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Chapter 1

Notation and Definitions

We use F to represent fields. We will mainly be working with function fields, and the vari-
ables will be denoted mainly by x1, . . . , xn with n denoting the number of indeterminants.
F[x1, . . . , xn] will denote the polynomial ring over F. Polynomials are usually denoted by
f1, . . . , fm, with m denoting the number of polynomials. Arithmetic circuits are the most
natural and standard model for computing polynomials and we will be using these to repre-
sent polynomials. We use the following definition of Arithmetic circuits

Definition 1.1. (Arithmetic circuits) An arithmetic circuit C over the field F and the
set of variables x1, . . . , xn is a directed acyclic graph as follows. The vertices of C are called
gates. Every gate of C of in-degree 0 is labelled by either a variable or a field element. Every
other gate is labelled by either + or ×. An edge is labelled with field constants, which is 1
by default.

An arithmetic circuit computes a polynomial in a natural way : An input gate labeled
by α ∈ F ∪ {x1, . . . , xn} computes the polynomial α. A product gate (gate with label ×)
computes the product of the polynomials computed by its children. Similarly a sum gate
(gate with label +) computes the sum of the polynomials computed by its children. An
example of an arithmetic circuit is given below.

We define the size of an arithmetic circuit to be the number of edges in the graph. We
define the depth of a gate to be the length of the longest directed path to it. The depth of a
circuit is the maximal depth of a gate in it. We refer to the input degree of a gate as its fanin,
and output degree of a gate as its fanout. We can also see an arithmetic circuit as layers of
+ and × gates, as consecutive + or consecutive × gates can be combined just by increasing
the fanin. Hence, a depth3 circuit is frequently represented as ΣΠΣ or ΠΣΠ. The fanins
are often written in superscript, for eg., ΣkΠΣ represents depth3 circuit with top gate fanin k.

As we saw in the model of arithmetic circuits, the two main resources are size and depth.
Based on size, we define class VP as the family of circuits {Cn} computing polynomials such
that n is number of variables , degree and size of the circuit is bounded by poly(n). The
class is the arithmetic analog of P . For more details in the algebraic complexity area, refer
to the survey [SY10].
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Figure 1.1: Circuit computing xy + 2y2

We will further need a few definitions of a few terms which we give below.

Definition 1.2. (Ideal) The ideal generated by f1, . . . , fk is the set {
∑
i hi ·fi : h1, . . . , hk ∈

F[x1, . . . , xn]} and denoted by 〈f1, . . . , fk〉.

We will denote the quotient ring of an ideal by F[x1, . . . , xn]/I. We will use Id to denote
the polynomials in I of degree d.

Definition 1.3. (Radical) The radical of an ideal I is the set {g ∈ F[x1, . . . , xn] : ge ∈
I for some integer e ≥ 1} and is denoted by

√
I.

There many different definitions of variety but we will be using the following in this
report

Definition 1.4. (Variety) The variety of a set of polynomials f1, . . . , fk ∈ F[x1, . . . , xn] is
the set of all their common zeroes in Fn,i.e. the set {(a1, . . . , an) ∈ Fn : f1(a1, . . . , an) =
. . . = fk(a1, . . . , an) = 0}. It is denoted by V (f1, . . . , fk).
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Chapter 2

Introduction

2.1 The Problem
In this report we will be studying the problem of Polynomial Identity Testing (PIT). It is
the problem in which we are given a polynomial as an arithmetic circuit C(x), over a ring R,
to efficiently test whether the C is identically zero. In this report we will focus on the case
of R being a field. By efficient we mean the algorithm should run in poly(size(C)) many F
operations. The problem is trivial if the polynomial is given as a vector of coefficients, for
which we only need to check if any of the coefficient is non-zero. It also has an easy solution
for univariate polynomials, which requires it to be evaluated at degree+ 1 many points, and
it is an identity iff all the evaluations are zero. This method doesn’t work for multivariate
polynomials, as there can be infinite solution for a simple bivariate polynomial (eg. xy = 0
over R). There are 2 versions to this problem, Blackbox PIT and Whitebox PIT. In the
Blackbox version, we are only allowed evaluations of C at points from Fn, and cannot look
inside the computations at inner gates. In the whitebox version we have access to the inner
gates of C. Let us give formal definition of the problem

Definition 2.1.1. [For14] (Polynomial Identity Testing) Let C be a class of circuits
having size ≤ s, which computes polynomials in F[x1, . . . , xn] of degree < d. The PIT
problem for this class C asks for a deterministic algorithm to test whether a polynomial fC ,
computed by a circuit C ∈ C, is identically zero or not. The algorithm is considered efficient
if it uses only poly(s, n, d)F operations.

Definition 2.1.2. [For14] (Hitting Set) Let C be a class of circuits having size ≤ s, which
compute polynomials in F[x1, . . . , xn] of degree < d. A Hitting set H ⊆ Fn for the circuit
class C is a set of points such that if a circuit C ∈ C computes a non-zero polynomial fC ,
then ∃(α1, . . . , αn) ∈ H such that f(α1, . . . , αn) 6= 0.

From it’s definition giving a poly(s, n, d) sized Hitting set for a circuit class C, gives an
efficient blackbox PIT for C. It is notable that the problem of PIT has a very simple and
elegant randomized solution thanks to the PIT lemma.

