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Abstract

Expanders have been well studied objects in Computer Science that have found

usefulness in various fields like decreasing used random bits, designing error-correcting

codes, building computer networks, psuedo-random generators, and complexity the-

ory. Ramanujan graphs posses the best expansion properties, finding deep connec-

tion to number theory and have important applications in extremal graph theory

and computational complexity theory. Existence and construction of Ramanujan

graphs has been of great interest in Computer Science and studied extensively. A

constant locality function is one in which each output bit depends on just a con-

stant number of input bits, and hence can be computed using small circuits. Viola

and Wigderson (2018) gave an explicit construction of bipartite degree-3 Ramanu-

jan graphs such that each neighbor of a vertex can be computed using a constant

locality function.

Given input polynomials, f1, . . . , fm ∈ F[x1, . . . , xn], they are Algebraically de-

pendent if there exists a polynomial A in F[y1, . . . , ym] such that A(f1, . . . , fm) = 0.

Testing this efficiently for finite fields has been an open question, and much work has

been done on solving it. The concept of algebraic independence finds applications in

several areas of mathematics and computer science, including field theory, commu-

tative algebra, algebraic geometry, invariant theory, theory of algebraic matroids,

proving lower bounds, creating extractors, and getting hitting sets for Polynomial

Identity Testing.

In this thesis, we construct the first explicit local Ramanujan graph (bipartite) of

degree q+1, where q > 2 is any prime power. The only known explicit construction of

Ramanujan graphs exists for degree q+1, where q is a prime-power. We essentially

localize the explicit Ramanujan graphs for all these degrees. Our results use the

explicit Ramanujan graphs by Morgenstern (1994) and a significant generalization

of the ideas used in Viola and Wigderson (2018).

Our construction gives local 4-regular, 8-regular and 44-regular Ramanujan graphs,
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which also solves the corresponding open problem of the construction of local unique-

neighbor expanders using constructions in Alon and Capalbo (2002).

We will also explore an approach to efficiently test Algebraic dependence of

polynomials of small degree with upper bound with coefficients in a field with small

characteristic.
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Chapter 1

Introduction

Expanders are sparse graphs with strong connectivity properties, due to which they

find numerous applications in several areas of computer science — decreasing ran-

dom bits, designing error correcting codes, pseudo-random generators, extractors,

hardness amplification, one-way permutations, and proving complexity results, see

the survey [HLW06]. Ramanujan graphs are expanders whose spectral gap is as large

as possible. So they possess the best possible expansion properties; they also tend

to have a deep connection to number theory. They have important applications in

extremal graph theory and computational complexity theory.

A lot of these applications require that the neighbors of a given node be computed

efficiently, and this has been studied in [BGW99; GV04; ASW09; DV06] under

various constraints on resources.

We view a d-regular graph as a set of d transition functions fi : V −→ V where

fi(v) is the ith neighbor of the vertex v ∈ V . A function has locality t if each bit of

the output depends on only t bits of the input. A graph is t-local if all the functions

computing its neighbors have locality ≤ t. The class of functions with constant

locality is NC0. If t is a constant independent of the size of the graph (in an infinite

family of graphs), we say the graph has constant locality.

In the first part of this thesis, we will focus on the construction of such local

expanders and Ramanujan Graphs, by constructing a special field extension that

satisfies the properties required for the graphs constructed from those groups to be
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Ramanujan and have constant locality.

Given polynomials f1, . . . , fm as input with each fi ∈ F[x1, . . . , xn], they are

Algebraically independent if there doesn’t exist a polynomial A such that A in

F[y1, . . . , ym] and A(f1, . . . , fm) = 0. Algebraic independence finds applications in

several regions of mathematics and computer science, including field theory, commu-

tative algebra, algebraic geometry, invariant theory, theory of algebraic matroids.

In [Lvo84] to analyze program invariants of arithmetic straight line programs, al-

gebraic dependence was used. In [Kal85] transcendence degree was used to give a

lower bound on the size of the formula computing a determinant. In [Dvi12], poly-

nomial maps of algebraically independent polynomials over finite F were used to

give explicit construction of deterministic randomness extractors for sources.

In [Agr+16] and [BMS13], several special cases of Polynomial Identity Test-

ing(PIT) were solved by developing smaller deterministic Hitting sets using tran-

scendence degree. In [Cur13] proved hardness of parameterized counting problems

using algebraic independence of polynomials.

We will explore an inductive approach to give an efficient Algebraic Dependence

testing for polynomials from a small Finite field.

The thesis consists of 7 chapters, where are all chapters except Chapter4, 6

give exposition to the problems through background and related work. Chapter 4

contains the construction of local Ramanujan Graphs for degree q + 1, where q is a

prime power > 2, from [BSS22] which is the main contribution of this thesis. Chapter

6 contains an Algorithm to test Algebraic independence f1, . . . , fm ∈ F2[x1, . . . , xn]

for m ≤ 4.

Chapter 2 describes the basic notation followed through out the thesis, and some

preliminaries to understand tools required to construct Ramanujan graphs and test

for Algebraic Dependence.

Chapter 3 contains a brief description of the work done related to construction of

local Expanders, mainly the ideas and tools used. It also includes the construction

of local Ramanujan graphs of deg = 3.
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Chapter 4 contains the construction of local Ramanujan Graphs for degree q+1,

where q is a prime power, by constructing the required field extensions. This chapter

is the main contribution of this thesis.

Chapter 5, contains a literature review of the work done till now on the problem

of Algebraic Testing. It describes the current best results known for the various

subcases.

Chapter 6, contains an inductive approach to test Algebraic independence f1, . . . , fm ∈

F2[x1, . . . , xn] for m ≤ 4 and possible attempt to generalize it for the case m = n.

Chapter 7 provide a succinct conclusion of the results and describes a few po-

tential next steps.



Chapter 2

Preliminaries

We firstly describe the notation that we will be using all across the report. Then,

we will look at some basic ideas and results required to understand the details of

the thesis.

2.1 Notation

• F will be used to denote a field. F̄ will denote the algebraic closure of the field.

• We use F[x] and F(x) respectively to denote the ring of polynomials with

coefficients from F with indeterminate x, and its field of fractions.

• We will use vector notation to denote extended set of objects. Therefore, (x)

will be representing (x1, . . . , xn) and (f) will be representing (f1, . . . , fm).

• E/F denotes that E is an extension of F. We will use Fqn to denote extension

of Fq with qn elements.

• trdegF(f1, . . . , fm) will denote the transcendence degree of f1, . . . , fm.

• We denote a d-regular graph G with functions f1, . . . , fd where fi : V −→ V

where fi(v) is the ith neighbor of the vertex v ∈ V in G.
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2.2 Expanders

Expanders (or expander graphs) are sparse graphs that have strong connectivity

properties. The connectivity properties of expanders can be quantified using vertex,

edge or spectral expansion. We use spectral expansion to define expanders.

Definition 2.1. (Expander) Given a graph G, let λG be the second-largest eigen-

value (in magnitude) of the adjacency matrix AG of the graph. We call a graph G a

(n, d, λ) expander, if G is a d-regular graph over n vertices and has λG ≤ λ.

Expanders have a lot of practical applications as well, such as building optimal

and cost-efficient computer networks, see [CLL11], which is useful for various net-

work service providers. An important application of expanders is that they help

in reducing the number of random bits required for a randomized algorithm. Ex-

panders relate to the construction of error-correcting codes, see [SS96; Spi99; Gur04;

BZ02]. They have been instrumental in proving some important results in complex-

ity theory, for example see [Din07] for application in PCP theorem [Din07], and

[Rei08] for application in SL = L.

In [Nil91], a lower bound of 1− 2
√
d− 1 was given on the spectral gap of any d-

regular graph. The graphs with spectral gap in O(1) vicinity to this bound are called

Ramanujan graphs. In other words, Ramanujan graphs are regular graphs with the

maximum possible spectral gap, which makes them excellent spectral expanders.

Definition 2.2. (Ramanujan graph) An (n, d, λ) expander G is called a Ra-

manujan graph if λG ≤ 2
√
d− 1.

They have important applications in communication network theory, number

theory, cryptography and algebraic geometry. Ramanujan graphs are also important

in cryptography and can be used to construct low density parity check codes; for

more details, see the survey [Li93]. They are also used in the construction of unique-

neighbor expanders, see [AC02].
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2.3 Cayley and Schreier Graphs

The initial construction based on [Mor94] is a Cayley graph. A major reason why we

consider Cayley graphs, is that their connection to group theory makes the analysis

of the spectral gap easier. This yielded the first construction of Ramanujan graphs.

Definition 2.3. (Cayley graph, [VW18]) Let H be a group. Given a multiset

S with elements ∈ H, the Cayley graph Cay(H,S) = (V,E) is an undirected graph

with V = H and for any vertex h ∈ H there is (h, sh) ∈ E, for every element s ∈ S.

We will also require the Schreier graph to change the set of vertices to a much

simpler set.

Definition 2.4. (Schreier graph, [VW18]) Let H be a group acting on a set

V , such that there is a homomorphism from H to the group of permutations of V .

Then the Schreier graph Sch(H,S, V ), whose is an undirected graph with vertices V

and where for every vertex v, we have (v, sv) ∈ E, for every element s ∈ S.

We will require the following lemma, which shows that the conversion from a

Cayley graph to a Schreier graph conserves the spectral gap.

Lemma 2.5. [VW18, Lem.2.2] The set of eigenvalues of Sch(H,S, V ), is a subset

of the set of eigenvalues of Cay(H,S). Therefore, ΛSch ≤ ΛCay.

2.4 Operations Related To Bipartite Graphs

To localize a Ramanujan graph, we will need to convert it into a bipartite graph,

while preserving its spectral gap. For this, we will use the bipartite double cover of

a graph.

Definition 2.6. (Bipartite double cover of a graph, [VW18]) Let G = (V,E)

be a d-regular graph where vertex for v ∈ V (v, fi(v)) ∈ E, ∀i ∈ I. The double-cover

of G is defined as the bipartite graph with vertex set V ×{0, 1} where a vertex (v, b)

is connected to (fi(v), 1− b), ∀i ∈ I.
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Lemma 2.7. [VW18, Fact 2.3] Let G0 be the bipartite double cover of a graph G.

If λ is an eigenvalue of G0, then −λ or λ is an eigenvalue of G. In particular, the

double cover of a Ramanujan graph is a bipartite Ramanujan graph.

The main idea to go into a bipartite version of a graph is to apply a twist, which

enables us to get rid of a ‘non-local multiplication’ present inside fi’s.

Definition 2.8. (π-twist of a graph, [VW18]) G is a bipartite graph on the

vertex set V × {0, 1}, with vertex (v, b) connected to (fi(v), 1 − b), ∀i ∈ I and π be

any permutation on the vertex set. The π-twist of G is the bipartite graph G0 having

the same set of vertices with the modification: a vertex (v, 0) ∈ G0 is connected to

(πfiv, 1), and similarly vertex (v, 1) ∈ G0 is connected (fiπ
−1v, 0), ∀ i ∈ I.

Applying a twist conserves the spectral gap.

Lemma 2.9. [VW18, Lem.4.2] The eigenvalues of the twisted graph are the same

as the original graph, i.e., π-twist preserves the spectral gap.

2.5 Linear Groups

We need the definitions of the following groups for our results. Basically, their action

defines the neighbors in the Ramanujan graph.

Definition 2.10. (General linear group) GL(n,R), the general linear group of

degree n over R, is defined as the set of n × n matrices with elements from R that

are invertible, with matrix multiplication over R being the operation of the group.

Definition 2.11. (Special linear group) SL(n,R), the general linear group of

degree n over R, is defined as the set of n × n matrices with elements from R that

have determinant= 1, with matrix multiplication over R being the operation of the

group.

