δ irreducible polynomials.

Problem 4.1. Let P1, . . . , Pd, L1, L2 ∈ F[x1, . . . , xn] be homogeneous irreducible polynomi-
als of degree δ = O(1). Design an efficient algorithm to check if

P1P2 · · ·Pd ∈ 〈L1, L2〉

We aim to extend this to ideals with constant number of generators. We possibly aim to
create a variable reduction similar to Vandermonde map, which preserves this ideal mem-
bership. Such a solution should allow us to solve the case when k = 3 and r = O(1), with
the restriction that the factors in the terms are degree = r with multiplicity 1.

5 Computing The Gröbners Basis
Everything in this section(5) is based on reading from [BFS15].We start with the definition
of a monomial ordering.

Definition 5.1. A monomial ordering is a total order on monomials that is compatible with
the product and such that every nonempty set has a smallest element for the order. Such an
ordering is graded if monomials of different degrees are ordered according to their degree.

11



Such an ordering allows us to have a leading term even in the case of multivariate poly-
nomials. The LT (f) of a polynomial f corresponds to the term(i.e. monomial multiplied
with a non-zero constant) that has the largest monomial according to the given ordering.
For this part we will mainly use the grevlex ordering which is graded ordering. The order
between monomials of same degree , consider xα = xα1

1 . . . xαn
n and xβ = xβ1

1 . . . xβn
n , is given

by xα � xβ when the last nonzero element of (α1 − β1, . . . , αn − βn) is negative. Thus the
order among the monomials of degree d is

xd1 � xd−1
1 x2 � . . . � xd2 � xd−1

1 x3 � xd−2
1 x2x3 � xd−2

1 x2
3 � . . . � xdn

We can now look at the definition of the Gröbner’s basis, and some of it’s properties that
are useful to us.

Definition 5.2. A Gröbner’s basis of an Ideal I for a given monomial ordering is a set of
generators of I such that the leading monomial ideal 〈LT (I)〉, which is the ideal generated
by the monomials LT (f), f ∈ I.

To understand why Gröbner’s basis is important to ideal membership, we define the weak
remainder which can be seen as the local optimum of the division algorithm, i.e. we will
reduce any polynomial as far as possible, by canceling out the monomials divisible by leading
terms of generators.

Definition 5.3. Consider f, h1, . . . , hm ∈ F[x1, . . . , xn]. The weak remainder of f with
respect to the hi is the polynomial r = f −∑ qihi such that no monomial of r is divisible by
any LT (hi).

It should be noted that when we use the usual division algorithm for reduction, the
remainder we get is the weak remainder, which may not be the remainder by the ideal.
A simple example which can be seen in the uni-variate case itself is when the polynomial
considered is of degree lower than the generators. Consider f = x and h1 = x(x + 1), h2 =
x(x+ 2). Clearly 〈h1, h2〉 = 〈x〉, which means the remainder is zero, but the weak remainder
is x, i.e. the division algorithm gets stuck. In come Gröbner’s basis, for which we can show
the weak remainder is unique.

Lemma 5.4. Let g1, . . . , gt be a Gröbner’s basis for the ideal J = 〈g1, . . . , gt〉. Then for any
f , the weak remainder wrt the g′is is unique.

Proof: Suppose f = r + ∑
qigi = r′ + ∑

q′igi are two weak remainder decomposition of f .
Then r − r′ = ∑(qi − q′i)gi ∈ J . As the gi are a Gröbner basis, it follows that if r − r′ is
non-zero then its leading monomial of r − r′ must be divisible by some LT (gi). But the
monomials of r− r′ are a subset of the union of the monomials of r and r′, and none of those
monomials are divisible by any gi. Thus, it follows that r − r′ must be zero, so r = r′.
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In this part we will look on the part of the problem of computing the gröbner’s basis
of an ideal of the form 〈L1, L2, . . . , Lm〉 where L1, L2, . . . , Lm are irreducible polynomials
which form a regular sequence of degree δ, with delta and m both are O(1). We start with
the general computation of gröbner’s basis for an ideal, using the Macaulay’s matrix, it’s
running complexity which comes in terms of a bound on the degree of elements D inside
the gröbner’s basis. After this, we show a constant bound on D for the ideal generated by
a regular sequence which allows the computation to occur in polynomial time. Then we
present the final matrix F5 algorithm which allows computation of gröbner’s basis without
useless reductions to zero .