Lemma 2.1.1. (PIT Lemma)(Schwartz-Zippel[Sch80]) Let f ∈ F[x1, . . . , xn] be a non-
zero polynomial of total degree d ≥ 0. Let S be any finite subset of F, and let α1, . . . , αn be
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elements selected independently, uniformly and randomly from S. Then,

Prα1,...,αn∈S[f(α1, . . . , αn) = 0] ≤ d

|S|
The above lemma can be easily proved inductively, with the base case being the univariate

case. This puts PIT in coRP . The problem of derandomizing PIT, so as to put it in P is
still open. One trivial derandomization is to check (d + 1)n many points, but is inefficient.
It is formally stated below
Lemma 2.1.2. (Combinatorial Nullstellensatz)[AT99] Let f ∈ F[x1, . . . , xn] be a non-
zero polynomial of individual degree d. Let S be a set of distinct values of size > d. Then,
there exists (α1, . . . , αn) ∈ Sn such that f(α1, . . . , αn) 6= 0.

We will look in this report at a special case where the circuits will be have depth 4. As
per results in [AV08], solving the problem for depth4 circuits gives us solution for PIT of all
circuits in VP. Therefore, we look at an even more restricted case with the top and bottom
fanin are also just O(1). The depth 4 circuits can be of two types ΣΠΣΠ and ΠΣΠΣ. The
case of ΠΣΠΣ is reduced to simply checking the smaller ΣΠΣ circuits which multiply in the
final multiplication gate, which itself is a different problem of depth-3 circuits. Hence, we
look at only inputs of the form ΣkΠΣΠr, where k ≥ 3 = O(1) and r ≥ 2 = O(1). The case
of k = 2 is solved in whitebox case by division of the common factors in both terms and
just comparing the left constants (as F[x1, . . . , xn] is Unique Factorization Domain). The
Blackbox case for the problem is open for even k = 2. While, the case of r = 1 is the case of
depth-3 constant top fanin which is discussed in section 3.1. Let us give a formal definition
of the bounded case:

Consider the input circuit be C such that it has a form C = ΣkΠΣΠr, i.e. the circuit
has alternate + and × gates where the fanin of the top + gate is ≤ k and the fanin of the
bottom × gate is ≤ r. Such a circuit C computes the polynomial of the form

C(x1, . . . , xn) =
k∑
i=1

Ti =
k∑
i=1

di∏
j=1

Lij

where di is the fanin of the ith × gate on the second level. The circuit is said to be simple
if gcd(T1, . . . , Tk) = 1. It is minimal if no proper subset of T ′s sum upto 0, i.e. for every
φ ⊂ A ⊂ [k] : ∑

i∈A Ti 6= 0. We assume the input circuit to be simple and minimal as if it’s
not simple it breaks into 2 different smaller simpler circuits by taking out the gcd from all
terms, and if it’s not minimal we can decrease the top fan-in. To even simplify the circuits
further we assume that it is a homogeneous circuit, i.e. all the T ′is are homogeneous of the
same degree (and therefore Lij are homogeneous).

2.2 The Motivation
The problem of PIT has many applications like the problem of deciding existence of perfect
matching in a graph efficiently can be seen as a question of finding efficient PIT algorithm
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for the determinant polynomial of the graph’s Tutte matrix. The idea of PIT was also
very useful in the proof of the complexity result IP = PSPACE. Even the problem of
Primality testing was solved by working with a PIT formulation. It was observed that a pos-
itive integer n is prime iff (x + 1)n = (xn + 1)(modn), which can be considered as checking
P (x) = (x+1)n− (xn+1) to be identity over Z/nZ. The problem of derandomizing PIT has
relations to complexity results like PIT ∈ P =⇒ NEXP 6⊆ P/poly or V P 6= V NP . For
more details into PIT and it’s application, look at the surveys [Sax09], [Sax14] and [SY10].

The depth reduction results in algebraic complexity have brought the computation of any
polynomial in VP to computation by circuits of just depth3. The case of depth3 bounded
top fanin case has been solved for both whitebox version in [KS07] and blackbox in [SS12].
Also by results in [AV08], an efficient hsg for Σs∧ω(1) ΣsΠO(log s) gives an nO(logn)-hsg for VP.
Thus, this is one of the open cases near the general case but is also close to already solved
cases.
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Chapter 3

Previous Work

We will have look at the work done in [Gup14] where he proposes conjectures about Sylvester-
Gallai Type theorems that can solve the problem completely. Some of these conjectures have
been proven for Quadratic polynomials(case k = 3) recently in the papers [Shp19], [PS20a].
Also, proving one such conjecture in [PS20b] gave a poly-time algorithm for the case of
Σ3ΠΣΠ2 circuits. We will discuss in great details the development of Sylvester Gallai Type
theorems in the next section. But, before we will look at how they give us PIT algorithms.

3.1 Sylvester-Gallai Theorems
Sylvester-Gallai theorem is a famous theorem in incidence geometry, which is stated below

Theorem 3.1.1. Given a finite number of non-collinear points S in the plane R2, there
always exists a line which passes through exactly two points in S.

The above has a simple proof from geometry. It has a higher dimensional generalization
that says:

Theorem 3.1.2. Let S be a finite set of points spanning an affine space V ⊆ Rn such that
dim(V ) ≥ 2t. Then, there exists (t + 1) points in S that span a t dimensional affine space
H ⊂ V such that |H ∩ S| = t+ 1.

