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Abstract

Name of the student: Diptajit Roy Roll No: 20111265

Degree for which submitted: PhD Department: CSE Department

Thesis title: Counting points on algebraic curves over finite fields and

applications

Thesis supervisors: Prof. Nitin Saxena

Month and year of thesis submission: June 2025

Let C/Fq be a smooth projective curve over the finite fields Fq of characteristic p. By

C(Fqr), we denote the set of points of C lying on a degree r extension of Fq. We define its

zeta function Z(C/Fq, T ) as follows

Z(C/Fq, T ) := exp

( ∞∑
i=1

#C(Fqi)
T i

i

)
∈ Z[[T ]]

It is an important result in arithmetic geometry that Z(C/Fq, T ) is a rational function of

T .

A very well studied question in number theory is to compute Z(C/Fq, T ) for a given

curve C/Fq. Over decades, the work of many mathematicians like Weil, Grothendieck and

Deligne has captured what appears to be a purely number-theoretic question in terms of

rich algebraic geometry. Following these, there have been many algorithmic results related

to this problem. Motivated by a question posed by J.P.Serre, one can ask if there exists

a polynomial-time algorithm to compute #C(Fqr). Finding such an algorithm is still one

of the major open questions in computational number theory. In this thesis, we construct

a protocol to determine #C(Fqr) which puts the problem in the complexity class AM ∩

coAM.
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Abstract v

We also explore a special case of modular curves and their zeta functions. We will see

how modular curves are linked with modular forms which will allow us to compute the

pth Fourier coefficient of a modular form. We have explored some complexity results on

computing the zeta function of modular curves and Fourier coefficients of modular forms.
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Chapter 1

Introduction

The aim of this thesis is to show some algorithmic results related to counting points of alge-

braic curves over finite fields. In addition to being a mathematically interesting question,

point counting of hyperelliptic curves over finite fields has vast applications in cryptog-

raphy. In fact, the discrete logarithm problem of elliptic curves and Jacobian variety of

hyperelliptic curves are applied in constructing cryptographic protocols; therefore, one

would need to choose curves with large point counts over finite fields, in order to have

secure protocols. In this thesis, we study this question for an input curve of given genus

over finite fields of given characteristic.

1.1 Motivation

The problem of point counting of varieties defined over finite fields has applications in

various areas of mathematics. This seemingly algebraic problem has found major applica-

tion in analytic number theory. The study of number of solutions of polynomial systems

over finite field dates back to Gauss. For example, Gauss studied equations of the form

ax3 − by3 ≡ 1 mod p and ax4 − by4 ≡ mod p for primes p of the form 3n+ 1 and 4n+ 1

respectively, in connection to his investigation of Gaussian sums ([1],[2]), Hardy and Little-

wood also applied point counting over finite fields while studying Waring’s problem, which

is purely analytic in nature. In addition to this, point counting has impacted algebraic

geometry, representation theory. The Taniyama-Shimura-Weil conjecture whose proof led

the path to proof of Fermat’s last theorem ([3]) which relates the point count of elliptic

curves defined over finite fields with modular forms. It also has a profound influence on the

1



Chapter 1. Introduction 2

Langlands program, where one studies the point counts of Shimura varieties and relates it

to automorphic forms ([4],[5]).

Let Fq be a finite field of characteristic p and size q = pr, for some r ≥ 0. Then given

an algebraic variety X/Fq, one can ask what is the number of Fq (or a finite extension

of Fq) points lying on the curve C. The zeta function is an infinite series that encodes

the point counts of X over all extensions of Fq. Then, as we will see later, the zeta

function can be given a finite description as a rational function in Q(T ). Motivated by [6,

Preface], the following question can be asked : Is there an algorithm that can compute the

function Z(C/Fq, T ) that has a run-time polynomial in the input parameters? Currently,

the existence of such an algorithm is only conjectural. In this thesis, we will show that, in

the case of curves, we have strong evidence that the problem is at least not NP-hard.

1.2 New results

This thesis aims to prove the following result.

Theorem 1.1. Let C be a smooth projective geometrically irreducible curve defined over

finite field Fq of characteristic p and genus g and Z(C/Fq, T ) be its zeta function. Then

computing Z(C/Fq, T ) is in AM ∩ coAM.