Definition 2.12. (Center of a group) We define Z(G) the center of a group G

as the set of elements of G that commute with every element, that is Z(G) := {z ∈

G | ∀g ∈ G, zg = gz}.
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Definition 2.13. (Projective linear group) PGL(n,R) is the quotient group de-

fined as PGL(n,R) := GL(n,R)/Z(n,R), where Z(n,R) is the center of GL(n,R).

Definition 2.14. (Projective special linear group) PSL(n,R) is the quotient

group defined as PSL(n,R) := SL(n,R)/Z(n,R), where Z(n,R) is the center of

SL(n,R).

So, the projective special linear group PSL(n,R) is the quotient of SL(n,R)

by their centers, respectively. The center of SL(n,R) is the subgroup of scalar

transformations with unit determinant. Therefore, center of SL(2, R) = {I2,−I2}.

2.6 Irreducibility Of Binomials Over Finite Fields

We will be needing the following lemma for showing irreducibility of polynomial for

our field extension. Define ordq(a) to be the multiplicative order of a in the group

F∗
q := Fq \ {0}.

Lemma 2.15. [LN94, Theorem 3.75] Let w ≥ 2 be an integer and a ∈ F∗
q. If

the following three conditions are satisfied by w, a, p, q, then and only then is the

binomial xw − a irreducible in Fq[x] :

• Every prime divisor p of w divides ordq(a)

• gcd
(
w, q−1

ordq(a)

)
= 1

• If 4 divides w, then q = 1 mod 4

We use the above lemma to get the following result as well.

Lemma 2.16. If β is non-p-power (p > 2 is prime) in Fr, then xp−β is irreducible

in Fr.

Proof. We will be using Lemma 2.15, with w = p, a = β and q = r. Since β

is not p-th power in Fr, we have p|(r − 1) (otherwise all elements of Fr are p-th

power) and β
r−1
p 6= 1. β can be written as ak, where a is a generator of F∗

r, giving
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β(r−1)/p = ak(r−1)/p, which if = 1, will mean that a’s order divides k(r − 1)/p. But

we know ord(a) = (r − 1), which means p|k, which means β is a p-th power. Also,

ordr(β)|(r − 1). Note that condition 3 is not relevant as p is prime > 2.

For sake of contradiction, assume condition 1 did not hold, and p does not divide

ordr(β), i.e. p and ordr(β) are coprime. We consider β
r−1
p = (β

r−1
p·ordr(β) )ordr(β) =

1
r−1

p·ordr(β) . Since, p|(r − 1), ordr(β)|(r − 1) and gcd(p, ordr(β)) = 1, we can say
r−1

p·ordr(β)
is an integer. Therefore, β

r−1
p = 1

r−1
p·ordr(β) = 1 which is a contradiction.

Next, assume condition 1 holds but condition 2 does not. So, we have gcd
(
p, r−1

ordr(β)

)
6=

1. As p is prime, this means p| r−1
ordr(β)

, which again means r−1
p·ordr(β)

is an integer.

Therefore, β
r−1
p = 1

r−1
p·ordr(β) = 1 which again is a contradiction.

Therefore, for β non-p-power in Fr, xp−β satisfies all the conditions of Lemma 2.15.

Hence, xp − β is irreducible.

We lastly prove the following claim,

Claim 2.17. For any prime power p ≥ 3, if β is non-p-power in finite field Fr, then

B(x) := xpt − β is irreducible over Fr.

of Claim 2.17. By Lemma 2.16 we have, β is a non-p-power in Fr implies xp − β is

irreducible in Fr. As seen in its proof, we have p|ordr(β) and gcd
(
p, r−1

ordr(β)

)
= 1.

For irreducibility of xpt −β, condition 1 of Lemma 2.15 is satisfied, as pt has only

one prime factor p and p|ordr(β). For the same reason, gcd
(
p, r−1

ordr(β)

)
= 1 implies

gcd
(
pt, r−1

ordr(β)

)
= 1, and hence condition 2 is satisfied. Condition 3 is irrelevant, as

4 ∤ pt, for p prime > 2. Therefore, we get xpt − β irreducible in Fr[x].

2.7 Algebra Preliminaries

We will need definition of some basic elements from Algebra:

Definition 2.18 (Ideal). The ideal generated by f1, . . . , fk is the set {
∑

i hi · fi :

h1, . . . , hk ∈ F[x1, . . . , xn]} and denoted by 〈f1, . . . , fk〉.

We will denote the quotient ring of an ideal by F[x1, . . . , xn]/I. We will use Id

to denote the polynomials in I of degree d.
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Definition 2.19 (Radical). The radical of an ideal I is the set {g ∈ F[x1, . . . , xn] :

ge ∈ I for some integer e ≥ 1} and is denoted by
√
I.

Definition 2.20 (Algebraically Independent elements). Let S be a subset of the

field extension E of F. The set is said to be Algebraically independent if the elements

of S isn’t a solution of f = 0 for all polynomials f in F[x1, . . . , x|S|].

Definition 2.21 (Transcendence Degree). The Transcendence Degree of a field ex-

tension E/F is the number of elements in the largest algebraically independent subset

of E.

We will require some understanding for inseparability of polynomials and exten-

sions for understanding work done on Algebraic Independence testing.

Definition 2.22 (Separable Polynomial). [PSS16] If a polynomial has no multiple

roots in its splitting field, f ∈ F[x] then it is said to be a separable polynomial.

It is easy to see that an irreducible polynomial will be separable if the derivative

is zero. Therefore, for char(F) = 0 fields all irreducible polynomials are irreducible.

Also, for char(F) = p, a polynomial is inseparable if and only if f ∈ F[xp].

There is a notion of separability in case of field extensions as well.

Definition 2.23 (Separable Extension). [PSS16] An algebraic extension E/F is sep-

arable if the minimal polynomial of every element α ∈ E over F is separable.

In relation to Algebraic independence of polynomials f where each fi ∈ F[x],

we work with the extension F(x)/F(f). The extension F(x)/F(f) is algebraic if and

only if we have trdeg(f) = n. Therefore, the extension F(x)/F(f) is separable if and

only if the minimal polynomial of xi for all i ∈ [n], over F(f) is separable. This by

definition of minimal polynomial holds true for char(F) = 0. For char(F) = p, if

∃i ∈ [n], such that the min. poly. of xi lies in F[xp], then the extension is inseparable.
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Definition 2.24 (Inseparable Degree). [PSS16] The inseparable degree of the ex-

tension F(x1, . . . , xn)/F(f1, . . . , fm) is defined as pm for the minimum m such that

for all i ∈ [n], the minimal polynomial of xpm

i is separable over F(f1, . . . , fm) .

The inseparable degree of a system will be a factor of the degree of extension,

F(x1, . . . , xn)/F(f1, . . . , fm) and therefore is upper bounded by the product of the

degree of the polynomials.



Chapter 3

Local Expanders

The connectivity of a graph is captured by its spectral gap, which is the difference

between the moduli of the largest and second largest eigenvalue, i.e. 1− λG, of the

normalized adjacency matrix of the graph. The Larger spectral gap is, the better

connectivity (or expansion) is.

As proved in [Nil91], all d-regular graphs of large enough size satisfy λG ≥

2
√
d− 1− o(1), where λG is denoting the second-largest eigenvalue after the moduli

(while |λ1| = d). This gives an upper bound on the spectral gap of expanders.

Ramanujan graphs are d-regular graphs with λG = 2
√
d− 1 − o(1), i.e., they are

asymptotically the best possible expanders.

Existence and construction of Ramanujan graphs has been of great interest in

Computer Science and studied extensively. In [MSS18; MSS13] it was proved that

bipartite Ramanujan graphs of all degrees and sizes exist. Explicit construction of

Ramanujan graphs of prime+1 degree was given by [LPS88], which were extended

to degree =(prime power)+1 in [Mor94]. In [Mor94], they give two constructions,

one that works where degree is of the form 2k +1, while the other for degree =(odd

prime power)+1. Construction for arbitrary degree is a longstanding open problem

[MSS18; MSS13].

The area of study of small locality is of major interest in theoretical computer

science. It was introduced and studied in [ASW09] for AC0 graphs. In the field

of pseudorandomness, [Gol00; MST03; AIK06] gave cryptographic generators of
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constant locality, where [AIK06] used only logarithmic space.

The attention to expanders, where these transition functions have constant local-

ity, was brought in [ASW09]; and in [VW18] they gave a construction of expander

graphs that have locality 1. They also gave construction of degree 3 Ramanujan

graphs, which have constant locality.

In [VW18], an explicit construction of expanders, which were 1-local, was pro-

vided. Along with it, the authors also gave a construction algorithm that made the

Ramanujan graph from [Mor94] for degree 3 to be a Ramanujan graph of constant

locality. We will look into these in a greater detail in this Chapter.

3.1 One Local Expanders

First, we will look at the construction of One-local Expanders given in [VW18]. The

main theorem we will prove in this part is the following:

Theorem 3.1. [VW18, Theorem 1] For every n and large enough d, there exist

explicit locality one maps f1, . . . , fd, fi : {0, 1}n −→ {0, 1}n, such that a graph on

the vertices {0, 1}n where vertex v ∈ {0, 1}n is connected to {f1(v), . . . , fd(v)}, is a

d-regular one local expander with spectral gap atleast 1− dΩ(1).

We are only required to give construction for d = O(1) with second eigenvalue

bound 1−Ω(1) as we take composition of one-local graph with another, the resulting

graph is also one-local, hence allowing us to take power of this graph. So a graph of

degree dt will have a second eigenvalue bound of d−Ω(1) which is equal to (1−Ω(1))t.

The main idea is to use a Cayley graph of permutation group Sn with a set

of generators given in [Kas07]. We cannot directly use the Schreier of this graph

directly as it won’t be connected. So we use a semi-direct product of it with (F2)
n

and non-constant size generator, which form a Cayley graph, output an O(1) sized

generator graph whose action is connected on {0, 1}n and hence the Schreier graph

is also an expander.

We will use a reinterpretation of zig-zag product in group theoretic terms which
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allows us to combine 2 Cayley graphs. It was shown in [ALW01] that semi-direct

product of 2 groups H1 and H2 functions as such. Wlog, assume H2 acts on H1.

Semi-Direct Product:The semi-direct product of the groups H3 is a group

with elements from the set H1 ×H2, and the operation of multiplication defined as

follows

(x, y) · (p, q) = (xy−1(p), yq)

where x, p ∈ H1 and y, q ∈ H2. y(p) is the image of p under the action of y.

Let S1, S2 be a set of generators for H1 and H2 respectively. We consider S1 as

a union that is disjoint, of a orbits, i.e. ∪a
i=1H2(x), where H2(x) is the orbit under

H2 of x ∈ H1 . S3 which is the set of generators wrt to S1, S2 for H3 is given by:

S3 = {(1H1 , y) · (xi, 1) · (1H1 , q) : (y, q) ∈ S2, i ∈ [a]}

The main benefit of having the semi-direct product is that the size of the set of

generators S3 is a|S2|2, even if S1 has non-constant number of elements. This allows

us to control the degree of the new expander irrespective of the |S1|. The following

theorem, shows that

Theorem 3.2. [ALW01] If Cay(A, S) and Cay(B, T ) are expanders, then Cay(C,U)

as defined above is also an expander.

For graph Cay(A, S), we choose the group (F2)
n with the operation of addition,

which can be done by simply doing bit-wise XOR. The set of generators is S =

{perm(0n), perm(10n−1), perm(1⌈n/2⌉0n−⌈n/2⌉)}, where perm(a) is the set containing

the image of action of all permutations on a.