The case of depth3 PIT algorithm led to development of lot of new techniques. Karin
and Shplika showed that if we have a rank bound of R(k, d) for minimal,simple ΣΠΣ(n, k, d)
identities then we have a blackbox PIT algorithm with poly(n, dR(k,d)) many field operations.
By rank of a depth3 circuit we mean the dimension of the vector space spanned by the linear
polynomials that appear int he multiplication terms. In [DS07] it was showed that a minimal
and simple depth-3 identity has rank at most logk d. Sylvester-Gallai theorems were used in
attempts to get a good bound on the rank of identities. In the case of depth3 circuits The
space S is the set of all linear forms that appear in the circuit, hence dim(V ) = rank(C).
Kayal and Saraf [KS09] used Theorem 3.1.2 to get a bound on the rank of minimal,simple
ΣΠΣ(n, k, d) identity.
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3.2 SG Theorem relation to depth-4 PIT
We will look at the work done by Gupta in [Gup14] to solve the case of PIT of depth 4
bounded top and bottom fanin circuits. It gives solution to the special case when one of the
terms Ti doesn’t lie in the radical generated by other terms . For the other cases, which is
referred to as the Sylvester-Gallai configuration, he proposes conjectures for higher degree
polynomials with bounds on transcendence degree similar to the results known for linear
polynomials and their rank. We first define the Sylvester-Gallai configuration of the PIT
depth4 case.

Definition 3.2.1. (SG-ΣkΠΣΠr circuits A simple, minimal, homogeneous ΣkΠΣΠr cir-
cuit is SG if

∀i ∈ [k]
⋂

j∈[k]\{i}
V (Tj) ⊆ V (Ti)

By Hilbert’s Nullstellensatz, over C this equivalent to

∀i ∈ [k] Ti ∈
√
〈T1, . . . , Ti−1, Ti+1, . . . , Tk〉

Gupta in his paper gave an algorithm to identify if a depth4 circuit is an SG circuit or
not for circuits that work in the Complex field(C). If a circuit is an identity the sum of
all terms is zero,so we know ∀i ∈ [k], Ti ∈ 〈T1, . . . , Ti−1, Ti+1, . . . , Tk〉, and hence definitely
lie in it’s radical. Thus, all Identities are SG circuits, but the reverse is not true. Gupta
gives an algorithm to identify the cases of non-identity in which one of the terms doesn’t
lie in the radical generated by other terms, i.e. without the loss of generality we have
Tk 6∈

√
〈T1, . . . , Tk−1〉. The proof is based on the following proposition:

Proposition 3.2.2. Let P1, . . . , Pd, L1, . . . , Lk ∈ C[x1, . . . , xn] be homogeneous and degree
of each Li is at most r. Then,

P1 · · ·Pd ∈
√
〈L1, . . . , Lk〉 ⇐⇒ ∃{i1, . . . , irk} ⊆ [d] : Pi1 · · ·Pirk

∈
√
〈L1, . . . , Lk〉

Proof: The reverse direction of the proof is obvious from the definition of radical of an
ideal. For the forward direction assume, V1 ∪ V2 ∪ . . . ∪ Vt be the minimal decomposition of
V (L1, . . . , Lk) where V ′i s are irreducible. Then by Nullstellensatz,

V1 ∪ V2 ∪ . . . ∪ Vt ⊆ V (P1) ∪ . . . ∪ V (Pd)
As Vi’s are irreducible, we have that for each i there is an ij ∈ [d] such that Vi ⊆ V (Pij ).

Therefore

V (L1, . . . , Lk) = V1 ∪ V2 ∪ . . . ∪ Vt ⊆ V (Pi1) ∪ . . . ∪ V (Pit)
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which by Nullstellensatz means Pi1 · · ·Pit ∈
√
〈L1, . . . , Lk〉. The number of irreducible

components of a variety is bounded by it’s cumulative degree which is the sum of all it’s ir-
reducible components. By Bezout’s Theorem, cumulative degree of V (L1, . . . , Lk) is at most
Πideg(Li). Hence, t ≤ rk. In simpler words the proposition says that if a product of polyno-
mials lies inside the radical generated by k polynomials of degree atmost r, then the product
of the elements of a subset of size rk from the product will also lie in radical. This enables us
to create whitebox algorithm straight by checking all rk subsets, which since both r and k are
constant will be polynomial in d and also there products degree will be small(= rk+1). For
the blackbox algorithm of the same Gupta proves that radical non-membership is preserved
under random linear projections, which allows to decrease the number of variables and hence
gives us a poly sized hitting set.

For the SG-circuit, he proposes that the transcendence degree (trdeg) is small(O(1)). We
state the conjecture below

Conjecture 3.2.3. Let T1, . . . , Tk be finite sets of irreducible homogeneous polynomials in
C[x1, . . . , xn] of degree ≤ r st. ∩iTi = φ and for every k−1L1, . . . , Lk−1, each from a distinct
set Tj being the remaining set st. Tj ∈

√
〈L1, . . . , Lk−1〉. Then, trdegC(∪iTi) ≤ λ(k, r) for

some function λ.

The above is true for r = 1 and was first proved in [KS09]. He further proposed simpler
conjectures to solve in which he proposed instead of product, individual polynomials to lie in
the radical, and another one in which he took out the elements being from distinct set(colored
version) condition. He says that these could function as stepping stones in proving the main
conjecture.

Currently, Sylvester Gallai theorems have only been proved for the case of k = 3 and r = 2.
We will have a look at these theorems and their proof ideas in the next chapter. Then, we
will have a look at a possible way to extend these theorems to cubic polynomials.
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Chapter 4

Sylvester Gallai Type theorems for
Quadratics

4.1 SG Theorem variants known for Quadratics
Here are the basic Sylvester Gallai Type theorems proved for the Quadratic polynomials
when k = 3 in [Shp19], [PS20a] and [PS20b].