This is the first classical complexity result on zeta functions of curves over finite fields where

we allow both the prime characteristic of the field and the genus of the input curve to vary.

Before our result, the existing classical algorithms assumes either the prime characteristic

of the input field or the genus of the input curve to be fixed. This protocol can be seen as a

classical analogue to Kedlaya’s result on quantum complexity ([7]), where he has obtained

an actual algorithm that runs in polynomial time.

1.3 Organization of the Thesis

In the second chapter, we focus on describing the basic tools that will be used throughout

the thesis. We describe the technical details needed for the study of projective curves. We

have introduced the basics of homology and cohomology theories and how these arose from

topology. We have shown how these theories can be studied explicitly in connection with

curves.
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In the third chapter, we have stated the Weil conjectures and how cohomology theories are

important in the context of counting points. We have also gone in brief on how the proof

of Weil conjectures came about. Then we have described the details of our AM ∩ coAM

protocol and explored some possible applications in computing zeta functions of Abelian

varieties.

In the last chapter, we have explored a special case scenario of modular curves, stated

how modular curves and modular forms are connected, and stated how counting points of

modular curves over finite fields can help us to compute Fourier coefficients of a cuspform.

We have explored a classical polynomial-time algorithm on this and also stated how our

AM ∩ coAM result is impacting this.



Chapter 2

Algebraic curves and complexity

theory

2.1 Projective curves

A projective curve defined over a field k is a projective variety that has dimension 1. For

example, we can consider the elliptic curve defined over Q, E : Y 2Z = X3 − AXZ2 +

BZ3; A,B ∈ Q in P2
Q. Curves embedded in P2 are called plane projective curves. We

call a point P of a projective curve singular if ∂
∂XP = ∂

∂Y P = ∂
∂ZP = 0. A projective

curve with no singular points is called smooth. A projective curve usually comes with a

natural defining equation, therefore; often called a projective algebraic curve. A projective

algebraic curve is called geometrically irreducible if the corresponding algebraic set in P2
k

is not a union of two algebraic sets; in other words, the defining ideal of the curve (which

has coefficients in k) does not factor in k.

Curves can also arise in complex analytic ways where it is not directly evident what its

defining equation is. Such curves are what we call analytic curves and are dealt with in

terms of complex analytic geometry and topology. Examples of such curves are modular

curves, where we usually describe it in terms of the action of group of matrices on the

complex upper half-plane. As we will see later, obtaining the defining equations for these

curves is not a hard problem, in fact, it is in polynomial time.

4
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Definition 2.1 (Divisors). Let C be a geometrically irreducible smooth projective curve

defined over a field k. We define a divisor D on C as the formal sum

D =
∑

P∈C(k)

nPP

where nP ∈ Z is called the order of P in D which is zero for all but finitely many P ∈ C(k).

We call the set of all points P ∈ C(k) for which nP ̸= 0, the support of D is denoted as

Supp(D). We define the degree of D as
∑

nP . A divisor E is said to be effective if nP > 0

for all P ∈ Supp(E). The set of divisors on X having degree zero is denoted as Div0(C).

We denote the set of rational functions on C by k(C)∗. For f ∈ k(C)∗, the associated

divisor in Div0(C) is (f) =
∑

P∈C(k) ordP (f) · P called the principal divisor of f , where

ordP (f) denotes the order of vanishing of f at P . If P is a zero of f then ordP (f) ≥ 0,

ordP (f) < 0 if P is a pole of f . Therefore, we have the following injection

k(C)∗ ↪→ Div0(C)

and the quotient Div0(X)/k(C)∗ is termed the Jacobian variety or the Picard group of C.

We denote it as J(C) here. It is an algebraic group variety of dimension g, in particular,

we can define a group structure on the g-fold product of C so that Cg ∼= J(C) (see [8, Ch.

5]).

Definition 2.2 (Differential). Let X be a smooth affine curve defined over a field k, with

a coordinate ring R. Then for f ∈ R we call df the differential 1-form associated with f .

The set of all symbols df, f ∈ R modulo the relations d(fg)− fdg − gdf, f, g ∈ R defines

an R-module called the Kähler differential, which is denoted as ΩR/k.