Lemma 3.3. [VW18] The Cayley graph Cay(A, S), with A = ((F2)
n,+) and S =

{0n, 10n−1, 1⌈n/2⌉0n−⌈n/2⌉}, is an expander graph.

Proof. As eigenvalues of the adjacency matrix of the Cayley graph are the distribu-

tion on generators’ Fourier coefficients, all we need to show is that the probability
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〈a, x〉 = 1, for every non-zero a ∈ (F2)
n and x chosen uniformly randomly from

1 is far from 0 and 1. 〈a, x〉 represents inner product of a and x modulo 2. The

probability 〈a, x〉 = 0 is Ω(1) due to perm(0n) in S. Consider an a with number

of 1’s larger than n/3, then the probability that 〈a, x〉 = 1 is Ω(1) due to 10n−1, as

at least 1/3rd of the permutations will give 1, giving probability at least 1/9. Now

consider when number of 1’s is less than n/3. Let k = dn/2e. Instead of looking at

perm(1k0n−k), we will look at the inner product of perm(a) for a fixed vector a with

number of 1’s is less than n/3 and 1k0n−k. If we consider all but 1 entries that are

1, of a permuted, it will have changed ≤ n/3 coordinates wrt 1k0n−k. So the last

entry that is 1 in a has constant probability of being mapped to 0 and 1 in 1k0n−k,

thus giving the Ω(1) bound.

Naturally, the group whose action we will consider will be the group of permu-

tation Sn over n elements.

Lemma 3.4. [Kas07] ∃ an explicit set T , with T = O(1), of generators ⊂ Sn such

that the Cayley graph Cay(Sn, T ) is an expander.

Now, we consider the semi-direct group H of Sn acting on (F2)
n by permuting

the elements. By definition and Lemma 3.4, the generator set S3 has size O(1). The

action of it on an element (a, b) of {0, 1}n is given by xor on a and permuting the

elements in b. It is easy to see that Sch(H,S3, {0, 1}n) is connected and hence an

expander. Since the operation of permutation and xor have locality 1, the graph is

a one-local expander.

3.2 Local Ramanujan Graphs of Degree 3

In this section, we will present the construction of deg 3 Ramanujan Graphs in

[VW18]. The main result to be proven in this section is

Theorem 3.5 (3 regular). For variable n = 4 · 3t, there exist 3 explicit O(1)-

local functions f1, . . . , f3 s.t. bipartite graph of 2(2n − 1) vertices with vertex set
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V = (Fn
2 \ {0}) × {0, 1}, with (v, 0) having neighbors {(f1(v), 1), . . . , (fq+1(v), 1)},

is a degree q + 1 Ramanujan graph.

The author used a simplified version for q = 2 of the [Mor94] construction for

even characteristic from Theorem 4.3 as follows:

Theorem 3.6. [VW18, Theorem 12] Let g(x) ∈ Fq[x] be irreducible of even degree

n, and Fqn is represented as Fq[x]/〈g(x)〉. Let L ∈ Fqn be a such that L2+L = 1, and

define z = 1√
1+x

. Then Cay(SL(2,Fqn),Γ) with Γ = {zM1, zM2, zM3} as generators

is a 3-regular Ramanujan graph, where

M1 =

 1 L

(L+ 1)x 1

 , M2 =

1 1

x 1

 M3 =

 1 L+ 1

Lx 1


This simplification occurs as PSL(2,F2n) is isomorphic to SL(2,F2n), and ϵ from

Theorem 4.3 having only one possible value(1) and therefore simplified values of γi

and δi. For n of the form n = 2 · 3t, the authors use

g(x) = xn + xn/2 + 1

This was shown to be irreducible in F2 in [Van12]. Further, the value of L for

this system is L = xn/2 and therefore is sparse.

Having constructed the extension, and hence the Ramanujan graph as the

Cay(SL(2,Fn
2 ),Γ) using Theorem 3.6. Now with V = (Fn

2 )
2 − {0, 0} as the vertex

set, and action of M ∈ SL(2,Fn
2 ) on v ∈ V defined as vM , we construct the Schreier

graph Sch(SL(2,Fn
2 ),Γ, V ). This graph is connected and hence a Schreier graph by

Lemma 2.5.

In computation, the task now left is to remove the factor of multiplication with z.

For this we look at the dual cover of the Schreier graph as described in Definition 2.6.

Now, we have a bipartite graph with 2(2 · 3t − 1) vertices where (v, 0) is connected

to (zvMi, 1). As x+1 is an element of a field with char 2, it’s square root also exists
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in the field, and so does its multiplicative inverse. Therefore, multiplication by z is

equivalent to multiplication by a field element, which is just a permutation of the

group. Using the appropriate permutation twist from Definition 2.8, we can remove

multiplication by z from the neighbor functions. Due to Lemma 2.7 and Lemma 2.9,

both these operations preserve the fact that the graph is still a Ramanujan graph.

Thus, in the new graph, the neighbors of (v, 0) for v ∈ (Fn
2 )

2 − {0, 0} are (vMi, 0)

for i ∈ [3].

Proof of Theorem 3.5. We get from Theorem 3.6 that Cay(SL (2,Fqn),Γ) is a 3

regular graph. By Lemma 2.5 we know that Sch(SL(2,Fqn), Γ, Fn
2 \ {0} ) is also a

Ramanujan graph. By Lemma 2.7-Lemma 2.9, we get that after applying double

cover and twist, spectral gap remains the same, and z gets removed. Therefore, G

is a q + 1 regular Ramanujan graph. Now we need to show: each fi has constant

locality, which is just multiplication by Mi.

Looking at the transition function Mi in detail, we see that the only steps that

can be non-local are multiplication by L and x (multiplication by Fq elements is

independent of n). Multiplication by x can be done by a simple cycle shift and a

bitwise XOR. Recall, L = xn/2 and g(x) = xn + xn/2 + 1 = L2 + L + 1. When

L multiplies, the multiplication by constants is trivial (has O(1)-locality, which is

constant with respect to n). So, only multiplication by xn/2 needs careful analysis.

We see that, in Fq[x]/〈g(x)〉, we can write xn =: xn/2 + 1,

Write any element y ∈ Fq[x]/〈g(x)〉 as y =: (y2, y1), where vector y2 (resp. y1)

corresponds to the most (resp. least) significant n/2 coefficients of powers of x. Write

multiplication by xn/2 as:

xn/2 · y =
∑
j<n

cj · xj+n/2 =
∑

0≤j<n/2

cj · xj+n/2 +
∑

0≤j<n/2

cj+n/2 · xj+n

= xn/2 ·
∑

0≤j<d/2

cjx
j + (xn/2 + 1) ·

∑
0≤j<d/2

cj+n/2 · xj

= (y2 + y1, y1)
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Since this computation can be done using simple XOR it is efficient. Combining

all the additions, the locality can be easily shown to be 4. This shows that all the

operations in the transition functions are local.

One can show that dual cover and twist are necessary operations, as z = 1√
x+1

can be written as z = 1+x+x2+ . . .+xb−1 where b = (3n+2)/4. Multiplication by

z therefore is not local and even parity on Ω(n) bits is reducible to multiplication

with z.



Chapter 4

Construction of Local Ramanujan

Graphs

In this chapter, we give the novel construction of local Ramanujan graphs (bipartite)

of degree q + 1, where q is power of any prime p.

This uses the construction of Ramanujan graphs developed by M. Morgenstern in

[Mor94] for degrees q+1. The proof of this construction being Ramanujan graphs in

itself is very technical and we don’t state or prove the correctness of the construction,

we just use it as a blackbox.

The results of this chapter are from paper [BSS22]. We will first preset the main

results, describe the motivation behind solving the problem, provide the basic Proof

ideas and then present the proofs.

4.1 Main Results

We denote the graph as, V × {0, 1} with any (v, a) ∈ V × {0, 1} has a neighbor

(w, 1 − a). The vertex set V will be of size qn − 1. The parameter n takes values

depending on the prime power q.

Theorem 4.1. [p = 2] For any q = 2k, there exist q + 1 explicit O(log q)-local

functions f1, . . . , fq+1 s.t. the graph on (qn − 1) vertex set V = (Fn
q \ {0})× {0, 1},

with (v, 0) having neighbors {(f1(v), 1), . . . , (fq+1(v), 1)}, is a degree q+1 Ramanujan
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graph. Here n is an increasing parameter of form 4 · 3t, which gives us an infinite

family of local, q + 1-degree Ramanujan graphs.

In the case of odd p, we need to slightly modify V : by ‘clubbing together’ the

distinct values v and −v, in an unordered way.

Theorem 4.2 (Odd p). For any q = pk where p is arbitrary odd prime, there exist

q + 1 explicit O(log q)-local functions f1, . . . , fq+1 s.t. the graph on (qn − 1) vertices

V×{0, 1}, where V := {{v,−v}|v ∈ (Fn
q \{0})} where {v,−v} denotes an unordered

set, with ({v,−v}, 0) having neighbors {(f1({v,−v}), 1), . . ., (fq+1( {v,−v}), 1)}, is

a degree q + 1 Ramanujan graph. Here n is an increasing parameter whose allowed

values depend on q, which gives us an infinite family of local, q+1-degree Ramanujan

graphs.

The unordered set {v,−v} is input to the transition functions bit-by-bit. By

explicit, we mean that these functions can be computed in poly(n, q) time. Also,

the graph has a simple description and we do not require additional results from

representation theory. Computing the neighbors in this graph is very efficient. Each

neighbor of a node can be calculated using O(n) multiplications and additions (in

Fq), i.e. in O(n · log q · log log q) time.

This gives the first construction of constant locality Ramanujan graphs that are

q + 1-regular for all prime powers q > 2, greatly extending the work started in

[VW18].

We answer the question left open in [VW18; AC02] about the construction of

local unique-neighbor expanders by providing the first construction of constant lo-

cality bipartite Ramanujan graphs to degrees beyond 3.

4.2 Relevance and Motivation

Small or constant locality constructions are an important subject in theoretical

computer science, as they make the implementation of the expanders efficient. The

first construction of constant locality Ramanujan graphs of degree 3 was given in
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[VW18]; making the local construction problem for other degrees a natural open

question.

Ramanujan graphs are used for the construction of unique-neighbor expanders,

see [AC02], which also explains their applications in computer science. In [VW18],

the construction of local unique-neighbor expanders is left open, as [AC02] uses

4-regular, 8-regular and 44-regular Cayley Ramanujan graphs. Even though a con-

struction for these Ramanujan graphs was present, constant locality construction

was unknown till now. In [AC02, Sec.2], an infinite family of 4-regular and 8-regular

Ramanujan graphs was used to construct 3-regular,4-regular and 6-regular unique-

neighbor expanders. Using our construction, constant locality Ramanujan graphs

that are 4-regular and 8-regular are possible, which gives the first construction of

local 3-regular, 4-regular and 6-regular unique-neighbor expanders.

In [AC02, Sec.4], they also present a simple, explicit family of bounded degree

bipartite graphs (referred to as ‘bipartite unique-neighbor expanders’) which requires

an infinite family of 44-regular Ramanujan graphs. Using our construction, we

get a local infinite family of 44-regular Ramanujan graphs which gives us the first

construction of local ‘bipartite unique-neighbor expanders’, see [AC02].

Our construction of constant locality Ramanujan graphs is efficiently computable,

in time linear in n, as we can compute the neighbors for the Ramanujan graphs by

transition functions that have constant locality. These can be used to implement

expanders more efficiently than the generic method of [Mor94]. Our linear-time ef-

ficiency is comparable to the constructions in [Mar73; GG81; JM85], but the latter

expanders were only for the fixed degrees 5, 7, 8, 9, 13 (thus, unable to reach the

eigenvalue bounds of Ramanujan graphs in the limit).