Theorem 4.1.1. (Kelly’s Theorem for Quadratics)[Shp19]: Let {Qi}i∈[m] be homoge-
neous quadratic polynomials over C such that each Qi is either irreducible or a square of a lin-
ear function. Assume further that for every i 6= j,∃k 6= iandk 6= j such that Qk ∈

√
〈Qi, Qj〉.

Then the linear span of the Qi’s has a dimension O(1).

Theorem 4.1.2. (Coloured Version of Theorem 4.1.1)[Shp19]: Let T1, T2, T3 be finite
sets of homogeneous quadratic polynomials over C satisfying the following properties:

• Each Q ∈ ∪iTi is either irreducible or a square of a linear function

• No two polynomials are multiples of each other (i.e., every pair is linearly independent).

• For every two polynomials Q1 and Q2 from distinct sets there is a polynomial Q3 in
the third set such that Q3 ∈

√
〈Q1, Q2〉

Then the linear span of the polynomials in ∪iTi has dimension O(1).

Theorem 4.1.3. (Product in Radical)[PS20a]: There exists a universal constant c such
that the following holds. Let {Qi}i∈[m] ⊂ C[x1, . . . , xn] be a finite set of pairwise linearly
independent irreducible polynomials of degree at most 2. Assume that, for every i 6= j,∏
k∈[m]\{i,j}Qk ∈

√
〈Qi, Qj〉. Then,dim(span{Q}) ≤ c.

Theorem 4.1.4. Coloured Version of theorem 4.1.3 [PS20b]: There exists a universal
constant Λ such that the following holds. Let T1, T2, T3 ⊂ C[x1, ..., xn] be finite sets of pairwise
linearly independent homogeneous polynomials satisfying the following properties:

• Each Q ∈ ⋃
j∈[3] Tj is either irreducible quadratic or a square of a linear function
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• Every two polynomials Q1 and Q2 from distinct sets satisfy that whenever they vanish
then the product of all the polynomials in the third set vanishes as well. Equivalently, for
every two polynomials Q1 and Q2 from distinct sets the product of all the polynomials
in the third set is in the radical of the ideal generated by Q1 and Q2.

Then dim(span{⋃j∈[3] Tj}) ≤ Λ

The requirement that the polynomials are homogeneous is not essential as homogeniza-
tion does not affect the property stated in the theorem.

The Theorem 4.1.4 puts a O(1) bound on the linear dimension of all quadratics in the
terms T1, T2, T3 for SG-circuits, thus also bounding their tr-deg. The variable reduction
[BMS13] allows us to reduce the number of variables to constant in which case we can sim-
ply brute force over all dk points. Thus, Theorem 4.1.4 gives us a Blackbox PIT algorithm
for Σ3ΠΣΠ2.

4.2 Required Structure theorems
In proving these, they used the following structural results when quadratics lie in radical of
other quadratics.

Theorem 4.2.1. (Structural Result 1)[Shp19] Let Q ∈
√
〈Q1, Q2〉, then one of the fol-

lowing hold

1. Q is in linear span of Q1, Q2

2. ∃α, β, and a linear function l such that αQ1 + βQ2 = l2

3. ∃2 linear function l1, l2 such that Q,Q1, Q2 ∈
√
〈l1, l2〉

Theorem 4.2.2. (Structural Result 2)[PS20a] Let ∏
i∈K Qi ∈

√
〈Q1, Q2〉, then one of

the following hold

1. ∃i ∈ K : Qi is in linear span of Q1, Q2

2. ∃α, β, and linear functions l1, l2 such that αQ1 + βQ2 = l1l2

3. ∃2 linear function l1, l2 such that Q1, Q2 ∈
√
〈l1, l2〉
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4.2.1 Proof Idea 4.2.1
The basic idea is to reduce the problem from radical membership in a radical generated by
2 polynomials Q1, Q2 to a single polynomial Resx1(Q1, Q2). For this consider

Q1 = x2
1 +Q′1

Q2 = x1a1 − A

Q = x1q +Q′

The easy cases, i.e. of a1 = 0 or a1|A, are handled first. In the first case a1 = 0 =⇒
Q1 = 0 mod A as for any zero of A, Q1 has 2 possible assignment of x1, but Q has only
one, which simply results in case 2. For a1|A, we make a variable change to y = a1 and
x1−A/a1 = z, getting Q2 = yz, and substituting y = 0, to get linear forms which make the
case 3 true.

Now we work with the main case. Look at the resultant of Q1, Q2 wrt x1

Resx1(Q1, Q2) = A2 + a2
1Q
′
1

If we substitute x1 = A/a1, we haveQ2 = 0, andQ1 = (A2+a2
1Q
′
1)/a2

1 = Resx1(Q1, Q2)/a2
1.

Thus, we have Q(x1 = A/a1) ∈
√
Resx1(Q1, Q2).

Aq + a1Q
′ ∈

√
Resx1(Q1, Q2)

Polynomial on LHS has degree 3, while on RHS has degree 4.Then, we simply look at
possible cases of how Resultant can factor and then get lying in radical to one of the cases
of the theorem.

Case 1: Resultant is irreducible, or such cases such that Aq + a1Q
′ has to be 0. This

means Q = q/a1 ∗Q2, i.e. case1 holds as Q multiple of Q2.