Another definition that we will need is of regular system of polynomials

Definition 5.5. The polynomial system (f1, f2, . . . , fm) is regular if ∀i ∈ [m], fi is not a
zero-divisor in the quotient ring k[x1, . . . , xn]/〈f1, . . . , fi−1〉. This means if ∃g such that
gfi ∈ 〈f1, f2, . . . fi−1〉, then g ∈ 〈f1, f2, . . . fi−1〉.

The regularity exists in our system exists as we consider the ideal generated by 2 irre-
ducible deg δ forms, which form a regular system unless one of them is a multiple of the
other. The later case is easy to handle as the ideal generated by these 2 polynomials is the
same as the ideal generated by one polynomial in which presence of T3 is easy to check as it
will require one of the factors of T3 to be present in the ideal, and since all factors are irre-
ducibles of deg δ, one of them will be a scalar multiple of the generating polynomial. Thus,
remains the case when the 2 generating polynomials form a regular system. Though as we
increase the fanin of the top gate from 3, we loose this condition, and it is not guaranteed
the "path" certifying non-zeroness will be a regular sequence. So for higher fanins this is not
applicable.

5.1 Finding Gröbner’s basis efficiently
It has been shown in [MM82] that the worst case complexity of gröbner’s basis computation
of the general case of polynomial ideals is doubly exponential in the number of variables.
The problem of Ideal Membership is also known to EXPSPACE hard even for the case of 3
generators. Thus, at the first glance the computation of the gröbner’s basis for memebership
checking seems hard, but for the special case that we will be looking into of constant num-
ber of generators of constant degree bound which form a regular system this can be done
efficiently.

The Macaulay’s Matrix:

The matrix is defined for a particular system of polynomials (f1, . . . , fm) and degree d
and denoted by Md,m. In this the columns are indexed by the monomials of degree d accord-
ing to grevlex monomial ordering. For each polynomial fi of the system and each monomial
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t of degree d− di, it contains one row whose entry in the column indexed by a monomial t′
is the coefficient of t′ in tfi.

For eg. for a d = 3, and number of variables n = 3(x, y, z), the set of monomials in
grevlex ordering is {x3, x2y, xy2, y3, x2z, xyz, zy2, xz2, yz2, z3}. Considering only one element
of f = x2−y2+2yz−2z2 in the system we add rows of xf, yf, zf in the Macaulay’s matrixM3,1
as vectors [1, 0,−1, 0, 0, 2, 0,−2, 0, 0], [0, 1, 0,−1, 0, 0, 2, 0,−2, 0], [0, 0, 0, 0, 1, 0,−1, 0, 2,−2].

It is clear that the linear combination of rows of Md,m generate all the elements of degree
d in the ideal generated by (f1, . . . , fm). Thus, the basis of this row space form the basis for
the Id, which can be computed using Gaussian elimination. Also, if we use a graded ordering
for ordering the columns,and don’t allow for column pivoting, the leading terms of the basis
gives the ideal of LT (Id). Doing this upto D, which is the bound on degree of the elements
of gröbner’s basis, we get all the elements of the gröbner’s basis. Thus, the problem reduces
to doing Gaussian elimination efficiently D times, i.e. on the Macaulay’s matrices Md,m for
min(d1, d2, . . . , dm) ≤ d ≤ D .

It is shown that Gauss elimination can be done efficiently using matrix multiplication in
[Sto00], with a complexity of O(RCrω−2) where R is the number of rows, C is the number
of columns, r is the rank of the matrix and ω is the exponent of matrix multiplication. The
number of columns for Md,m is the number of monomials of degree d, which is

(
n+d−1

d

)
.

The number of rows is bounded by mCd as each polynomial fi in the system has a row
corresponding to it’s multiplication by the monomials of degree d− di, whose number is less
than the number of monomials of degree d,i.e. Cd. Similarly the rank of the matrix is upper
bounded by the number of columns. Substituting these into the bound from [Sto00] we get
complexity of Gauss elimination for the matrix Md,m is O(mCω

d ).