4.3 Proof Ideas

Our construction differs in the cases of prime p = 2, 3 and ≥ 5. We discuss the main

ideas now.
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For q = even prime power

The case of q = 2 was already solved in [VW18]. We will be localizing the construc-

tion given in Theorem 5.13 of [Mor94]. For q = 2k, we have an ϵ such that x2+x+ϵ is

irreducible in Fq from the construction. The idea is that as 3|q2−1, we have elements

that are not cubes in Fq2 . We choose gt(x) := (b2 · x3t − b1)
2 + (b2 · x3t − b1) + ϵ. Let

α ∈ Fq2 be the root of x2+x+ϵ, which means x2+x+ϵ factors as (x+α)(x+α+1) in

Fq2 . This means, after substitution, gt(x) is irreducible iff there exist b1, b2 ∈ Fq such

that α+b1
b2

and α+b1+1
b2

are not cubes in Fq2 . Then we show the existence of required

b1, b2 ∈ Fq for any such α by using the bound on the number of cubes in Fq2 \ Fq.

The construction for even characteristic requires L as solution of L2 + L+ ϵ in Fqd ,

which we get in our construction L = b2 · x3t − b1, which is of constant locality.

So we get the required design of finite field for all even characteristics. Now,

we use the fact that PSL(2,Fq) is isomorphic to SL(2,Fq) if q is power of 2. This

means Cay(SL(2,Fq),Γ) is a Ramanujan graph from [Mor94], which we convert to

Sch(SL(2,Fq),Γ, V = Fn
q \{0}) preserving spectral gap, with neighbor of (v, 0) being

(Γv, 1). Once again, we are left with handling the normalization factor, which for

even characteristics construction from [Mor94] comes out to be 1/
√
1 + x (same as

[VW18]). To remove this factor, we see that since Fq[x]/〈gt(x)〉 is a field extension

of power of 2, all elements are squares in Fq. In particular, 1 + x is a square in

Fq[x]/〈gt(x)〉 which ensures that 1/
√
1 + x is an element of Fq[x]/〈gt(x)〉 . So to

remove the normalization factor, we just need to convert the graph into a bipartite

graph and then apply the correct twist. See the details in subsection 4.4.1.

For q = odd prime power

We build on the construction in [Mor94] of Ramanujan graphs for odd prime powers

and make the computation local. In the following discussion, we will design a finite

field extension Fqn/2 ; keeping in mind that 4|n.

For odd prime-power q, the construction in [Mor94] is a Cayley graph with

specific generators Γ of the linear groups PSL(2,Fqn/2) (for definitions, see sec-
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tion 2.5). We use Schreier graphs, as used in [VW18], to change the set of vertices

to V := {{v,−v}|v ∈ (Fn
q \ {0})} which are easier to handle as compared to vertices

of Cayley graph of PSL(2,Fqn/2). Vector v ∈ (Fn
q \ {0}) is considered as a 2 × 1

vector with elements in Fn/2
q . Therefore, each vertex, in one part of the bipartite,

is essentially an unordered set containing two 2 × 1 vectors on elements of Fqn/2 .

The calculation of the neighbors of this set, boils down to the multiplication of the

vertex vectors v and −v with the generator matrices in Γ, i.e. ({v,−v}, 0) has i-th

neighbor ({Γiv,−Γiv}, 1). This ensured that the action of Γi and −Γi is the same,

which means the PSL(2,Fqn/2) action is well-defined on the set V and hence we can

convert to Schreier graph (note: The center of SL(2,Fqn/2) is ±1; see section 2.5).

Constant locality in this means that the number of Fq-additions needed to compute

the product vectors should be constant; as we can view Fq-multiplication as trivially

dependent on log q (independent of n) input bits. We will be using the PSL(2,Fqn/2)

graph along with adding a normalization term to generator matrices when convert-

ing to Schreier graph; which will be division by the determinant of the generator

matrices.

The elements of the generator matrices are heavily dependent on the degree

d := n/2 polynomial g(x) which is chosen to represent the extension Fqn/2 = Fqd .

Therefore, it is needed that the terms be chosen in such a way that each generator

in Γ has a constant sparsity representation. The polynomial g(x) also has to be of

even degree and irreducible in Fq[x]. Moreover, it is required that the normalization

factor 1/
√
x lives in Fq[x]/〈g(x)〉. Finally, the degree of g(x) controls the size of the

graph; so we want a family of polynomials {gt}t of increasing degree satisfying all

of the above conditions.

Case of q = power of prime p ≥ 5. In contrast to [VW18], we make a more

general choice of g(x), i.e. for a graph of size 2(qn−1), n = 2d = 4 ·3t, we chose g(x)

of degree d as gt(x) := (x3t − b1)
2−α · b22, for an α non-square in Fq, and b1, b2 ∈ Fq.

Fixing this α, what is left to show is: gt(x) is irreducible and
√
x ∈ Fq[x]/〈gt(x)〉

= Fqd . We first reduce the irreducibility property (over all t) to b1 +
√
α · b2 being a
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non-cube in Fq2 ; and reduce the existence of
√
x in Fq[x]/〈gt〉 (for all t) to the base

case t = 0.

Then using the fact that α is non-square in Fq, we consider {1,
√
α} as a Fq-

basis of Fq2 , and look at the span using b1, b2 as coefficients (unknown as of yet). As

2|(q2 − 1) and 3|(q2 − 1), and that the group Fq2 \ {0} is cyclic, we have (q2 − 1)/2

squares and 2(q2 − 1)/3 non-cubes in the group. Therefore, there will be ‘many’

elements in Fq2 \ {0} that are both squares and non-cubes; which gives us the

required b1, b2 ∈ Fq. See the details in subsection 4.4.4.

Illustrative example. Considering an example of q = 5, we see that the possible

values for α are 2 and 3. For α := 2, we see that b1 := 1 =: b2 gives a polynomial

family (x3t−1)2−2 satisfying the required conditions: which can be seen by checking

irreducibility of (x3−1)2−2 in F5[x] and the existence of
√
x = x+2 in F5[x]/〈(x−

1)2 − 2〉, which translates to the existence of the same for larger t. Similarly, for

α := 3, we set b1 := 1, b2 := 3, giving the same family (x3t−1)2−2. We show that the

density of b1, b2 for any α is high, i.e. a random choice works with high probability.

Checking if b1, b2 satisfy the condition requires computing in Fq2 : (b1+α · b2)(q
2−1)/2

and (b1 + α · b2)(q
2−1)/3, which can easily be done in poly(log q) time.

Case of q = 3k, k > 1. In this case, we define r to be the smallest odd prime factor

of q2 − 1. We define gt(x) := (xrt − b1)
2 − α · b22 in this case. The proof works on

similar lines as the above case, using r|(q2 − 1) and 2|(q2 − 1), we have that there

will be elements in Fq2 that are not r-th powers but are squares. As above, it can be

shown that there exist the required b1, b2 ∈ Fq. See the details in subsection 4.4.5.

Case of q = 3. In this case, we see that q2 − 1 = 8, which is a power of 2. So the

previous techniques do not work here, as all elements have rth-root for any prime

r > 2. So, in this case, we go to the extension F34 . It has size 80 and so it has

elements that are not 5th powers. In F3, we see that 2 is the only non-square. So
√
2 helps in generating F32 . Similarly, 1 +

√
2 is not a square in F32 and hence√

1 +
√
2 will generate F34 . We also compute that (1 +

√
1 +

√
2) is not 5th power

in F34 , hence becoming the base of the generating polynomial family. We set as
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g0 := x4 + x3 − x + 1 = (x + 1)4 + x which completely factors in F34 with roots

(1±
√
1±

√
2)2 which we know are not 5th powers and are by definition a square in

F34 . This allows us to create the irreducible family as gt(x) = (x5t + 1)4 + x5t with

x as a square as x5t is a square.

The equation L2 = 2 has a solution in the extension F34 = Fq[x]/〈g0〉 as L =

x3+x2+x+1 works. For higher t, this becomes L = x3·5t +x2·5t +x5t +1, therefore

satisfying the constant locality condition as t increases. This gives us the infinite

family satisfying the required conditions. See the details in subsection 4.4.6.

These three cases give us the design of the finite fields for all odd-characteristics

(q being any odd prime-power). Once we have designed these special finite fields,

we are left with handling the normalization factor, which for odd characteristics

construction from [Mor94] comes out to be 1/
√
x. To remove this factor, we will

use the tools from [VW18] of double-cover and π-twist of a graph. Our choice of

g(x) ensures that 1/
√
x is an element of Fqd . This makes it possible to remove the

normalization factor by converting it into a bipartite graph and applying the correct

twist. See the details in section 2.4.

4.4 Proofs of Main Results

4.4.1 Local Ramanujan Graph of Degree 2k +1, k > 1: Proof

of Theorem 4.1

First, we look at the construction of Ramanujan Graphs in [Mor94] for q power of

2.

Theorem 4.3. [Mor94, Theorem 5.13] Let q be a power of 2 and f(x) = x2 + x+ ϵ

irreducible in Fq[x]. Let g(x) ∈ Fq[x] be irreducible of even degree d, and Fqd is

represented as Fq[x]/〈g(x)〉. Let L ∈ Fqd be a root of f(x), and
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Γi =

 1 γi + δiL

(γi + δiL+ δi)x 1

 ∀i ∈ {1, . . . , q + 1}

where γi, δi ∈ Fq are all the q + 1 solutions in Fq of γ2
i + γiδi + δ2i ϵ = 1. Then

the Cay(PSL(2,Fqd),Γ) with Γ as generators is a q + 1 regular Ramanujan graph.

For any ϵ such that x2 + x+ ϵ is irreducible over Fq, we choose gt(x) as

gt(x) := (b2 · x3t − b1)
2 + (b2 · x3t − b1) + ϵ

We show that there exist b1 ∈ Fq and b2 ∈ F∗
q such that gt is irreducible, and the

extension using it gives local Ramanujan graphs.

Lemma 4.4. Consider the extension of Fq to Fq2, and let α ∈ Fq2 \ Fq be a root of

x2 + x+ ϵ. gt is irreducible iff α+b1
b2

and α+b1+1
b2

are not cubes in Fq2.

Proof. As α is a root of f = x2 + x + ϵ in Fq2 , the factorization of f in Fq2 will be

(x+α+1)(x+α). So gt factorizes as (b2 ·x3t −b1+α)(b2 ·x3t −b1+α+1) in Fq2 . By

Claim 2.17, we have if α+b1
b2

and α+b1+1
b2

are not cubes in Fq2 , then u := (b2·x3t−b1+α)

and v := (b2 ·x3t − b1+α+1) are irreducible in Fq2 . Any factor of gt, say h ∈ Fq[x],

has to either divide one of u, v; or one of h’s factor in Fq2 will have to divide u, v.

But then the irreducibility of u, v, implies h is trivial and gt is irreducible (over

Fq).

Lemma 4.5. For q = 2k, k ≥ 2, and for any α ∈ Fq2 \ Fq, there exist b1, b2 ∈ Fq,

b2 6= 0, such that both α+b1
b2

and α+b1+1
b2

are not cubes in Fq2.

Proof. Let b3 ∈ F∗
q be the multiplicative inverse of b2. So we need to show b3α+ b1b3

and b3α+ b1b3 + b3 are not both cubes. We know that the number of cubes in F∗
q2 is

q2−1
3

, and the number of non-cubes is 2(q2−1)
3

. Also, the number of cubes in Fq2 \ Fq

is ≤ q2−1
3

and number of non-cubes is ≥ 2(q2−1)
3

− q. As α ∈ Fq2 \ Fq, {1,
√
α} is a

Fq-basis of Fq2 . So b3α + b1b3 will attain values in Fq2 \ Fq (as b3 6= 0).