Case 2: Resultant of the form C2 where C is an irreducible quadratic.

A2 + a2
1Q
′
1 = C2

qA+ a1Q
′ = bC

We have a2
1Q
′
1 = C2 − A2 = (C + A)(C − A). If Q′1 is irreducible then αa2

1 = (C + A)
and Q′1 = α(C − A)(or opposite), which gives Q′1 = −2αA + α2a2

1, which simply gives
Q1 + 2αQ2 = (x1 + αa1)2, i.e. case 2.

If Q′1 = ef , either the above holds or (C − A) = a1e and (C + A) = a1f , which gives
a1|A, which is already handled.
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Case 3: Resultant is for the form

A2 + a2
1Q
′
1 = a2C

qA+ a1Q
′ = λaC

We know that a|Resx1 , therefore mod a, either of Q1, Q2 vanish or have a common
factor a′. We know as a doesn’t have x1, Q′1 cannot vanish, and for Q2 to vanish a2|A, which
is already handled. For the last case setting the common factor a′ = 0 and a = 0, we have
Q1 = Q2 = 0, and hence Q = 0,i.e. case 3.

4.2.2 Proof Idea 4.2.2
The theorem in PS20 also uses the claim from Gup14 based on Bezout Identity, to get a
small product of 4 quadratics to lie in radical, from the whole product. Thus, the initial
condition is

4∏
i=1

Li ∈
√
〈Q1, Q2〉

Applying the same deduction as in Thm 4.2.1, we have for cases when

4∏
i=1

(Aqi + a1L
′
i) ∈

√
Resx1(Q1, Q2)

Following are the possibilities based on factorization of Res

Case 1 Res is irreducible of deg 4, and all factors in the product have deg 3. Hence there
should be one product which is identically 0, which makes the case 1.

Case 2 Res has a linear factor. If the linear factor is a1, then we a1 divides A, and case
2 holds. If it is any other factor b, then mod b, either Q1 or Q2 zero, which mean a1|A, or
they have a common factor a, which if quadratic give case 2, and if linear give case 3.

Case 3 Resx1(Q1, Q2) = CD, where C and D are irreducible quadratic polynomials. The
basic idea is to consider Q1, Q2, C,D as quadratics in a1. Then, by comparing coefficients in
Resx1(Q1, Q2) = CD get structure in Q′1, A and C,D. considering

Q′1 = αa2
1 + p1a1 + A′′

Q′2 = βa2
1 + p2a1 +B′′

C = γa2
1 + p3a1 + C ′′

D = δa2
1 + p4a1 +D′′
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Comparing coefficients in Resx1(Q1, Q2) = CD gives

B′′2 = C ′′D′′

2p2B
′′ = p3D

′′ + p4C
′′

These becomes into the case of C = a1v + Q1 and D = a1u + Q1, which can be worked
to lie in case 2.

The cases that remain are where a1 = 0. This simply means

Q1 = x2
1 −Q′1

Q2 = x2
2 −Q′2

where Q′1 and Q′2 are free of x1, x2. Represent (x3, . . . , xn) with z. We can remove x2
1

and x2
2 terms from Qi’s by subtracting Q1 and Q2, hence have

Qi = αix1x2 + bi(z)x1 + ci(z)x2 + L′i(z)

Using the fact that one of the irreducible component of the zeroset of Q1, Q2 has it’s projec-
tion to z to be dense, it can be shown that either b2

1Q
′
1 = c2

1Q
′
2 or L2

1 = α2
1Q
′
1Q
′
2. Both of

these give that either one of Q′1 or Q′2 is a perfect square or Q′1 = βQ′2 for some β ∈ C. All
the 3 cases result into case 2 of theorem.

Issues for cubics

• One thing that seems crucial to the structure theorem is the fact that we can diagonalize
a quadratic polynomial which allows us to to get a small expression for resultant. But
this property doesn’t hold for polynomials of higher degree (cubics and further).

• A major issue extending it cubics will be that the degree of resultant will be 9 and
hence the number of cases will be larger.

• The expression for Q’s after substitution and Resultant are small and hence easy to
infer information from. Q = Aq + a1Q

′ and Res = A2 + a2
1Q
′
1

• Also getting to a structural result where the problem reduces to lying in radical gen-
erated by linear forms seems difficult.
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4.3 Bounding dimension of linear space using structure
theorem

4.3.1 Proof Idea Theorem 4.1.1
Proof Idea Thm 4.1.1: Let us assume that for every Q1 ∈ {Q}, we have at least a small
fraction δ ≥ 1% of Q’s such that the quadratic in their radical Q2 ∈

√
〈Q1, Q2〉 follows case

1 and is in their linear span, then they form a δ − SG configuration. The points v1, . . . , vm
in Cd form a δ − SG configuration if for every i ∈ [m] there exists at least δm values of
j ∈ [m]such that the line through vi, vj contains a third point in the set. By Robust version
of SG theorem, we can say that they span a O(1) space.

Theorem 4.3.1. (Robust SG thm): If v1, . . . , vm in Cd form a δ−SG configuration then
dim(span{v1, . . . , vm}) ≤ 12/δ

Now, we move to the other case, i.e. there are 2 polynomials which have less than 1% of
quadratics in case1. This means the rest of 98% satisfy case 2 or 3 with either Q1 or Q2. This
provides a strong structure on these polynomials and hence we bound the dimension on these.