More generally, we define the differential to be the map d : R → ΩR/k where f 7→ df

∀f ∈ R. We can define an element in ΩR/k called the canonical form ω such that for all

other differential form η, Div(η) = Div(ω) + f . For example, consider the affine elliptic

curve E : Y 2 = P (X) defined over a field k, where P (X) ∈ k[X] is a polynomial of

degree three with three distinct roots; therefore we have R(X), S(X) ∈ k[X] so that we

have (R(X)P (X), S(X)P ′(X)) = 1. Clearly, we have 2Y dY = (3X2 − 1)dX in ΩR/k

where R is the k-algebra represents the coordinate ring of E. In this scenario, one can

show that every differential can be written in a canonical form as A + BY (ω) where

ω = R(X)Y dX + 2S(X)Y dY . Thus, ω is the canonical differential form associated with

E.



Chapter 2. Algebraic curves and complexity theory 6

For ω, we have an associated divisor defined as (ω) =
∑

P∈C(k) ordP (f) ·P . By the notion

of canonical form introduced in the last paragraph, every differential form has the same

associated divisor called the canonical divisor. A canonical divisor is represented as K, its

a known fact that deg(K) = 2g − 2, where g is the genus of X.

2.2 Homology theory of curves

For any complex projective curve, there is a standard way to view it as a two-dimensional

real manifold. The genus of a complex projective curve is the number of holes in the real

manifold obtained from it. It forms a topological invariant of the curve. Its homology

and cohomology groups are just different ways to measure its genus. This also helps to

generalize the concept of genus to a projective curve over any field (for example, of nonzero

characteristic). Simply speaking, we measure the holes in a two-dimensional real manifold

by finding loops over it that do not enclose a region that lies on the manifold. For example,

consider a hollow torus; clearly there are two loops which do not enclose a region falling

on the torus. In other words, these are loops that are not contractable to a point.

In the following we will describe what is called the singular homology. In order to do this,

we need to introduce a few terminologies. We call ∆ ⊂ Rn the standard n-simplex, the

convex hull of the points e0, . . . , en; where ei ∈ Rn so that ei(j) = 0, ∀j ̸= i and ei(i) = 1.

Definition 2.3 (Chains, cycles and boundaries). Let X be a topological space. A n-

simplex is a continuous map s : ∆n 7→ M. Let si|i∈I be a set of n-simplices, where I is the

indexing set. Then the group of n-chains Cn(X), is defined as a formal linear combination∑
nisi, ni ∈ Z.

Denote s(∆) = [p0, . . . , pn], where pi = s(ei). A n-boundary on the simplex [p0, . . . , pn] de-

noted as ∂n[p0, . . . , pn] is defined as the alternating sum
∑n

i=0(−1)i[p0, . . . pi−1, pi−1 . . . , pn].

A n-cycle is a n-chain having boundary zero.

From the above, we find that the boundary of an n-chain is a n−1-chain, which we denote

as Cn(X)
∂n−→ Cn−1(X). It is clear from the above definition that ∂n ◦ ∂n−1 is always zero.

The following infinite sequence of maps is called a chain complex, denoted as C.

C : . . . ∂n+2−−−→ Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−→ Cn−1(X)
∂n−1−−−→ . . . .
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In this scenario, the nth singular homology group is defined as

Hn(X,C) =
Ker(∂n)
Im(∂n+1)

.

This gives us a C-vector space of dimension equal to the number of n-dimensional holes in

X.

Remark 2.4. Note that ∂n ◦ ∂n−1 = 0 implies Im(∂n) ⊆ Ker(∂n−1) in C. The equality

happens when Hn(X,C) = 0, then the complex C has Im(∂n) = Ker(∂n−1), which is called

as C being exact at Cn. Thus the homology groups measure the failure of a chain complex

to be an exact sequence.

For our purpose of this thesis, we will stick to the case of a complex projective algebraic

curve of genus g. This means that the corresponding two-dimensional real manifold has g

one-dimensional holes. In case of complex projective curves; it is easy to see that Cn(X)

for n ≥ 3 is zero; therefore, we will only be concerned with 0, 1, 2-cycles. We will be mostly

interested in studying the first homology group H1(X) for the modular curve X0(N) (more

on this in the next chapter), in general of any genus g curve. The following theorem gives

the structure of H1(X) for an algebraic curve X of genus g.