The total complexity we get is
D∑

d=min(d1,...,dm)
O(mCω

d ) = O(m
D∑

d=min(d1,...,dm)
Cω
d )

And since Cd =
(
n+d−1

d

)
is an increasing function of d, we have

D∑
d=min(d1,...,dm)

Cω
d ≤ D ∗ Cω

D

giving the final bound of O(mD
(
n+D−1

D

)ω
).

Proposition 5.1.1. Let (f1, . . . , fm) be a system of homogeneous polynomials in F[x1, . . . , xn].
The number of F operations required to compute a Gröbner’s basis of the ideal generated
by (f1, . . . , fm) for a graded monomial ordering upto degree D is bounded by

O
(
mD

(
n+D − 1

D

)ω)
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where ω is the exponent of matrix multiplication over F.

A major benefit of viewing Gröbner’s computation in terms of Macaulay’s matrix is that
one it allows us to view the computation at linear algebra operations and get bounds on
special cases. A major issue is that for the computation to occur an upper bound on D
needs to be known before we start the computation. Another benefit is it enables us to see
the connection between Hilbert function of the ideal, and its gröbner’s basis. We explore
this idea further.

5.1.1 Relation to Hilbert Polynomial

The Hilbert function of an ideal I is defined by

HFI(d) = dim(F[x1, . . . , xn]d/Id)
Where F[x1, . . . , xn]d denotes the space of polynomials over F with n variables and degree

d, and Id denotes the elements of ideal I with degree d. It comes from the definition of Hilbert
function that it is equal to the dimension of F[x1, . . . , xn]d =

(
n+d−1

d

)
minus the rank ofMd,m.

The generating function HI = ∑
d≥0 HFI(d)Zd is called the Hilbert series of the ideal. If the

Hilbert series of an ideal is a polynomial of degree D, then we have HFI(d ≥ D) = 0, that
is all the monomials of deg > D can be generated from the members of leading terms of the
basis elements with deg < D, then we can say there are no polynomials required of deg > D
for the gröbner’s basis. Hence showing that the Hilbert series for an ideal is a polynomial,
puts a bound on the degree of the elements of the Gröbner’s basis.

5.2 The bound on degree for regular sequence
Now we work to prove that the Gröbner’s basis of an ideal generated by homogeneous deg < δ
polynomials (f1, . . . , fm) contain elements of degreeD ≤ ∑m

i=1(di−1)+1, which is also known
as the Macaulay’s bound, when the variables are in a Noether position with respect to these
polynomials. We will start with a few lemma for the Hilbert series :

Lemma 5.2.1. Let I ⊂ F[x1, . . . , xn] be an homogeneous ideal, and f be a homogeneous
of degree δ ≥ 1. Then f is not a zero-divisor in F[x1, . . . , xn]/I if and only if HI+〈f〉(z) =
(1− zδ)HI(z).

Proof Simply consider the dimensional relation between the kernel (Kd) and image of the
application of multiplication by f from F[x1, . . . , xn]d−δ/Id−δ to F[x1, . . . , xn]d/Id. The poly-
nomials in this image are zero in the new ideal (I + 〈f〉), hence need to be subtracted
from dimension of F[x1, . . . , xn]d/Id. By rank nullity, the dimension of this image will be
dim(F[x1, . . . , xn]d−δ/Id−δ)− dim(Kd) . Thus, we have

dim(F[x1, . . . , xn]d/(I+〈f〉)d = dim(F[x1, . . . , xn]d/Id)−(dim(F[x1, . . . , xn]d−δ/Id−δ)−dim(Kd))
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which is
HFI+〈f〉(d) = HFI(d)−HFI(d− δ) + dim(Kd) d ∈ N

Multiplying the above with zd and summing over all d to create the Hilbert series of the
ideals, we get

HI+〈f〉(z) = (1− zδ)HI(z) +
∑
d≥0

dim(Kd)

From the definition of zero-divisor and kernel of a map, f is a not a zero-divisor in F[x1, . . . , xn]/I
iff the multiplication kernel Kd has dimension 0, i.e. dim(Kd) = 0 for all d ≥ 0.