For bounding the dimension in case 2 the fact that it is a square of linear form is very
useful as it gives Q1 in span of 2 products of 2 linear forms. If F1, . . . , Fm are quadratic
polynomials that satisfy case 2 with Q1, Q2, then we can say that all the linear forms involved
form a space of dimension 4. The idea is if we have

Fi = Q1 + l2i = βiQ2 + b2
i

for i 6= j such that βi 6= βj, then Q1, Q2 lie in span of {(li − bi) · (li + bi), (lj − bj) · (lj + bj)}
If there is some other k 6= i, j we have Q1 in span of {(lk − bk) · (lk + bk), (lj − bj) · (lj + bj)}.
This gives us that lk, bk in span of {li, bi, lj, bj}. Thus, the dimension is O(1).

Now we bound dimension of polynomials being in case 3. Consider F1, . . . , Fm be in case
3 with Q1. The idea is to write Q1 = ∑r

i=1 aibi such that ai and bi are linear forms, and r
is minimum such r. But, since we know Q1 is in radical of 2 linear forms, we have for Q1,
r = 2. Now we introduce a new variable z and map each of the 4 linear forms {a1, b1, a2, b2}
in Q1 to random multiples of z. Since Fi’s also lie in the radical, they are multiples of z,
of the form zbi. Assuming 2 of 3 different bi’s we can say one of them is in span of other 2
as originally Q3 vanished at V (Q1, Q2). This becomes the SG condition exactly and hence,
the dimension of {bi} is O(1). It requires a proof why we can substitute z preserving linear
independence and radical membership. But, the crucial idea is that since we were able to
reduce the problem to lying in radical generated by linear forms, we were able to get a bound
on dimension.

We can get that the remaining 2% polynomials form either case 2 or 3 with the remaining
set of polynomials. Thus, we can get an O(1) bound on them as well using the results proved
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above.

4.3.2 Proof Idea Theorem 4.1.2
The basic theme remains the same as Theorem 4.1.1. The dimension bound we got for the
case 2 and 3 is still useful as all those polynomials that follow it have O(1)-space. To handle
the case 1, we will need the following robust coloured version of the Sylvester Gallai theorem.

Theorem 4.3.2. Let 0 < δ ≤ 1 be any constant. Let T1, T2, T3 ⊂ Cn be disjoint finite subsets
that form a δ−EK configuration, i.e. if for every i ∈ [3] and p ∈ Ti, for every j ∈ [3] \ {i}
at least a δ fraction of the points pj ∈ Tj satisfy that p and pj span some point in the third
set. Then dim(span{∪iT〉}) ≤ O(1/δ3).

For the case when they don’t form a SG condition, we bound the dimension of each of
T1, T2, T3 one by one assuming existence of polynomials in the other set which have most
> 98% of the polynomials in this set in case 2 or 3, using results discussed for theorem 1.

Issues Extending it to cubics

• The first case dimension bound of cubic lying in the linear span of other cubics will
remain same. The robust version of SG theorem should bound the dimension for
significant amount of case 1.

• The dimension bound for case 2 and 3 come from the fact that they represent reduction
to problem where radical is generated by linear forms and hence easy to handle. Even if
we get a structure theorem for cubics it is unlikely that they will reduce to membership
in radicals generated by linear forms, so for getting a bound on the dimension we might
have to try something else.
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Chapter 5

Extending SG theorems to cubics

To extend it to cubics, the first step naturally is to develop structure theorems similar to
the ones we had for quadratics.

5.1 Creating a structure theorem cubics
The breaking of the big product to a smaller one remains similar to the one in [PS20a], ex-
cept for it would be product of 9 cubics instead of 4 quadratics lying in the radical. It comes
from the same claim from [Gup14]. We will first look at trying to develop a structure similar
to theorem 4.2.1, and hence assume Q to be a set of linearly independent cubic polynomials
such that any Q1, Q2 ∈ Q, there is a Q ∈ Q, such that Q ∈

√
〈Q1, Q2〉.

An initial issue we face as soon as we get into cubics from quadratics is we cannot
diagonalize the polynomial Q1 anymore. We though can make it’s coefficient of x2

1 zero,for
Q1 = x3

1 +a2x
2
1 +a1x1 +a0 by substituting x1 = x1−a2/3. We can also remove coefficient of

x3
1 from Q2 and Q by replacing them with Q′2 = Q2−αQ1 and Q′ = Q−βQ1 for appropriate
α, β.Thus we have

Q1 = x3
1 + a1x1 + a0

Q2 = b2x
2
1 + b1x1 + b0

Q = q2x
2
1 + q1x1 + q0

We consider the Resultant of Q1, Q2, wrt x1, which we have as

Resx1(Q1, Q2) = b0b
2
2a

2
1 + b3

0 − 2b2
0b2a1 + b3

2a
2
0 − b2

2b1a1a0 + 3b0b2a0b1 + b0b
2
1a1 − b3

1a0

The Resultant is big and hence inferring something from it being zero in itself is tough.
So we go mod 〈b2〉. Consider the radical generated by 〈Resx1(Q1, Q2), b2〉.Let a common

17



root they have be α ∈ Cn−1. We have

b2(α) = 0, Resx1(Q1, Q2)(α) = 0

Resx1(Q1, Q2)(α) = (b0(α))3 + b0(α)a1(α)(b1(α))2 − a0(α)(b1(α))3

Since both Res and b2 are independent of x1, we can substitute x1 anything without
change in α. We substitute x1 = −b0(α)/b1(α). This makes