Theorem 2.5. Consider X to be an algebraic curve of genus g defined over a field k. Then

H1(X) ∼= Z⊕2g.

Suppose X is an elliptic curve over C, we can view it as a quotient C/L, for some Z-lattice

L. That it is of genus one can be seen by identifying the opposite ends of the fundamental

parallelogram and forming a hollow torus which has one hole. It can be shown that the

generators of the group H1(X,Z) are generated by cycles that cannot be contracted to a

point. Clearly, there are two cycles for an elliptic curve and 2g for a genus g curve. The

formal computation involves triangulating a surface and explicitly computing the groups

C0(X), C1(X) and C2(X) which we will not do here. It can be referred from any standard

text on algebraic topology.

2.3 Cohomology theory of curves

In the last section, we have seen what a singular homology group of a curve is. There is a

similar notion of a singular cohomology theory; it comes up when we talk about the dual of

a chain complex. Suppose C is as stated in the last section. Then we can define its dual C′,
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called a co-chain complex, which is obtained by replacing Ci by C ′
i = Hom(Ci,R). It is clear

that if we have a map Ci → Ci−1 then there is an opposite map Hom(Ci−1,R)→ Hom(Ci,R).
Therefore, we have a cochain as follows.

C ′ : . . .
δn+1←−−− C ′

n+1(X)
δn←− C ′

n(X)
δn−1←−−− C ′

n−1(X)
δn−2←−−− . . . ;

Here, δi is called the co-boundary map. The nth singular cohomology group Hn(X) is also

defined similarly.

Hn
sing(X) =

Ker(δn)
Im(δn−1)

;

As in the case of singular homology Hn(X) = 0 for n ≥ 2d+ 1.

Next we shall consider two important classes of cohomology theories called De-Rham coho-

mology and étale cohomology which was founded in the work of De-Rham and Grothendieck

[9]. Both of these theories has proven to be important for the computation of zeta functions

of varieties.

We will first describe the De-Rham cohomology. Let X be a smooth projective curve

defined over a finite field Fq of characteristic p. Then, the ith cochain consists of the formal

sums of the ith differential forms ω =
∑

I ωIdx
I , where I is the multi-index xi1 , . . . , xim

and dxI = dxi1
∧
. . .
∧
dxim . Here

∧
is the wedge product that satisfies the property

dω
∧

dω = 0, dωi
∧
dωj + dωj

∧
dωi = 0. We have dω =

∑
I

∑
i1∈I

∂ωI
∂xi1

dxi1
∧
dxI , thus dω

is a k + 1 form if not zero. We call a k form ω closed if dω = 0 and exact if ω = dω1 for

some k − 1 for ω1. We have d2ω = 0 applying the properties of the wedge product. Thus,

we have a cochain complex of differential k-forms as follows.

. . .
δn+1←−−− Ωn+1(X)

δn←− Ωn(X)
δn−1←−−− Ωn−1(X)

δn−2←−−− . . . ;

where Ωn consists of all the differential n-forms and δi are the differential maps with

δi ◦ δi+1 = 0. The nth De-Rham cohomology thus measures the closed n-forms that fails

to be exact.

The De-Rham theorem shows that there is an isomorphism Hn
sing(X) ∼= Hn

dr(X). This

goes by constructing an integration pairing between the nth singular homology Hn(X,C)
and Hn

dr(X), which is non-degenerate. In particular, for a homology class of a cycle [c] ∈
Hn(X,C) and the De-Rham cohomology class of a differential form ω ∈ Hn

dr(X), the
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pairing is as ⟨[c], ω⟩ =
∫
[c] ω. Since Hn

dr(X) is finite-dimensional, we have the isomorphism

and therefore, its dimension is also 2g.