Lemma 5.2.2. The system of homogeneous polynomials (f1, . . . , fm) ⊂ F[x1, . . . , xn] is
regular iff if it’s Hilbert Series is

HI(z) =
∏m
j=1(1− zdj )
(1− z)n

If m = n, then the sequence (f1, . . . , fn) is regular iff it’s Hilbert series is a polynomial.

Proof: The dim(F[x1, . . . , xn]d) will be the number of n-variate monomials of degree d,i.e.
HF〈〉(d) =

(
n+d−1

d

)
, which means the Hilbert series of the empty ideal is H〈〉(z) = (1− z)−n.

Now adding fi into the ideal one-by-one and using lemma 1, we have the first part of the
result.

For the second part, the idea is that in the proof of lemma 5.2.1 if it’s a zero divisor, the
dimension of the Kernel will also be added to the new Hilbert series implying for non-regular
sequences HI(z) ≥

∏m

j=1(1−zdj )
(1−z)n as for each new addition to the sequence the dimension of

kernel increase the value of Hilbert function further. Since the increase in each value the
above greater than equal to relation is coefficient by coefficient, with equality only when the
complete sequence is regular. Now we will show that if the Hilbert series is a polynomial for
m = n, then the equality holds for z = 1.For m = n, if HI(z) is a polynomial, then Bézout’s
bound([]) states that HI(1), which is the number of solutions of I in the algebraic closure of
F, is bounded by ∏n

j=1 dj, i.e. HI(1) ≤ ∏n
j=1 dj. The inequality HI(z) ≥

∏m

j=1(1−zdj )
(1−z)n for z = 1

and m = n, this gives HI(1) ≥ ∏n
j=1 dj, because (1−zd)/(1−z) = zd−1 +zd−2 + . . .+1 evalu-

ated at z = 1 is d. Hence combining the two gives us equality, implying HI(z) =
∏m

j=1(1−zdj )
(1−z)n ,

which means the sequence is regular by first part of the lemma.

As a corollary of the above two we have:

Corollary 5.2.3. Let (f1, . . . , fn) be a regular system of homogeneous polynomials in F[x1, . . . , xn],
then the highest degree in the elements of a Gröbner basis for a graded ordering is bounded
by Macaulay’s bound.
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Proof When m = n, the Hilbert series is a polynomial, whose degree is ∑i∈[n](di− 1). This
means that Hilbert coefficient is zero for the degree ≥ D = ∑

i∈[n](di − 1) + 1. As discussed
in section 5.1.1,it represents that for degree ≥ D, the Macaulay’s matrix is full rank, this
means that all the monomials of these degrees can be made from elements of ideal with lower
degree, hence none of these degree monomials can come in the Gröbner’s basis.

Example Consider the system of 3 polynomials

f1 = x2 + y2 − 2xz − 2yz + z2 + h2

f2 = x2 + xy + yz − z2 − 2h2

f3 = x2 − y2 + 2yz − 2z2

in F[x, y, z, h]. From computations done in section 5.4, we get that the LT (〈f1, f2, f3〉)
is generated by monomials x2, xy, y2, xz2, yz2, z4. From this we get that the H〈f1,f2〉(t) =
(1 + t)2/(1− t)2 = (1− t2)2/(1− t)4 and H〈f1,f2,f3〉(t) = (1 + t)3/(1− t) = (1− t2)3/(1− t)4,
which shows these systems are regular by lemma 5.2.2 .

5.2.1 The Noether position

The idea here is to get the result of corollary 5.2.3 from m = n to general case. Here is where
Noether position and grevlex ordering become important. We use the following definition of
Noether position

Definition 5.2.1.1. The variables (x1, . . . , xm) are in Noether position with respect to the
system (f1, . . . , fm) if their canonical images in F[x1, . . . , xn]/〈f1, . . . , fm〉 are algebraic in-
tegers over F[xm+1, . . . , xn], i.e. ∀i ∈ [m], xi ∈ F[x1, . . . , xn]/〈f1, . . . , fm〉, there exists a
polynomial g ∈ F[xi, xm+1, . . . , xn] ∩ 〈f1, . . . , fm〉 that is monic with respect to xi. Also
F[xm+1, . . . , xn] ∩ 〈f1, . . . , fm〉 = 〈0〉.