Q2(x1, α) = b2(α)x2
1 + b1(α)x1 + b0(α) = b1(α)x1 + b0(α)

Q2(x1 = −b0(α)/b1(α), α) = 0
Similarly in Q1(x1 = −b0(α)/b1(α), α), we have

Q1(x1 = −b0(α)/b1(α), α) = Resx1(Q1, Q2)/b1(α)3 = 0
Hence, we have Q2, Q1 vanishing at x1 = −b0(α)/b1(α) and (x2, . . . , xn) = α, and since

Q ∈
√
〈Q1, Q2〉, by Nullstellensatz, we have Q vanishing on this too. Hence

(q2b
2
0 − q1b0b1 + q0b

2
1) ∈

√
〈Resx1(Q1, Q2), b2〉

We currently have a similar result to claim 3.4 in PS20. Now if we substitute x2 =
−b20/b21, i.e. simply b2 = 0 and for this substitution we have

Q|x1=−b0/b1,x2=−b20/b21 ∈
√
〈Resx1(Q1, Q2)|x2=−b20/b21〉

Thus, we have reduced the problem to a single generator, but since the degree is
9, it’s factorization is difficult. Also, explicitly calculating it seems tedious.

We know thatQ|x1=−b0/b1,x2=−b20/b21 will be a degree≤ 7 polynomial, whileResx2(Resx1(Q1, Q2), b2)
will be a degree 9 polynomial. As before, lying in the radical implies that all the irreducible
factors of Res will divide Q. So we make the cases as following

• Case 1 Res is irreducible after the substitution of x2. This simply means that
Q|x1=−b0/b1,x2=−b20/b21 = 0 or Q in linear span of Q1, Q2.This means that x1 = −b0/b1 is
a root of Q after the substitution, and since Q cannot have fractional roots b1|x2=−b20/b21

divides b0|x2=−b20/b21 . We assumed Resx1(Q1, Q2) = b3
0 + b0a1b

2
1 − a0b

3
1(b2 = 0 as x2 =

−b20/b21) to be irreducible after the substitution, but if b1|b0 after the substitution, we
have a quadratic factor ofRes which is a contradiction. Hence, Resx1(Q1, Q2)|x2=−b20/b21

cannot be a irreducible.

• Case 2 Res = C3 after substitution, where C is an irreducible quadratic and Q =
CF , where F is a deg = 4 polynomial. Since we have made b2 = 0, we have
b3

0 + b0a1b
2
1 − a0b

3
1|x2=−b20/b21 = C3.This means assuming they are not divisible by

b2, b2
1(b0a1 − a0b1) = C3 − b3

0 = (C − b0)(C2 + b2
0 + Cb0). We also know that
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deg(b1) = 2, deg(b0a1 − a0b1) = 5, deg(C − b0) = 3, deg(C2 + b2
0 + Cb0) = 6. Thus,

b1|(C− b0) and b1|(C2 + b2
0 +Cb0) (after substitution of x2).So either b1|b0 mod b2, but

that would mean b1|C, which is contradiction as we assumed C to be irreducible cubic.
The other case would be b1 doesn’t divide b0 and C both, but divides C − b0. Then
we have that C and b0 have same remainder when divided by b1, i.e. C = b1l1 + r and
b0 = b1l2 + r. But we also have b1|C2 + b2

0 +Cb0, which gives b1|r2. That simply means
r has a factor that divides b1, but that will give a factor of C, which we assumed to be
irreducible cubic, hence also contradiction. That brings us to the case where b2|b1, in
which case Resx1(Q1, Q2) is b3

0 mod b2. Possible candidate for case 2 equivalent

• Case 3 Res = q2 · p after substitution x2 = −b20/b21, where q is a quadratic and p
has degree 5, and Q = qp.Note that q will be a polynomial in n − 3 variables. Con-
sider mod (q, b2), Resx1(Q1, Q2) = 0 implies that either Q1 or Q2 is zero, or Q1,Q2
have a common factor.As both q and b2 are independent of x1, clearly Q1 cannot be
zero mod b2, q as x3

1 will not vanish. For Q2 to vanish b1 will have to divide b0, we
analyse this later. If Q1, Q2 have a common factor l′(deg = 1) or q′(deg = 2), we get
that Q,Q1, Q2, lie in

√
〈b2, l′/q′, q〉. We can easily remove b2 by setting x2 = −b20/b21.

Then, we will have to handle the case where a cubic polynomial lies in radical of 2
quadratic polynomials.

• Case 4 Res after substitution x2 = −b20/b21 has a linear factor l.Note that l will be
a polynomial in n − 3 variables. Consider mod (l, b2), Resx1(Q1, Q2) = 0 implies
that either Q1 or Q2 is zero, or Q1,Q2 have a common factor.As both l and b2 are
independent of x1, clearly Q1 cannot be zero mod b2, l as x3

1 will not vanish. For Q2
to vanish b1 will have to divide b0, we will analyse this later. If Q1, Q2 have a common
factor l′(deg = 1) or q′(deg = 2), we get that Q,Q1, Q2, lie in

√
〈b2, l′/q′, l〉. We can

easily remove b2 by setting x2 = −b20/b21. Then, we will have to handle the case where
a cubic polynomial lies in radical of a quadratic and a linear polynomials. The case of
it lying in radical of 3 linear polynomials seems appropriate.

Combining Case2 and Case3, some of the cases reduce to Q lying in radical of 3 linear, one
linear 2 quadratic or 2 linear 1 quadratic polynomials. Thus we have a degree reduction of
atleast 1 in the generators of radical case.But in the case the number of generators increase
we need to see what can be done. We explore it a bit later.