The De Rham cohomology is an example of p-adic cohomology which means that the field of

definition of the cohomology group is a finite field of characteristic p. For smooth projective

varieties defined over a field k, Grothendieck has developed the notion of étale cohomology

which has its field of coefficients of characteristic ℓ ̸= p. The definition of étale cohomology

for smooth varieties of arbitrary dimension requires a lot of new machineries which we will

not need for this thesis. It basically arose from the notion of sheaf cohomology theories

introduced by Serre, interested reader may refer to [10].

However, if we consider a X to be a smooth projective curve, the definition becomes

much simpler. Recall that J(X) is the Jacobian variety of X, which is of dimension g.

Let J(X)[ℓi] denote the subgroup of ℓi-torsion points in J(X). It is well known that

J(X)[ℓ] ∼= (Z/ℓZ)2g. Then we have the following chain of maps

. . .
[ℓ]−→ J(X)[ℓi+1]

[ℓ]−→ J(X)[ℓi]
[ℓ]−→ . . .

[ℓ]−→ J(X)[ℓ].

If we take the projective limit of the above map, then we get a Zℓ-module called the ℓ-adic

Tate module isomorphic to Z2g
ℓ . Then we have H1

ét(X,Qℓ) is isomorphic to the dual of the

ℓ-adic Tate module base changed to Qℓ [10, Ch. 5], so any computations that must be

performed in H1
ét(X,Qℓ) can be carried out on the Tate module itself. This will be crucial

for all the ℓ-adic point count algorithms that we will discuss.

2.4 Complexity theory basics

Here, we review some of the basic complexity classes in the computational complexity

literature. For our computation purpose of the zeta function of curves, we will mainly

focus on the complexity class AM∩coAM and the class BQP.

AM is a computational complexity class which is considered ‘similar’ in the complexity

hierarchy to NP. The problems of this class can be verified by an Arthur-Merlin protocol

consisting of two parties called the prover (Merlin) and verifier (Arthur). Merlin tries to

convince Arthur about a decision problem, by sending some ‘data’ (certificate) which is

verified by Arthur in probabilistic polynomial time. After a fixed number of steps, Arthur

either accepts or rejects. If we restrict the number of interactions between the two parties

to just two (e.g., a challenge followed by a response), this is a randomised version of the
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classic NP protocol. A problem in the class AM ∩ coAM is considered unlikely to be NP-

hard, as otherwise, the complexity class called Polynomial Hierarchy (PH) will collapse

(see [11, 9.3] for details).

An example of a problem in AM ∩ coAM is the popular Goldwasser-Sipser protocol to

compute set size lower bounds, which we closely follow to develop our protocol for curves

[11]. Let S ⊂ {0, 1}k and let N ∈ Z>0 be the claimed lowerbound of S which must be

tested. Also, let us assume that the membership of the elements of {0, 1}k in S can be

tested. Merlin’s goal is to convince Arthur that |S| ≥ N , and Arthur should reject if

|S| ≤ N/2. Here, hash functions prove to be very useful, which are functions that map

the domain to the range avoiding collisions with high probability. The trick is that Arthur

sends Merlin a tuple consisting of a random hash function h : {0, 1}k → {0, 1}L and a

random element y ∈ {0, 1}L. In this scenario, if |S| ≥ N then with probability greater

than 2/3 there exist x ∈ S such that h(x) = y. Otherwise, the probability of existence of

x ∈ S such that h(x) = y is less than 1/3. Therefore, the challenge for Merlin is to find an

x ∈ S, such that h(x) = y. We choose 2L−2 ≤ N ≤ 2L−1 to meet the probabilities.

We next come to the complexity class BQP. Suppose that we are given a finite solvable

group whose order we have to compute. Classically, this is a very hard question; in fact,

the problem of integer factoring reduces to it, so its at least as hard as factoring integers

(in quantum, this actually helps solve integer factoring [12]). But by using quantum, we

get a polynomial-time algorithm given that one has access to the generators of the group.

The details of the steps are not needed for this thesis; interested readers are referred to

[13]. We just need the fact that one needs to find a generating set of a finite solvable group

to compute its order.