What it geometrically means is that the algebraic set defined by the system of polynomi-
als has dimension n−m and, in an algebraic closure of F, the system has exactly the same
number of solutions (counting multiplicity), irrespective the value of (xm+1, . . . , xn).

As explained in [Giu88] by Giusti , in a sufficiently large field, for regular systems, the
variables can be put in Noether position by a generic linear change of variables.

The following proposition characterizes algebraically the Noether position property for
homogeneous ideals.

Proposition 5.2.1.2. [LJ84] Let (f1, . . . , fm) be a system of homogeneous polynomials of
F[x1, . . . , xn], such that 〈f1, . . . , fm〉 6= 〈1〉. If the variables (x1, . . . , xm) are in Noether
position with respect to the system (f1, . . . , fm), the the sequence (f1, . . . , fm, xm+1, . . . , xn)
is regular.
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Proof: From definition 1, we have the variables x1, . . . , xm being in Noether position
with respect to the system (f1, . . . , fm), for each i ∈ [m], there exits a polynomial g ∈
F[xi, xm+1, . . . , xn]∩ 〈f1, . . . , fm〉 of degree ni ≥ 1 in xi such that the coefficient of xni

i in g is
1. This means all monomials with degree of xi greater than ni can be formed using this g,
which hold for i ≤ m , while for the other variables all monomials with them can be trivially
created in the ideal 〈f1, . . . , fm, xm+1, . . . , xn〉. Thus, all monomials of degree greater than
the max value of ni can be created, hence the value of hilbert function for these is 0. Hence,
the hibert series for the ideal, i.e. H〈f1,...,fm,xm+1,...,xn〉(z) is a polynomial which we know by
lemma 5.2.2 means that the sequence (f1, . . . , fm, xm+1, . . . , xn) is regular.

This final proposition gives us the very precise information about the structure of a
grevlex Gröbner’s basis in a Noether position.

Proposition 5.2.1.3. [LJ84] Let (x1, . . . , xn) be in the Noether position with respect to
the homogeneous system (f!, . . . , fm). Let θm be a ring endomorphism of F[x1, . . . , xn], such
that θm(xi) = xi for i ∈ {1, . . . ,m}, while θm(xi) = 0 for i > m. Then for grevlex monomial
ordering

LT (〈f1, . . . , fm〉) = LT (θm(〈f1, . . . , fm〉)) · 〈xm+1, . . . , xn〉

Simply speaking, the leading terms of the elements of the reduced Gröbner’s basis do not
depend on the variables (xm+1, . . . , xn).

Proof: Let I = 〈f1, . . . , fm〉. The inclusion of LT (I) ⊃ LT (θm(I)) · 〈xm+1, . . . , xn〉 is easy
to see from the fact that for the grevlex monomial ordering, when θm(f) 6= 0, LT (f) =
LT (θm(f)), which is a direct consequence of definition of grevlex.

For the reverse direction, consider f ∈ I andM = xα1
1 · · · xαn

n be its leading monomial for
the grevlex ordering. We have to prove there exists a g with the leading monomial xα1

1 · · ·xαm
m .

Let l be the largest index such that xl|M . By definition of grevlex and that M is the leading
monomial of f , there exists homogeneous polynomials gl, . . . , gn ∈ F[x1, . . . , xn], such that

f = xαl
l gl + xl+1gl+1 + . . .+ xngn, gl ∈ F[x1, . . . , xl] \ {0} and LT (gl) = xα1

1 · · ·x
αl−1
l−1

By Proposition 5.2.1.2, the sequence (f1, . . . , fm, xm+1, . . . , xn) is regular. If l > m, then
f ≡ xαl

l gl ≡ 0 mod I + 〈xl+1, . . . , xn〉 and since from lemma 5.2.2 xl is not a zero divisor
in F[x1, . . . , xn]/(I + 〈xl+1, . . . , xn〉) we get that gl ≡ 0 mod I + 〈xl+1, . . . , xn〉, and since
gl doesn’t depend on the other variables gl ≡ 0 mod I. Hence starting from f ∈ I such
that LT (f) ∈ F[x1, . . . , xl] with l > m, we obtain gl ∈ I such that LT (f) = xαl

l LT (gl)
and LT (gl ∈ F[x1, . . . , xl−1]. By induction on l we can find a polynomial g ∈ I such that
LT (f) = x