Following are the cases where the terms we are dividing by are 0, and how to handle those
cases,

• b1 = 0 for this case when Q2 = 0, x2
1 = −b0/b2. substituting we have Q1 = (a1 −

b0/b2)x1 + a0 and Q = −q2b0/b2 + q1x1 + q0b2.When Q1 = 0 in this case, we will
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have Q = 0. Eliminating x1 from the 2 equations we have, q2b
2
0 − q0b0b2 − q2b0b2a1 +

q0b
2
2a1 − q1b

2
2a0 = 0. Going mod b2, we have q2b

2
0 = 0, which means either q2 = λb2

or b2|b0. First when q2 = λb2, for any substitution that makes b2 = 0(x2 = −b20/b21),
Q2 = b0|x2=−b20/b21 and Q = (x1q1 + q0)|x2=−b20/b21 . Now any assignment that makes
b0 = 0 will have 3 zeroes for x1 with Q1 or a1, a0 = 0 mod b2, b0, but only 1 for Q as q2
will also be zero. This will also mean that q0 = 0 mod b0, b2. This means Q will be in
linear span of Q1, Q2. The other case will be b2|b0. This means Q2 = b2(x2

1 + b′0).Now
after substitution x2 = −b20/b21, we have any assignment that satisfies Q1, satisfies Q.
Therefore, all irreducible factors of Q1|x2=−b20/b21 must divide Q|x2=−b20/b21 . So, either
Q1|x2=−b20/b21 divides Q|x2=−b20/b21 . Or Q1 = l21l2 and Q = l1l2l3, which means Q,Q1, Q2
lie in radical of b2, l1.Now, we are left with mod b2, Q1|Q.Possible candidate for
case 2 equivalent

• b1|b0 mod b2 This happens in case 2 and case 3 when Q2 could be zero mod b2
and some other function without x1, x2. We again go mod b2.So mod b2, we have
Q2 = b1(x1 + b′0) where b′0 is a linear. Thus, after substituting x2 = −b20/b21 and
x1 = b′0, we have Q′′ ∈

√
〈Q′′1〉, where Q′′, Q′′1 are Q,Q1 after the 2 substitutions. Since

both are deg = 3 either Q′′1 divides Q′′, or Q′′1 = l21l2 and Q′′ = l1l2l3, which means
Q,Q1, Q2 lie in radical of b2, (x1 − b′0), l1 all of which are linear. We are left with the
case mod b2, (x1 − b′0), Q1 divides Q. Possible candidate for case 2 equivalent

• b21 = 0 This means b2 isn’t a linear form rather just a constant, which breaks the
homogeneity condition on Q’s. The other case would be b2 = 0 simply, which will
be easier to handle as wherever we don’t need to go mod b2, giving result much
simplified.

Thus, after the analysis of all the cases we arrive that the conditions become very similar
to the quadratic case. We still need to derive an equivalent of case 2 in theorem 4.2.1 for
our structural theorem for cubics.

5.2 Progress on Structure Theorem till now
As we saw in previous section, we were able to break the radical of 2 generators for cubics
using the resultant(similar to quadratics) and get the problem to an ideal-membership prob-
lem for single generator. As the degree is higher and the expression is bigger, along with
the fact that we are looking mod b2 in most part, the analysis has a lot more cases. But,
eventually most of them converge to either Q lies in linear span of Q1, Q2 or Q lies in radical
of p1, p2, l where p1, p2 are linear or quadratic forms and l is a linear form. Even, without
it, the result is a degree reduction. Thus, very similar to cases 1 and 3 for quadratics. We
believe that rest of cases can be compressed to an equivalent of case 2 from theorem 4.2.1.

5.3 Future work direction for cubics
• The first idea should be to complete the Structure Theorem by simplifying the left

cases for an equivalent of case 2.
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• It does seem that the case of p1, p2, l where p1, p2 are quadratics can simplified further
to linear polynomials again using resultant, as we go mod l by substituting a variable
and getting the problem of a cubic lying in radical of 2 quadratics.

• Once we are done with the structure theorem, we can start getting a bound on linear
dimension. The first case majority should remain same as for quadratics and can be
bound using the robust version of Sylvester-Gallai theorem. Bounding dimension for
rest of the cases still needs to be done.

21



Chapter 6

Conclusion and Future Scope

We saw in this report at the approach of using Sylvester-Gallai type theorems in solving
the problem of PIT for depth-4 circuits of constant top and bottom fan-in. We looked at
the Sylvester-Gallai type theorems known for quadratic theorems and their proof ideas us-
ing structure theorems. We also looked at the proof ideas of these structure theorems that
develop structure when a quadratic or product of quadratics lie in radical of 2 quadratic
polynomial. We saw how the use of resultant helps us tackle this problem. Then, we tried
developing a similar structure theorem for cubics.

In future, we aim at completing the structure theorem for cubics and then bounding di-
mension using the structure theorem. After that we can try working on lifting this approach
to constant bottom fan-in. The idea being to tackle the radical generated by 2 polynomi-
als using resultant, possibly by going mod br, . . . , b2. Again the cases, will be more, but
possibly we can find a more general structure once we complete the result for cubics. Thus,
extension for bottom fan-in seems possible, but there is no clear way on how to handle in-
crease in top fan-in as number of generators of radical increase. The next step to it would
be allowing multiplicity of the polynomials more than 1 in the terms.
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