Chapter 3

Computing zeta functions of

algebraic curves

In the following, we first develop the notion of zeta functions for algebraic curves or,

in general, algebraic varieties over finite fields (Section 3.1). Then we state the Weil

conjectures (Section 3.2 and give a basic outline of the proof. Finally, we give an AM ∩
coAM protocol to determine the zeta function for an input algebraic curve defined over

finite fields (Section 3.3). Further, we describe some applications of point counting of

curves to higher dimensions, namely surfaces and threefolds (Section 3.4).

3.1 Zeta functions of varieties

Let X be a smooth projective variety over the finite field Fq. The Hasse-Weil local zeta

function of X is defined as follows.

Z(X/Fq, T ) := exp

( ∞∑
i=1

#X(Fqi)
T i

i

)
∈ Z[[T ]]. (3.1.1)

To understand the motivation of this definition, we need to reinterpret a projective variety

as a projective scheme. From there we will see that the above definition of a zeta function

becomes equivalent to a more familiar definition of a zeta function like the Riemann zeta

function or the Dedekind zeta function.

11
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We first recall the Riemann and the Dedekind zeta functions. The standard number-

theoretic zeta function ζ(s), called the Riemann zeta function, is a meromorphic function

from C to itself, is defined as follows,

ζ(s) =
∞∑
n=1

1

ns
;

where s is a complex number. It can also be expanded as a Euler product as follows.

ζ(s) =
∏
p∈Z

(
1

1− p−s

)
.

where p is a prime number. This satisfies a functional equation and can be analytically

continued to C/{1}, as it has a simple pole at s = 1. A generalization of the Riemann

zeta function is the Dirichlet L-function, which we will see later. The famous Riemann

hypothesis conjectures that all the zeros of the zeta function with the imaginary part

non-zero, lie on the line Re(s) = 1/2.

We can even generalize the Riemann zeta function to any number field, which gives another

notion of a zeta function, by restating the definition as follows. For a commutative ring

R, the set of its prime ideals (including the 0-ideal) is denoted as Spec(R). Let K be a

number field and OK be its ring of integers. For a prime ideal in P ∈ OK over a prime

p ∈ Z, OK/P is a finite extension of Fp. Then we have

ζ(s) =
∏

P∈OK

(
1

1−N(P)−s

)
;

where P is a prime ideal and N is the norm function, N : Spec(OK)→ Z that gives the size

of the residue field of a prime ideal in Spec(OK). Similarly to the standard zeta function,

it satisfies a functional equation and has a Riemann hypothesis that is unsolved. It can be

seen that for K = Q this is the standard Riemann zeta function.

Now we come to the setting of a more general object called a scheme (see [14] for the

definition). We will not need schemes any further, just that if we consider only smooth

projective varieties, it will not be clear why definition 3.1.1 generalizes the Riemann zeta

function.

Let X = Spec(R), for a commutative ring R. For a point p ∈ X, let R(p) denote the

localization of R at p and κ(p) = R(p)/M(p), where Mp is the unique maximal ideal of

X(p). Consider the following Euler product;
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Z(X, s) =
∏
p∈R

(
1

1− |κ(p)|−s

)
.

Note that X = Spec(Z) gives us the Riemann zeta function and X = Spec(OK) gives the

Dedekind zeta function for K. We will show how the above definition is equivalent to that

we saw in 3.1.1.

Let X be a smooth projective variety over a finite field Fq, X = X ⊗Fq Fq and let R be the

coordinate ring of X. Let G = Gal(Fq/Fq), for a point x ∈ X denote xG denote the orbit

of x under the action of G. We have a one-to-one correspondence between the orbits xG

of X and the elements of Spec(R). These orbits are called closed points of X over Fq. Let

X0 denote the set of all closed points over Fq. Then we have

Z(X, s) =
∏
p∈R

(
1

1− |κ(p)|−s

)
=
∏
x∈X0

(
1

1− |κ(x)|−s

)
. (3.1.2)

where, κ(x) is the finite Galois extension of Fq that contains all the points of xG. For a

closed point x ∈ X, deg(x) = [κ(x) : Fq]. The following lemma gives the connection of

3.1.1 and 3.1.2.

Lemma 3.1.

#X(Fqm) =
∑

x∈X0,deg(x)|m

deg(x).