αm+1
m+1 · · ·xαl

l LT (g), and LT (g) ∈ F[x1, . . . , xm]. This proves the converse inclu-
sion.
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Consider the ideals I1 = 〈f1, . . . , fm〉 and I2 = 〈f1, . . . , fm, xm+1, . . . , xn〉. The difference
between the terms in Gröbner’s basis would be that terms in I1’s Gröbner’s basis with
xm+1, . . . , xn will be reduced in I2. But proposition 5.2.1.3 tells us that the leading terms(for
grevlex in Noether position) will not get canceled as they do not depend on these variables , so
the degree of terms in Gröbner’s basis of I1 is bounded by degree of terms in Gröbner’s basis
of I2, by definition of grevlex that decides leading terms. By corollary we know the bound
on degree of terms in Gröbner’s basis of I2 to be D = ∑

i∈[m](di−1) +∑
i∈[m+1,n](1−1) +1 =∑

i∈[m](di− 1) + 1. Hence, the Macaulay’s bound, D = ∑
i∈[m](di− 1) + 1, bounds the degree

of elements in Gröbner’s basis of an ideal generated by a regular sequence (f1, . . . , fm).

Example Consider the system of polynomials with f1, f2 from example we saw earlier

f1 = x2 + y2 − 2xz − 2yz + z2 + h2

f2 = x2 + xy + yz − z2 − 2h2

in F[x, y, z, h]. The variables (x, y) are in Noether position wrt to the system (f1, f2). It can
be seen that the ideal contains polynomials 2y4 − 6y3z + 12y2z2 + 7y2h2 − 8yz3 − 20yzh2 +
4z2h2 +9h4 ∈ F[y, z, h] and 2x4 +2x3z−2x2z2−3x2h2−2xz3−2xzh2 +z2h2 +4h4 ∈ F[x, z, h]
which are monic polynomials wrt y and x.

On the other hand we can see that (y, z) are not in Noether position, as we can show
〈f1, f2〉 ∩ F[y, x, h] = 〈2y3x+ 4y2x2− y2h2 + 8yx3− 8yxh2− 4x2h2− h4〉, which means there
is no monic polynomial in y in the intersection.

5.3 The matrix F5 algorithm
We discussed in section 5.1, how we can get the Gröbner’s basis by doing Gauss elimina-
tion on Macaulay’s matrices Md,m till degree d < D, which becomes polynomial time if
the upper bound on degree of elements in Gröbner’s basis is O(1), which we saw can be
obtained when the polynomials of degree O(1) form a regular sequence. The Faugère’s F5
algorithm(2002)[Fau02] is designed so that it ensures that no "useless" reductions to 0 is
performed when the input system is regular. The matrix version of this is variant whose
analysis is easier to do, in which the using the F5 criterion only the required rows are added
into the next degree Macaulay’s matrix.

To understand the algorithm better, we will look at a bit different notation. In order to
keep track of the polynomials that lead to the different rows of the matrices encountered dur-
ing the algorithm , it is convenient to view a matrix (M) as a map (s, t) ∈ S×T →Ms,t ∈ F
where S is a finite subset of N×T and T a finite subset of T ordered using a graded ordering,
where T is the set of non-zero monomials in x1, . . . , xn of degree d(when used for Macaulay’s
matrix of degree d). The basic idea is to represent each row of a Macaulay’s matrix with
an index s = (i, τ) which represents sum of τfi and some other "smaller" polynomials in
the ideal, with s being the signature of the corresponding polynomial. Each row is viewed
as a vector with entry t denoting the coefficient of monomial ranked t in the ordering, in
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the polynomial which the row represents. We denote Md,i the result of Gauss elimination
applied to the matrix Md,i.