For the sake of contradiction, assume that whenever b3α + b1b3 is not a cube,

b3α + b1b3 + b3 is a cube (as we vary b1 ∈ Fq, b2 ∈ F∗
q). The number of non-cube
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values attained by b3α + b1b3 is ≥ 2(q2−1)
3

− q, which would mean that the number

of cube values attained by b3α+ b1b3 + b3 is ≥ 2(q2−1)
3

− q. But the number of cubes

in Fq2 \ Fq is ≤ q2−1
3

; which is a contradiction for all q ≥ 4.

Thus, we have for any ϵ s.t. x2+x+ϵ is irreducible in Fq, there exist b1, b2 such that

gt(x) is irreducible of even degree d = 2 · 3t, modeling the field Fqd := Fq[x]/〈gt(x)〉.

The parameter L for our choice of gt will be b2 ·x3t − b1, which has constant locality.

Using Theorem 4.3 we get that Cay(PSL(2,Fqd),Γ) is a Ramanujan graph. We

consider Cay(SL(2,Fqd), zΓ), after adding the normalization constant z equal to
1√
x+1

(as determinant of Γ = x + 1); as PSL(2,Fqd) is isomorphic to SL(2,Fqd) in

characteristic 2.

Using Lemma 2.5, we can as well move to the graph Sch(SL(2, Fqd), zΓ,Fn
q \{0}),

where n := 2d = 4 · 3t. As fields Fq of characteristic 2 have size 2λ, and F∗
q have size

2λ − 1, all elements of Fq are squares (as, gcd(2, 2λ − 1) = 1). So, z is an element of

Fqd , and multiplication by it can be removed by taking double cover and applying

the required twist.

Finally, we also give local construction of Ramanujan graphs for degree 2k + 1,

k ≥ 2.

Theorem 4.6 (2k + 1 regular, k > 1). For any fixed q = 2k, and variable n =

4 · 3t, there exist q + 1 explicit O(log q)-local functions f1, . . . , fq+1 such that the

graph of 2(qn − 1) with vertex set (Fn
q \ {0}) × {0, 1}, with (v, 0) having neighbors

{(f1(v), 1), . . . , (fq+1(v), 1)}, is a degree q + 1 Ramanujan graph.

Proof of Theorem 4.6. We get from Theorem 4.3 that Cay(PSL (2,Fqd), zΓ) is a q+

1 regular graph. By Lemma 2.5 we know that Sch(PSL(2,Fqd), zΓ, Fn
q \{0} ) is also

a Ramanujan graph. By Lemma 2.7-Lemma 2.9, we get that after applying double

cover and twist, spectral gap remains the same, and z gets removed. Therefore, G

is a q + 1 regular Ramanujan graph. Now we need to show: each fi has constant

locality, which is just multiplication by Γi.

Looking at the transition function Γi in detail, we see that the only steps that

can be non-local are multiplication by L and x (multiplication by Fq elements is
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independent of n). Recall, L = b2 · xd/2 − b1 and g(x) = (b2x
d/2 − b1)

2 + (b2x
d/2 −

b1) + ϵ = L2 + L + ϵ. When L multiplies, the multiplication by b1 is trivial (has

O(log q)-locality, which is constant with respect to n). So, only multiplication by xd/2

needs careful analysis. We see that, in Fq[x]/〈g(x)〉, we can write xd =: p1x
d/2 + p2,

where p1 =
1
b2

and p2 =
b21+b1+ϵ

b22
; so p1, p2 ∈ Fq.

Write any element y ∈ Fq[x]/〈g(x)〉 as y =: (y2, y1), where vector y2 (resp. y1)

corresponds to the most (resp. least) significant d/2 coefficients of powers of x. Write

multiplication by xd/2 as:

xd/2 · y =
∑
j<d

cj · xj+d/2 =
∑

0≤j<d/2

cj · xj+d/2 +
∑

0≤j<d/2

cj+d/2 · xj+d

= xd/2 ·
∑

0≤j<d/2

cjx
j + (p1x

d/2 + p2) ·
∑

0≤j<d/2

cj+d/2 · xj

= xd/2 ·
∑

0≤j<d/2

(cj + p1cj+d/2) · xj + p2 ·
∑

0≤j<d/2

cj+d/2 · xj

= (p1y2 + y1, p2y2) .

Since, p1, p2 are Fq elements, the locality of multiplication is O(log q) = constant,

with respect to the size of the graph (as t, n grow). This shows that all the operations

in the transition functions are local.

Proof of Theorem 4.1. Combining Theorem 4.6 and the result from [VW18], we see

that we get the construction for q + 1-regular bipartite local Ramanujan graph, for

all 2-powers q. This completes the proof of Theorem 4.1.

4.4.2 Ramanujan Graphs of Degree pk + 1, p 6= 2

We start with the construction of Ramanujan graphs given in [Mor94], for degree

q + 1, where q is power of an odd prime.
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Theorem 4.7. [Mor94, Theorem 4.13]. Let q be an odd prime and ϵ a non-square

Fq. Let g ∈ Fq[x] be an irreducible polynomial of even degree d, and Fqd is represented

as Fq[x]/〈g(x)〉. Let L ∈ Fqd be s.t. L2 = ϵ and Γ be the set of matrices,

Γi =

 1 γi − δiL

(γi + δiL)(x− 1) 1

 ∀i ∈ {1, . . . , q + 1}

where γi, δi ∈ Fq are all the q+1 solutions in Fq of δ2i ϵ−γ2
i = 1. Then if x is a square

mod g(x), then the Cayley graph of PSL(2,Fqd) with respect to above generators is

a q + 1 regular Ramanujan graph.

We will use g(x) such that
√
x is in Fp[x]/〈g(x)〉, giving Cay(PSL (2,Fqd),Γ) as

the Ramanujan graph. To make the construction local, we will need g(x) such that

L2 = ϵ has a solution with constant sparsity so that multiplication with the matrix

to get neighbors is local. We divide the task of localizing into the following three

cases (in the order of technical difficulty):

1. q = pk, p ≥ 5,

2. q = 3k, k ≥ 2,

3. q = 3 .

4.4.3 First case: Identifying suitable parameters for the Ra-

manujan Graph

This section is dedicated to identifying the following objects, and constructing them

efficiently.

Lemma 4.8 (Parameters). Let q be any odd prime power. There exists an explicit

polynomial family g(x) ∈ Fq[x] with the following properties:

1. g is a family of irreducible polynomials in Fq[x] having even degree (which

defines the field Fqd).
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2.
√
x ∈ Fq[x]/〈g〉 (as we want to use PSL, for which x should be a square).

3. L /∈ Fq but L2 ∈ Fq (as we want L2 = ϵ where ϵ is a non-square in Fq).

4. L has constant sparsity (as the computation of a neighbor requires multiplica-

tion with the generator matrices and thus all the elements of the matrix should

be constant sparsity).

With an eye on the case of q = pk, prime p ≥ 5: Let us fix α to be a non-square

in Fq, and for (yet to be fixed) b1, b2 ∈ Fq we define a family for g(x) as:

gt(x) := (x3t − b1)
2 − α · b22 , ∀t ∈ Z≥0 .

As α · b22 is non-square in Fq, we deduce that g0(x) is irreducible. For t ≥ 1, the

following lemma reduces the irreducibility of gt(x) to the existence of the cube root

of b1+
√
α · b2 in Fq2 . (Note: The conjugate b1−

√
α · b2 has identical properties due

to the automorphism of Fq2 .)

Lemma 4.9. gt(x) is irreducible in Fq[x] if and only if b1 +
√
α · b2 is non-cube in

Fq2.

Proof. Observe that gt = (x3t−b1−
√
α·b2)·(x3t−b1+

√
α·b2) is the factorization over

Fq2 . Consider its Fq-automorphism σ :
√
α 7→ −

√
α. Let us denote (x3t−b1−

√
α·b2)

by ft. Then (x3t − b1 +
√
α · b2) = σ(ft). Assume ∃h ∈ Fq[x] such that h divides

gt = ft · σ(ft). There are only two cases possible:

• h divides one of ft and σ(ft): In this case, h would divide both the factors

because if h divides the first factor, then σ(h) = h would divide the second

factor. So h2|gt, which contradicts gt’s square-freeness. The square-freeness

easily follows from the coprimality of: g = (x3t − b1)
2 − α · b22 and dg

dx
=

2 · 3t · x3t−1(x3t − b1). So, this case is not possible for a nontrivial h.

• ∃u ∈ Fq2 [x] such that u|ft and h = u · σ(u): If u is nontrivial then ft =

(x3t − b1 −
√
α · b2) is reducible over Fq2 . Since t ≥ 1 and Fq2 has a cube-root
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of unity, it follows from the following Claim 2.17 that, (b1 +
√
α · b2) is cube

in Fq2 . So, this case is possible for a nontrivial h iff b1 +
√
α · b2 ∈ Fq2 is cube.

The following lemma reduces the problem of existence of
√
x ∈ Fq[x]/〈gt(x)〉 to

that of the existence of
√
x ∈ Fq[x]/〈g0(x)〉.

Lemma 4.10. If
√
x is in Fq[x]/〈g0〉, then

√
x is in Fq[x]/〈gt〉, ∀t ≥ 1.

Proof. We know that g0 = (x − b1)
2 − α · b22 for the non-square α. Consider β :=

b1 +
√
α · b2 in Fq2 . From the hypothesis, if x is a square mod g0, then β (and its

conjugate b1 −
√
α · b2) is a square in Fq2 . Since the field Fqd := Fq[x]/〈gt〉 subsumes

Fq2 , thus, x3t is a square in Fqd .

We know that the multiplicative group of Fqd is cyclic. Let λ be a generator of

this group; its order is qd − 1. There exists unique m ∈ [qd − 1] s.t. x = λm, which

means x3t = λm·3t . Since x3t is a square, we deduce: 2|(m · 3t), which means 2|m.

Hence, x = λm itself is a square in Fqd = Fq[x]/〈gt〉.

Based on Lemma 4.9-Lemma 4.10, our problem reduces to finding b1, b2 ∈ Fq

such that b1 ±
√
α · b2 is non-cube, but is a square in Fq2 . We solve this in the

following lemma.

Lemma 4.11. Assume q = pk, prime p ≥ 5. There exist ((q2 − 1)/6 many)

b1, b2 ∈ Fq such that, gt(x) is irreducible and
√
x exists in Fq[x]/〈gt〉.

Proof. From Lemma 4.9 we know that gt(x) is irreducible if and only if b1 +
√
α · b2

is non-cube in Fq2 .

Considering mod g0, x = b1 ±
√
α · b2. So,

√
x in Fq[x]/〈g0〉 is equivalent to

b1 +
√
α · b2 being a square in Fq2 (recall: α is non-square in Fq).

Clearly, {1,
√
α} is an Fq-basis of Fq2 . Since q is odd, we know Fq2 \ {0} is a

cyclic group of even order. Thus, the number of squares in Fq2 \ {0} is (q2 − 1)/2.

Also, as 3 ∤ q, we have 3|(q2 − 1), and thus, the number of non-cubes is 2(q2 − 1)/3.
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Therefore, there are ≥ (q2 − 1)/6 elements y’s in Fq2 \ {0} which are square but

non-cube.

As {1,
√
α} is a basis of Fq2 , each of these y’s give us a unique (b1, b2) for which

b1 +
√
α · b2 is a square but non-cube.

Proof of Lemma 4.8 for q = pk, p ≥ 5). Set g(x) = gt(x) of even degree d = 2 · 3t.