The algorithm constructs matrices incrementally in the degree(from min(d1, . . . , dm) to
D) and the number of polynomials (added in from Gauss elimination of previous degree
Macaulay’s matrices). We denote the current degree by d and the current number of poly-
nomials with i.

The original F5 criterion translates to the following in the matrix version

Proposition 5.3.1. (F5 criterion) If t is the leading term of Row(Md−di,i−1, s) where
s < (i, 1) then the row indexed by (i, t) belongs to the vector space generated by the rows
of Md,i having smaller index.

Proof:We have t ∈ LT (〈f1, . . . , fi−1〉d−di
) which means there is some h such that t = LT (h)

with h = ∑i−1
k=1 hkfk. This implies that tfi = ∑i−1

k=1 fihkfk + (t − h)fi, where the first term
belongs to 〈Row(Md,i−1)〉 and the last one is a linear combination of rows of Md,i having
smaller index, as LT (h) � LT (t− h).

The above criteria let’s us avoid the cases that are already checked in previous iterations
making the number of rows smaller, and hence speeding up the algorithm. Thus, in the
algorithm we donot add the rows that are already in the F5 criterion. The time complexity
analysis is already given in section 5.1. We give the pseudocode for the algorithm now
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Algorithm 1 Finding Gröbner’s basis using matrix F5
Require: homogeneous polynomials (f1, . . . , fm) with degrees d1 ≤ . . . ≤ dm; a maximal

degree D

1: function matrixF5(f1, . . . , fm, D)
2: G = φ
3: for d← {d1, d1 + 1, . . . , D} do
4: Md,0 = φ,Md,0 = φ
5: for i← {1, 2, . . . ,m} do
6: if d < di then
7: Md,i = Md,i−1;
8: else
9: if d = di then

10: Mdi,i = add the new row fi to Mdi,i−1 with index (i, 1)
11: else
12: Md,i = Md,i−1
13: F5criterion = LT (Md−di,i−1)
14: for f ← Rows(Md−1,i) \Rows(Md−1,i−1) do
15: (i, u) = index(f), with u = xj1 · · ·xjd−di−1

16: and 1 ≤ j1 ≤ . . . ≤ jd−di−1 ≤ n
17: for j ← {jd−di−1, . . . , n} do
18: if uxj 6∈ F5criterion then
19: add the new row xjf with index (i, uxj) in Md,i

20: Compute Md,i by Gauss elimination from Md,i

21: Add to G all rows of Md,i not reducible by LT (Gi)
22: Output G

Example Consider the system of 3 polynomials
f1 = x2 + y2 − 2xz − 2yz + z2 + h2

f2 = x2 + xy + yz − z2 − 2h2

f3 = x2 − y2 + 2yz − 2z2

in F[x, y, z, h]. As shown earlier this system is regular and the variables (x, y, z) are in
Noether position with respect to the system. So we know D = (2− 1) ∗ 3 + 1 = 4. We will
look at how the computation in matrix F5 works from this point.

Degree 2 : For degree 2 each polynomial is simply added as (i, 1) to M2,i at line 10 in
pseudocode. This when i = m = 3, gives M2,3 to be

M2,3 =

x2 xy y2 xz yz z2 hx yh zh h2 f1 1 0 1 −2 −2 1 0 0 0 1
f2 1 1 0 0 1 −1 0 0 0 −2
f3 1 0 −1 0 2 −2 0 0 0 0
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Gaussian reduction on the above gives and making the last row leading term coefficient
positive gives us:

M2,3 =

x2 xy y2 xz yz z2 hx yh zh h2 f1 1 0 1 −2 −2 1 0 0 0 1
f2 0 1 −1 2 3 −2 0 0 0 −3
f3 0 0 2 −2 −4 3 0 0 0 1

As a result we add the polynomials x2+y2−2xz−2yz+z2+h2, xy−y2+2xz+3yz−2z2−3h2

and 2y2 − 2xz − 4yz + 3z2 + h2 to G, as it completes the degree 2 possible cases.
Degree 3 : The number of columns in degree 3 matrices will be