Set ϵ = α · b22 which is non-square, as α is a fixed non-square. To get L2 = ϵ ∈ Fq,

we simply set L = (x3t − b1) in Fq[x]/〈gt(x)〉; clearly L /∈ Fq. So properties (iii)-(iv)

are satisfied by our choice.

Lemma 4.11 shows that for our α, there exist ‘many’ b1, b2 ∈ Fq such that

properties (i)-(ii) are satisfied as well.

Thus, going over t ∈ Z≥0, we have constructed an infinite family of explicit g as

promised.

4.4.4 Local Ramanujan Graph of Degree pk + 1, p ≥ 5

From the previous section, we get that there exists b1, b2, for any non-square α ∈ Fq,

where q = pk for prime p ≥ 5, s.t. g = gt(x) = (x3t − b1)
2 − α · b22 is an irreducible

polynomial of even degree d = 2 · 3t, modeling the field Fqd = Fq[x]/〈gt(x)〉. As

mentioned already, L = (x3t − b1) ∈ Fqd , so that L2 = α · b22 = ϵ. Denote z :=

(1/
√
x) ∈ Fqd and matrices zΓ,

z · Γi :=
1√
x

 1 γi − δiL

(γi + δiL)(x− 1) 1

 ∀i ∈ {1, . . . , q + 1}

where γi, δi ∈ Fq are all the q + 1 solutions of: δ2i ϵ− γ2
i = 1.

Since x is a square mod g(x), from Theorem 4.7, we get that the Cayley graph

of PSL(2,Fqd) with respect to the above generators (i.e. Cay(PSL(2,Fqd),Γ)) is a

q + 1 regular Ramanujan graph. The required b1, b2 can be found out by simply

going over all the values in Fq, and checking the irreducibility of g0 (Lemma 4.9)

and the existence of
√
x ∈ Fq[x]/〈g0〉 (Lemma 4.10). Using Lemma 4.11, we get see
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that a random b1, b2 satisfy this with probability 1
6
, which means, All this is easily

doable in poly(q) time (or in randomized poly(log q)-time).

Note that the center of SL(2,Fqd) is ±1 (see section 2.5). Inspired by that, we

define V := {{v,−v}|v ∈ (F2
qd
\ {0})} and action of A ∈ PSL(2,Fqd) as {v,−v} 7→

{Av,−Av}. As the matrices are invertible, A acts like a permutation on the vertices.

Now, we consider the graph Sch(PSL(2,Fqd), zΓ,V). This means that the number

of Fq elements needed to represent each vertex in V will be n = 2d = 4 · 3t. This

new graph will remain a Ramanujan graph as a result of Lemma 2.5. We add the

normalization factor, z = 1/
√
x which makes the determinants (of our generators)

1. But the problem is that multiplication by z may not be local.

So, now we have Sch(PSL(2,Fqd), zΓ,V) as our graph. We now convert this

into a bipartite graph by taking a double cover of it. Again, this new bipartite

graph is a Ramanujan graph by Lemma 2.7. The problem of multiplication by

z remains to be solved. To solve this, we take the twist of the graph, with the

multiplication by
√
x as the permutation chosen for the twist. As

√
x is an element

of Fq[x]/〈g(x)〉, multiplication by it is equivalent to a permutation of the elements,

which can be removed using the appropriate twist. Now, as we have multiplied each

node by
√
x, we can see that we can remove the normalization factor z from the

functions (zΓ1, zΓ2, zΓ3, . . . , zΓq+1) to calculate the neighbor. So only multiplication

by (Γ1,Γ2,Γ3, . . . ,Γq+1) needs to be done, which is local (as we will easily show).

By Lemma 2.9, we have this new graph as a Ramanujan graph as well.

Final graph parameters. Let n = 4 · 3t, t ∈ Z≥0, d = n/2, and Fqd = Fq[x]/〈gt〉.

We define G = Gt to be the graph obtained as: start with Sch(PSL(2,Fqd), zΓ, V),

take its double cover, and apply the twist equivalent of multiplying with
√
x ∈

Fqd . Thus, G is a bipartite graph on vertices V := {{v,−v}|v ∈ (F2
qd

\ {0})}

with neighbors of ({v,−v}, 0) being ({Γiv,−Γiv}, 1), where matrices Γi are as in

Theorem 4.7.

Lemma 4.12 (Locality). G is a q+1 regular Ramanujan graph, with the transition

functions f1, . . . , fq+1, where (fi({v,−v}), 1) := ({Γiv,−Γiv}, 1) is the i-th neighbor
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of ({v,−v}, 0), such that ∀i ∈ [q + 1], fi has constant locality (= O(log q)).

Proof. We get from Theorem 4.7 that Cay(PSL(2,Fqd), zΓ) is a q+1 regular graph.

By Lemma 2.5 we know that Sch(PSL(2, Fqd), zΓ, V ) is also a Ramanujan graph.

By Lemma 2.7-Lemma 2.9, we get that after applying double cover and twist, spec-

tral gap remains the same, and z gets removed. Therefore, G is a q + 1 regular

Ramanujan graph. Now we need to show: each fi has constant locality.

Looking at the transition function Γi in detail, we see that the only steps that

can be non-local are multiplication by L and x (multiplication by Fq elements is

independent of n). The multiplication with v and −v has the only effect of doubling

the locality. Multiplication by x can be done locally as it is just a combination

of a cyclic shift and possibly one addition. Recall, L = xd/2 − b1 and g(x) =

(xd/2−b1)
2−α·b22 = L2−ϵ. When L multiplies, the multiplication by b1 is trivial (has

O(log q)-locality, which is constant with respect to n). So, only multiplication by xd/2

needs careful analysis. We see that, in Fq[x]/〈g(x)〉, we can write xd =: p1x
d/2 + p2,

where p1 = 2b1 and p2 = α · b22 − b21; so p1, p2 ∈ Fq.

Write any element y ∈ Fq[x]/〈g(x)〉 as y =: (y2, y1), where vector y2 (resp. y1)

corresponds to the most (resp. least) significant d/2 coefficients of powers of x. Write

multiplication by xd/2 as:

xd/2 · y =
∑
j<d

cj · xj+d/2 =
∑

0≤j<d/2

cj · xj+d/2 +
∑

0≤j<d/2

cj+d/2 · xj+d

= xd/2 ·
∑

0≤j<d/2

cjx
j + (p1x

d/2 + p2) ·
∑

0≤j<d/2

cj+d/2 · xj

= xd/2 ·
∑

0≤j<d/2

(cj + p1cj+d/2) · xj + p2 ·
∑

0≤j<d/2

cj+d/2 · xj

= (p1y2 + y1, p2y2) .

Since, p1, p2 are Fq elements, the locality of multiplication is

O(log q) = constant with respect to the size of the graph (as t, n grow). This shows

that all the operations in the transition functions are local. The total number of

additions required to calculate Γiv is 8, hence the total locality will be 16 log q.
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This completes the construction of local Ramanujan graphs for degree pk for

prime p ≥ 5.

Theorem 4.13 (pk + 1 regular). For any fixed q = pk, k ∈ N, prime p ≥ 5, and

variable n = 4 · 3t, there exist q + 1 explicit O(log q)-local functions f1, . . . , fq+1

s.t. the graph on (qn − 1) vertex set V × {0, 1}, where V := {{v,−v}|v ∈ (Fn
q \

{0})} where {v,−v} denotes an unordered set, with ({v,−v}, 0) having neighbors

{(f1({v,−v}), 1), . . . , (fq+1({v,−v}), 1)}, is a degree q + 1 Ramanujan graph.

Proof of Theorem 4.13. From Lemma 4.12 we saw that the graph G is a q+1 regular

bipartite Ramanujan graph with (qn − 1) vertices, and their transition functions

having constant locality (i.e. independent of n). Thus, neighbors of ({v,−v}, 0) can

be computed in constant locality. We can obtain the transition functions for all

sizes, using poly(q)-time preprocessing to find α, b1, b2 ∈ Fq.

We see that, similar to [VW18], our construction for Ramanujan graphs is also

efficiently computable; as generation of (and multiplication by) x and L can be

efficiently done. Calculating fi’s require O(n) Fq-multiplications (while calculating

p1y2, p2y2) and O(n) additions, as sparsity of terms is constant (in Γi). This makes

the expander explicit with O(n · log q · log log q)-time. This completes the proof of

Theorem 4.13.

4.4.5 Local Ramanujan Graph of Degree 3k + 1, k ≥ 2:

In this case, we have q = 3k. This case needs a different treatment as Fq has

non-squares, but it does not have a non-cube!

We will look at q2 − 1 = (q − 1)(q + 1), q = 3k. We observe that q2 − 1 will

have a prime factor r > 3: as q − 1, q + 1 are not divisible by 3 and they cannot be

2-power simultaneously (as 2(q − 1) > (q + 1)). We fix r to be the smallest such

prime factor. Eg. for even k, r = 5.

We fix α to be a non-square in Fq, for b1, b2 ∈ Fq (yet to be fixed) we define a

family of polynomials gt(x) for t ≥ 1 as:
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gt(x) := (xrt − b1)
2 − α · b22

Lemma 4.14 (Non-rth square). There exist ( (r−2)(q2−1)
2r

many) b1, b2 ∈ Fq such that

gt is irreducible and x is a square in Fq[x]/〈gt〉.

Proof. As done in Lemma 4.9, (xrt − b1)
2 − α · b22 factors into the coprime factors

(xrt − b1−
√
α · b2) and (xrt − b1+

√
α · b2). Any factor dividing one of them will also

divide the other under the automorphism σ :
√
α 7→ −

√
α. Thus, (xrt − b1−

√
α · b2)

must be irreducible over Fq2 for gt to be irreducible over Fq. By Claim 2.17, we have

xrt − b1 −
√
α · b2 irreducible if b1 +

√
α · b2 is not r-th power in Fq2 , as r is a prime

> 3.

Lemma 4.10 remains the same on replacing 3t by rt. Thus,
√
x ∈ Fq[x]/〈g0〉

implies
√
x ∈ Fq[x]/〈gt(x)〉, ∀t ≥ 1. Considering mod g0, x = b1 ±

√
α · b2,

therefore
√
x ∈ Fq[x]/〈g0〉, is equivalent to b1 +

√
α · b2 being a square in Fq2 .

Thus, the question boils down to showing the existence of b1, b2 ∈ Fq such that

b1 +
√
α · b2 is square in Fq2 , but non-rth-power.

We know Fq2 \ {0} is a cyclic group of even order. Thus, the number of squares

in Fq2 \ {0} is (q2 − 1)/2. From our choice of r, we know r|(q2 − 1), and thus, the

number of non-rth-power is (r− 1)(q2 − 1)/r. Therefore, there are ≥ (r−2)
2r

elements

y in Fq2 \ {0} which are square but not-rth-power.

Clearly, {1,
√
α} is an Fq-basis of Fq2 . Each of the y’s obtained above gives a

unique (b1, b2) for which b1 +
√
α · b2 is square in Fq2 , but non-rth-power.

This give us the construction of local Ramanujan graphs for degree 3k+1 (k ≥ 2).

Theorem 4.15 (3k + 1 regular, k > 1). For any fixed q = 3k, r such that r is the

smallest prime > 3 dividing q2 − 1, and variable n = 4 · rt, there exist q + 1 explicit

O(log q)-local functions f1, . . . , fq+1 s.t. the graph on (qn − 1) vertex set V × {0, 1},

where V := {{v,−v}|v ∈ (Fn
q \ {0})} where {v,−v} denotes an unordered set, with

({v,−v}, 0) having neighbors {(f1({v,−v}), 1), . . . , (fq+1({v,−v}), 1)}, is a degree

q + 1 Ramanujan graph.
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Proof of Theorem 4.15. Following the proof of Lemma 4.12, now with n = 2d = 4·rt,

we deduce that the graph G is a q+1 regular bipartite Ramanujan graph with (qn−1)

vertices, and their transition functions having constant locality (namely, O(log q),

independent of n). Thus, neighbors of ({v,−v}, 0) can be computed in constant

locality. We can obtain the transition functions for all sizes, using poly(q)-time

preprocessing to find α, b1, b2 ∈ Fq.