(
n+d−1

d

)
=
(

4+3−1
3

)
=
(

6
3

)
=

20 whose matrix cannot fit. So we will look in terms of the signature of polynomials. The
F5criterion will be empty as there is nothing of degree d− di = 3− 2 = 1 in the generators.
This means all the rows of the Macaulay’s matrix will be added getting us M3,3 . The rows
after Gauss elimination with there leading terms will be with f1, f2, f3 being the ones of the
M2,3 are

(ind) (1, x) (1, y) (1, z) (1, h) (2, x) (2, y) (2, z) (2, h) (3, x) (3, y) (3, z) (3, h)
(LT ) x3 x2y x2z x2h y3 xy2 xyz xyh xz2 y2z yz2 y2h

The underlined are the ones that cannot be reduced by elements by G till now. Hence,
we add those polynomials corresponding to those rows. These are 4xz2 +3yz2−2z3 +3xh2 +
4yh2 + 2zh2 and 3yz2 − 6z3 + 11xh2 − 5yh2 − 3zh2.

Degree 4 : This is the first part where the F5 criterion comes into play. The set of
F5Criterion is empty for i = 1, but for i = 2, it has x2 and x2, xy for i = 3. This means
when we are adding rows on line19 we will skip (2, x2), (3, x2) and (3, xy). Note, these were
the rows that would have been reduced to zero during Gausss elimination. So M4,3 will
contain

(
4+4−1

4

)
=
(

7
4

)
= 35 columns and 3

(
5
2

)
− 3 = 27 rows. All the rows are reducable

using existing G except (3, y2) which adds 3z4 + 4xzh2 + 12yzh2− 7z2h2− 12h4 to G. Thus,
the final G we have is

G = 〈x2 + y2 − 2xz − 2yz + z2 + h2, xy − y2 + 2xz + 3yz − 2z2 − 3h2,

2y2 − 2xz − 4yz + 3z2 + h2, 4xz2 + 3yz2 − 2z3 + 3xh2 + 4yh2 + 2zh2,

3yz2 − 6z3 + 11xh2 − 5yh2 − 3zh2, 3z4 + 4xzh2 + 12yzh2 − 7z2h2 − 12h4〉

5.4 Implications for our case
We were looking at the problem of checking ideal membership of a product of constant degree
polynomials, in an ideal generated by 2 degree δ = O(1) irreducible polynomials. As we saw
earlier that the Gröbner’s basis define a unique weak remainder for a given ideal, obtaining
the Gröbner’s basis allowed us to check ideal membership. 2 irreducible polynomials of same
degree form a regular sequence unless they aren’t just a scalar multiple of each other. By the
proofs in section 5.2 above we know that the Gröbner’s basis of these degree δ polynomials
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can only have elements of degree D = ∑
i∈[2](δ− 1) + 1 = 2δ− 1. This means that the space

of monomials that make the gröbner’s basis is small(polynomial in n), so that is what we
aim at using. We also have seen that we can calculate the gröbner’s basis itself too when
the variables are in Noether position (which can be obtained by a generic linear change of
variables) for grevlex monomial ordering.

6 Using the Degree Bound
We aim at using a variable reduction that preserves the monomial space of all monomials
with degree less than D = 2δ − 1, which should conserve the Gröbner’s basis for these and
hence conserve ideal membership. This variable reduction should also preserve non-zeroness
on ideas similiar to the ones in [SS12] for depth3 circuits, giving us a polynomial size hitting
set.

7 Conclusion and Future Scope
We looked at all the work done to solve the PIT problem for bounded top and bottom fanin
depth4 circuits, and looked at a possible way of extending the work for bounded top fanin
depth3 identity testing to depth4. The main idea was to find a homomorphism(variable
reduction) which would preserve ideal membership and hence non-zeroness of the circuit. To
see this we explored the Gröbner’s basis for regular sequences, as Gröbner’s basis are the
main method when it comes to ideal membership with generators of degree > 1. We found
that the degree of the elements in Gröbner’s basis is bounded constantly for our case, and
thus, the monomial space they lie in is known to be small(poly(n, δ,m)).

In future we explore to develop the homomorphism by conserving this small space. The
next step to finding such homomorphism would be to try and solve the case when the path
is not a regular sequence. The next step to it would be trying to solve the case when the
multiplicity of factors in terms is not 1.
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