Exactly like in the proof of Theorem 4.13, our construction for Ramanujan graphs

is also efficiently computable. In fact, the expander is explicit in O(n·log q ·log log q)-

time. This completes the proof of Theorem 4.15.

4.4.6 Local Ramanujan Graphs of Degree 4: Wrap-up The-

orem 4.2

For q = 3, the only non-square in Fq is 2. We need g satisfying the conditions of

Lemma 4.8, with ϵ fixed to 2. We use the following family of polynomials for g as

t ≥ 1:

gt(x) = (x5t + 1)4 + x5t

Lemma 4.16. For q = 3 and ϵ = 2, gt(x) = (x5t+1)4+x5t satisfies all the properties

of Lemma 4.8.

Proof. We know as 2 is non-square in F3,
√
2 generates F32 . Looking in F32 =

F3[x]/〈x2−2〉, we see that 1±
√
2 is a non-square and hence

√
1±

√
2 will generate

F34 . Denote the values (1±
√
1±

√
2)2 by α1, α2, α3, α4. We consider the polynomial

in F3[x] with these roots in F34 , which is x4 + x3 − x+ 1 = (x+ 1)4 + x, i.e. g0. We

know g0 is irreducible as its roots are in F34 but not in lower extensions. Now if we

consider gt, we can see that in F34 , it factorizes as
∏4

i=1(x
5t − αi).

Let h be a factor of gt in Fq[x]. In Fq4 [x], h cannot divide a product of three

of the factors (x5t − αi): as a composition of the two maps σ1 :
√
2 7→ −

√
2 or

σ2 :
√

1 +
√
2 7→ −

√
1 +

√
2 will ‘cover’ any remaining factor. Therefore, h must
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have 4 factors in Fq4 , each of which will divide one of x5t − αi. So, proving anyone

irreducible, means gt is irreducible. It is easy to see that α
(q4−1)/5
1 = α16

1 6= 1 in Fq4

and hence α1 is a non-5-th-power in Fq4 . Using Claim 2.17, we get that x5t − α1 is

irreducible over Fq4 , and hence gt is irreducible in Fq.

Lemma 4.10 remains the same on replacing 3t by 5t. Thus,
√
x ∈ Fq[x]/〈g0〉

implies
√
x ∈ Fq[x]/〈gt(x)〉, ∀t ≥ 1. Considering mod g0, we have x = (1 +√

1 +
√
2)2, which is a square of 1 +

√
1 +

√
2 which is in Fq4 . Precisely,

√
x =

x3 + x2 + 2x+ 1 in Fq[x]/〈g0〉.

We observe that (x3 + x2 + x + 1)2 = 2 in Fq[x]/〈g0(x)〉. Therefore, we set

L := x3·5t + x2·5t + x5t +1, giving us L2 = 2 mod gt(x). L also has constant sparsity

of 4. Thus, gt = (x5t + 1)4 + x5t satisfies all the four properties of Lemma 4.8.

Using Theorem 4.7 we get that Cay(PSL(2,Fq[x]/〈gt〉),Γ) is a Ramanujan graph.

We consider Cay(PSL(2,Fq[x]/〈gt〉), zΓ), after adding the normalization constant

z equal to 1√
x
. Using Lemma 2.5, we have Sch(PSL(2,Fq[x]/〈gt〉), zΓ,Fn

q ), where

n = 2d = 8 · 5t. As we already have
√
x ∈ Fqd := Fq[x]/〈gt〉, z is an element of Fqd ,

and multiplication by it can be removed by taking double cover and applying the

required twist. Thus, we have a bipartite Ramanujan graph G where neighbors of

({v,−v}, 0) being {(f1({v,−v}), 1).

Lemma 4.17. Multiplication of Γ matrices with a vector in F2
qd

, q = 3, d = 4 · 5t

and gt(x) := (x5t + 1)4 + x5t = xd + x3d/4 − xd/4 + 1 has constant locality.

Proof. Multiplication with Γ involves the main non-trivial steps as multiplication

with x and L. Multiplication with x is just a cyclic shift among values of Fqd and

possibly 3 additions, which have O(log q) locality. Recall L = x3·5t +x2·5t +x5t +1 =

x3d/4 + xd/2 + xd/4 +1. So, we need to show multiplication with x3d/4, xd/2, and xd/4

is local as well in Fqd . We also see that modulo gt, xd = −x3d/4 + xd/4 − 1.

Let the input be y ∈ Fqd , y =
∑

i<d ci · xi with which we will consider multipli-

cation with x3d/4. We write it as (y4, y3, y2, y1), where vector y4 corresponds to the

most significant d/4 coefficients of power of x, y3 the next significant d/4 coefficients
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and y2 the next d/4, while y1 to the d/4 least significant coefficients. Multiplication

with xd/4 is thus,

xd/4 · y =
∑
i<d

ci · xi+3d/4

=
∑
i<d/4

ci · xi+d/4 +
∑
i<d/4

ci+d/4 · xi+d/2 +
∑
i<d/4

ci+d/2 · xi+3d/4

+
∑
i<d/4

ci+3d/4 · xi+d

=
∑
i<d/4

ci · xi+d/4 +
∑
i<d/4

ci+d/4 · xi+d/2 +
∑
i<d/4

ci+d/2 · xi+3d/4

+ (−x3d/4 + xd/4 − 1) ·
∑
i<d/4

ci+3d/4 · xi

= x3d/4
∑
i<d/4

(ci+d/2 − ci+3d/4) · xi + xd/2
∑
i<d/4

ci+d/4 · xi

+ xd/4
∑
i<d/4

(ci + ci+3d/4) · xi −
∑
i<d/4

ci+3d/4 · xi

= (y3 − y4, y2, y1 + y4,−y4)

Thus, multiplication with xd/4 can easily be done in constant locality. Similarly,

it can be shown that xd/2 · y = (y2 − y3 + y4, y1 + y4, y3 + y4, y4 − y3) and x3d/4 · y =

(y1 − y2 + y3, y3 + y4, y2 + y3 − y4, y3 − y2 − y4). Therefore, multiplication by L can

be performed with constant locality operations and hence multiplication of Γ with

an element of (F3)
n can be done in constant locality.

This leads to the following construction of Ramanujan graphs for degree 3 + 1.

Theorem 4.18 (4 regular). For q = 3, and variable n = 8 · 5t, there exist q +

1 explicit constant locality functions f1, . . . , fq+1 s.t. the graph of such that the

bipartite graph on (qn − 1) vertex set V × {0, 1}, where V := {{v,−v}|v ∈ (Fn
q \

{0})} where {v,−v} denotes an unordered set, with ({v,−v}, 0) having neighbors

{(f1({v,−v}), 1), . . . , (fq+1({v,−v}), 1)}, is a degree 4 Ramanujan graph.
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Proof of Theorem 4.18. We get from Theorem 4.7 that Cay(PSL (2,Fqd), zΓ) is

a q + 1 regular graph. By Lemma 2.5 we know that Sch(PSL(2,Fqd), zΓ, V =

Fn
q \ {0} ) is also a Ramanujan graph. By Lemma 2.7-Lemma 2.9, we get that after

applying double cover and twist, spectral gap remains the same, and z gets removed.

Therefore, G is a q + 1 regular Ramanujan graph. From Lemma 4.17, we have that

the neighbor of ({v,−v}, 0) in G can be calculated using constant locality. Thus, G

is our 4-regular constant locality bipartite Ramanujan graph.

Proof of Theorem 4.2. Combining Theorem 4.13, Theorem 4.15 and Theorem 4.18,

we get the construction for q + 1-regular bipartite local Ramanujan graph, for all

odd prime powers q. This completes the proof of Theorem 4.2.



Chapter 5

Algebraic Dependence Testing

In this chapter, we will work on the problem of testing if input polynomials are

Algebraically dependent or not.

Definition 5.1 (Algebraically Dependent Polynomials). Polynomials f ∈ F[x] are

Algebraically independent if ∃A in F[y] such that A(f) = 0

Analog to linear rank, we have Transcendence Degree for polynomials.

Definition 5.2 (Transcendence Degree of Polynomials). The Transcendence Degree

of a set of Polynomials S = f1, . . . , fm ∈ F[x1, . . . , xn] is the cardinality in the

largest algebraically independent subset of S. S is algebraically independent iff

trdeg(S) = |S|.

If the polynomials are not algebraically independent and ∃A such that A(f1, . . . , fm) =

0, we call it the Annihilator of f1, . . . , fm.

Now, we show the following lemma which allows us to replace F with F̄.

Lemma 5.3. If f1, . . . , fm ∈ F[x1, ] are dependent in E/F, then they are also depen-

dent in F.

Proof. Assume f is dependent in E/F with corresponding Annihilator A. We can

replace E with an extension which has coordinates of A, and hence E is a finite ex-

tension. By primitive element theorem, it has a generator α, which generates all the

elements in E. Let D be the degree of E, we write A as A =
∑D

i=0 α
iAi(y1, . . . , ym)
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with Ai having coefficients in F. As A(f1(x, . . . , fm(x) evaluates to 0 on all points

in Fn, and as all values cannot contain α, each Ai also evaluates to 0, giving an

annihilator with coefficients in F. We should note that deg(A) ≥ deg(Ai), so going

to an extension doesn’t give an advantage of smaller degree annihilators.

The problem of testing Algebraic dependence was first shown to be in PSPACE

by Perron in [Per32] by giving the following bound on degree of Annihilator.

Theorem 5.4 (Perron’s bound). Given f1, . . . , fm alg. dependent polynomials, ∃A ∈

F[y1, . . . , fm] with deg(A) ≤
∏m

i=1 deg(fi) such that A(f1, . . . , fm) = 0.

This bound is known to be tight, as shown in [Kay09]. Computing the exact

Annihilator is therefore known to be hard. But the decision problem of algebraic

dependence has a simple solution for field of char(F) = 0 in [Jac41] and char(F) > dr

in [BMS13] due to the following criteria:

Lemma 5.5 (Jacobian Criteria). [BMS13; Jac41] Let f ⊂ F[x] polynomials of deg≤

d, and trdegF(f) is bounded r. If char(F) > dr or char(F) = 0, then trdegF(f) is

equal to the rank of the Jacobian matrix, i.e. rankF[x]Jx(f).

Definition 5.6 (Jacobian). The Jacobian matrix of polynomials f ∈ F[x] is defined

as the matrix Jx(f) = (∂xj
(fi)m×n.

But for smaller characteristic fields, the question of efficiently testing Algebraic

Dependence remains open.

Another way to define, Transcendence degree of polynomials provided a geomet-

ric way to approach the problem of Algebraic testing in [GSS19]. We observe that

F[f] is finitely generated with at most m generators, and therefore it is isomorphic

to F[x]/I for some ideal I. The isomorphism takes each yi −→ fi. It is easy to see

that the ideal I is the ideal of all Annihilators of F.

The ring F[y]/I corresponds to the affine variety define by the equations in I,

which we call it Y . Consider the map on An where ith coordinate goes fi, which we

call ϕf. The closure of the image of this map ϕf is exactly Y . It is easy to show from

this that Y is an irreducible affine variety.
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Now, we look at the algebro-geometric definition of transcendence degree as

follows

Definition 5.7. [SR94] The dimension of an irreducible affine variety is the tran-

scendence degree of its function field.

Applying this to Y , gives us that f1, . . . , fm are algebraically independent iff

dim(Y ) = m. This gap in the dimension for dependent and independent polynomials

allows an application of the Goldwasser-Sipser Set Lowerbound protocol, which gives

AM and coAM protocols, and hence the following result.

Theorem 5.8. [GSS19] Testing Algebraic Dependence of input polynomials f1, . . . , fn

is in AM ∩ coAM .

In [PSS16], gave an algorithm to test Algebraic dependence when the inseparable

degree of the extension F(x)/F(f) is small. For f dependent polynomials, we cannot

write fn = A(f1, . . . , fn−1) in all cases, but in [PSS16] they showed that after a

random shift and allowing power series, f1 can be written as a function of f2, . . . , fn.

Define H(f(x)) = f(x + a) − f(a), where a is formal variable representing random

shift in Fn. Formally, they showed in the paper the following theorem relating

functional dependence and algebraic independence:

Theorem 5.9. [PSS16, Theorem 10] Let f ⊂ F[x]. If trdeg(f) is r, then ∃{g1, . . . , gr} ⊂

{f1, . . . , fm} which are algebraically independent, s.t. for random z ∈ Fn, ∃pi ∈ F[y]

such that alll polynomial fi’s satisfy fi(x + z) = pi(g1(x + z), . . . , gk(x + z)).

Truncating this computation to the inseparable degree t results in Algebraic

dependence being equal to Ht(fn) ≡ 0 modulo 〈1,Ht(f1), . . . ,Ht(fn−1)〉t. The sepa-

rable case with t = 1 shows that the Jacobian criteria for dependence is equivalent to

the linear terms being F(a) linearly dependent. Therefore, Jacobian being 0 shows

either the polynomials are dependent or independent bu inseparable.

Since, the above testing can be done efficiently in the space of n-variate degree t

monomials, it gives a poly(s,
(
n+t
n

)
) time algorithm, where s is the input size of the
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circuits computing f.

Consider, The following case

Example 5.10. Let F = Fp for some prime p. Let fi := xp
i − xi+1 for i ∈ [n − 1]

and fn := xn. We can easily see that the polynomials are independent, and also that

Jacobian vanishes. We also see that the minimal polynomial for xi, i < n is given

by

yp
n−i

= fn +
n−i∑
j=1

f pj

n−j

Thus, the inseparable degree of system is pn. Bounded degree polynomial systems

can, therefore, also have exponential inseparable degree, which cannot be efficiently

solved using the approach in [PSS16].

This inspired us to solve the smallest and simplest case where degree of fi’s is

bounded by 2 over the field F2.



Chapter 6

Algebraic Independence Testing

For Quadratics Over F2

In this chapter, we explore an inductive way to develop certificates testifying Alge-

braic Independence for the simplest open case currently, that is deg(fi) ≤ 2, ∀i ∈

[m], fi ∈ F2[x1, . . . , xn].

From discussion in the previous chapter, it is clear that giving an algorithm that

outputs a certificate for input algebraically independent polynomials in poly-time

is sufficient. So, we assume the input polynomials to be independent and develop

certificates.

We will be first preprocessing the input polynomials f1, . . . , fm, fi ∈ F2[x1, . . . , xn], ∀i ∈

[m] have degree ≤ 2 using the following 4 tools :

• Applying the random shift H(fi) = f(x + z)− f(z)

• Substitution xi −→
√
xi if there is only x2

i in all fj’s

• Substitution fi −→
√
fi if fi is a square

• Minimal condition No subset {f1, . . . , fr} such that the polynomials in it has

only ≤ r < n variables.

The above ensure that every fi has a linear part. No variable is such that only x2
i

exist. No polynomial is a square. Any subset of r polynomials has ≥ r+1 variables,
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and no variable exist in just one polynomial. We observe that none of the operations

above decrease the transcendence degree of the system. Wlog, we assume each fi

contains xi.

Now, we will attempt to obtain certificates of independence for input polynomi-

als f1, . . . , fm for m = 2, 3, ... and then try to generalize our findings to m = n.

Case: m = 2

After applying H of (z1, . . . , zn) on f1 and f2, if they have independent linear

terms in xi’s, then the Jacobian will work. We can use linear maps to take l1,l2 to

x1, x2.

If f1, f2 give linear terms l1 and αl1, then we have H(f1 − αf2) with 0 linear

terms, and hence f1 − αf2 it will be a square, as H(f1 − αf2) will have no lin-

ear terms, meaning f1 − αf2 will have no linear terms. So, we use f2 := f1 − αf2

and f2 :=
√
f2 removing inseparability and taking us to the former part of this case.

Case: m = 3

From previous case, we can say that we have f1 = x1 + Q1 and f2 = x2 + Q2.

Now, if H(f3) has a linear term with x3 then, we have separability and Jacobian

gives independence.

Now, if H(f3) has only one of x1 or x2, we can obtain it in x3 + Q3 form using

arguments as in case m = 2. So the case remains when both x1, x2 are present in

linear terms of H(f3). This happens with x1 + x2 + x2
3 or x1x2 + x2

3. Adding f1 and

f2 with appropriate scaling will remove the linear terms in f3. We cannot take √
x3,

because f1, f2 may have x3. The simplest such case will be the following:

f1 : x1x2

f2 : x2x3

f3 : x3x1
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Now we see that the least monomial in f3 according to grevlex ordering is x2
3,

with respect to variable ordering x1 > x2 > x3 > . . . > xn. If there is any other

monomial x2
i , then we just swap xi and x3. So the least monomials for f1, f2, f3 are

x1, x2, x
2
3 respectively. Lastly, we see that this acts like a certificate, as an Annihi-

lator for f, will also act like an Annihilator for the least monomials as well.

Case: m = 4

From the above, we have that either f1 = x1 +Q1, f2 = x2 +Q2, f3 = x3 +Q3 or

f1 = x1 +Q1, f2 = x2 +Q2, f3 = x2
3 +Q3. If H(f4) has a linear term with x4 then,

we have the certificate for independence as x4 will be the least term.

The first case of f1 = x1+Q1, f2 = x2+Q2, f3 = x3+Q3 behaves like the case of

m = 3, which will finally gives polynomial in form f1 = x1 +Q1, f2 = x2 +Q2, f3 =

x3 +Q3, f4 = x2
4 +Q4.

So the case that remains is of f1 = x1+Q1, f2 = x2+Q2, f3 = x2
3+Q3, where x4

is not in linear term of f4. SO, f4 = l4 + x2
4 +Q4 x1, x2 in linear terms can easily be

removed by adding f1, f2 with appropriate scaling. But, we cannot remove x3 from

the linear term.

So, now we will add Frobenius powering to our tool set as well. We can set

f := f p if we are working in the field Fp. We can do this because even though the

degree might increase, but the number of monomials remain same. One can argue

that this is the core reason behind inseparability. Also, it is easy to see that this

doesn’t change algebraic dependence.

So we set f4 = f 2
4 + f3. Since, we know x4 occurs linearly in one of f1, f2, f3,

otherwise we can just use x4 −→ √
x4, and obtain x4 in linear term. linear x4

cannot be in f3, otherwise we would have made it as x3. So the worst case is

when f3 has x1x2 and f1/f2 have linear x4. Now if x4 is in f1 or f2, we ap-

ply H on f4 and the linear terms that come are x1 x2, removing which will in-

troduce x4. In the worst case in this case, we will obtain the polynomials as

f1 = x1 + Q1, f2 = x2 + Q2, f3 = x3 + Q3, f4 = x4
4 + Q4, where Q4 has degree
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≥ 4 and all terms have higher weight than x4
4. x4

4 happens only when f4 = x3 + x2
4,

which is a special case, in others x2
4 + Q4 is final form of f4. This also works as a

certificate, as the least terms are linearly independent.

Case: m = 5

The above works with m = 5 as well, as the maximum path for any Frobenius

can be of one step, which will ensure that x2
5 becomes the least term when we keep

using H and remove the linear terms. The worst case will be when f4 = x2
4+Q4 and

f5 = x4 + x2
5, and when we apply Frobenius on f5, the worst case will be when x2x3

gets introduced in f5. Using H and addition to remove x2 or x3 will get us to linear

x1 or linear x5. In the former case Q1 will have to contain linear x5, and hence using

only one Frobenius jump, we can reach x5. Thus worst case also remains same and

we get certificate f1 = x1+Q1, f2 = x2+Q2, f3 = x3+Q3, f4 = x2
4+Q4, f5 = x4

5+Q5.

Case: m = 6

The above approach fails at m = 6, as the path to x6 from above may enter a

monomial which cannot be removed simply by using H and removing linear terms.

Consider the following example:

Example 6.1. The following case fails because once we use Frobenius and get

f6 = x2x3 + x4
6, removing x2x3 is not possible as the terms it produces x2, x3 when

added give terms which have higher weight than x2x3.

f1 : x1 + x2
2 + x2

4

f2 : x2 + x2
1

f3 : x3 + x2
2

f4 : x4 + x3x6

f5 : x
2
5 + x2x3

f6 : x5 + x2
6
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This doesn’t happen in m = 5 as after f4 is taken for causing Frobenius in f5,

i.e. f5 = x4 + x2
5 and f4 = x2

4 + x2x3, and if f2,f3 give terms higher weight than

x2, x3, then f1 will have linear x5. The initial linear map to make f1 = x1 +Q1, will

in that case introduce x2
5 into f2, f3 making the case impossible.

A Possible Solution
Since, we cannot remove x2x3 directly from f6, a possible solution is to instead of

using grevlex, use weighted ordering for monomials. So each xi will have weight wi,

and weight of a monomial xe1
1 xe2

2 . . . xen
n is

∑n
i=1 eiwi. So after the transformations,

the above example becomes

f1 : x1 + x2
2 + x2

4 + x2
3 + x2

6

f2 : x2 + x2
1

f3 : x3 + x2
2

f4 : x4 + x3x6

f5 : x
2
5 + x2x3 + x2

1 + x2
2

f6 : x
4
6 + x2x3

Since we want the first term in each case to be least, it gives us the following

system of inequalities
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w1 < 2w2, w1 < 2w4, w1 < 2w3, w1 < 2w6

w2 < 2w1

w3 < 2w2

w4 < w3 + w6

2w5 < w2 + w3, w5 < w1, w5 < w2

4w6 < w2 + w3

Any assignment of wi’s that satisfies the above will act as a certificate of Al-

gebraic Independence. A path forward possible is to show that such a weight as-

signment will exist for all independent polynomials. Thereofore, a solution of the

polytope acts like a certificate for algebraic independence.

A major drawback of this is approach is that it may not be extendable to larger

fields as it ignores the coefficient(except 0) which is not a problem in F2, but will

matter in larger fields.



Chapter 7

Conclusions

In this thesis, we give the first construction of bipartite Ramanujan graphs of con-

stant locality of degree q + 1, for any prime power q. This solves the construction

problem for constant-locality Ramanujan graphs, which was previously known only

for degree 3.

Our results allow the construction of local 3-regular, 4-regular and 6-regular

unique-neighbor expanders, and local ‘bipartite’ unique-neighbor expanders, see

[AC02].

For Algebraic Independence, we give a distinct solution approach to the problem

for Quadratic polynomials over F2, solving till m ≤ 5. For larger m, we give a

possible solution that could work over F2.

7.1 Open Problems

Our work on local Ramanujan Graphs leaves the following questions still open:

1. Construct Ramanujan graphs of locality 1.

2. Construct non-bipartite constant-locality Ramanujan graphs.

3. Construct Ramanujan graphs of degree q + 1, where q is not a prime-power.

For Algebraic Dependence, the proof that the polytope approach will work for
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all Quadratics in F2 is the natural forward step. Generalizing this is to higher fields

and degree will be the next open questions to answer.
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