Taking the logarithm on both sides of 3.1.2 we have

log(Z(X, s)) =
∑
x∈X0

log

(
1

1− |κ(x)|−s

)
=
∑
x∈X0

∞∑
n=1

|κ(x)|−ns

n
=

∞∑
n=1

∑
x∈X0

q−deg(x)ns

n

=
∞∑

m=1

∑
deg(x)|m

q−msdeg(x)
m

=
∞∑

m=1

 ∑
deg(x)|m

deg(x)

 q−ms

m

=
∞∑

m=1

(
#X(Fqm)

q−ms

m

)

Now we substitute T = q−s and exponentiate both sides to obtain the definition 3.1.1.
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3.2 The Weil conjectures and the cohomological interpreta-

tion of zeta functions

In 1949 André Weil stated some conjectures concerning the zeta functions of algebraic vari-

eties over finite fields which were motivated by his study of number of solutions of equations

over finite fields [15]. These conjectures suggested some strong connections between the

study of the number of solutions of polynomial equations over finite fields and the topol-

ogy of complex algebraic varieties. In particular, he conjectured that there should exist a

cohomology theory, analogous to the singular cohomology of complex algebraic varieties,

which will prove his conjectures. In the following, we first state the conjectures without

proof (the proof can be found in [10]) and then we will see why the cohomology groups are

useful for studying point counts.

Theorem 3.2 (Weil Conjectures). Let X be a smooth projective variety defined over Fq of

characteristic p and let Z(X/Fq, T ) be its zeta function. Then the following are true.

• (Rationality) The zeta function Z(X/Fq, T ) ∈ Z[[T ]] is a rational function in Q(T ).

• (Functional equation) Z(X/Fq,
1

qnT ) = q
nE
2 TEZ(X/Fq, T ); E being the Euler factor

(see the last part of the theorem).

• (Riemann Hypothesis) Z(X/Fq, T ) =
P1(T )...P2n−1T
P0(T )...P2nT

; where P0(T ) = 1− T , P2n(T ) =

1 − qnT and Pi(T ) 1 ≤ i ≤ 2n − 1; are characteristic polynomials for the action of

the Frobenius operator on H i
ét(X,Qℓ); Pi(T ) =

∏
j∈Bi

(1− αijT ), where |αij | = qi/2.

• (Betti numbers) Let Bi = dim(H i
ét(X,Qℓ)), ℓ ̸= p; then we have E =

∑
i(−1)iBi;

where E is the Euler factor.

The following examples demonstrate the fact that the zeta function is a rational func-

tion. The second example serves as a demonstration of the Riemann hypothesis of Weil

conjectures. The first proof of the rationality of zeta functions is due to Dwork [16].

Example 3.1. Let X = Pn
Fq

be the projective space of dimension n over Fq. Then we have

Z(Pn/Fq, T ) = exp

( ∞∑
i=1

(qT )i + T i

i

)
.

Expanding the exponent as a log series we have,

Z(Pn/Fq, T ) =
1

(1− T )(1− qT )
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Recall that for smooth projective curves of genus g, we have dim(H i
ét(X,Qℓ)) = 2g and that

H i
ét(X,Qℓ) is isomorphic to the ℓ-adic Tate module of the Jacobian of X. Grothendieck

first gave the construction for ℓ-adic étale cohomology which gave the proof of the first and

second parts of Theorem 3.2. Later Grothendieck and Berthlot gave another proof using

crystalline cohomology which is a p-adic cohomology.

Example 3.2. Let X be a smooth projective curve over Fq of genus g. Then Z(C/Fq, T ) ∈
Q(T ) takes the following form.

Z(C/Fq, T ) =
P (T )

(1− T )(1− qT )
,

where P (T ) is a polynomial of degree 2g, which is the characteristic polynomial of the

action of the Frobenius on the ℓ-adic Tate module of J(C) (ℓ ̸= p), the Jacobian variety of

C.

The proof of the Weil conjectures was first carried out by Andre Weil for curves and for

Abelian varieties using the Riemann-Roch theorem. He then conjectured the existence

of some cohomology theories called Weil cohomology theories, in order to prove the Weil

conjectures for general smooth varieties, which satisfies some common properties. Popular

examples of such cohomology theories include the De-Rham cohomology, étale cohomology,

singular cohomology, etc. One of the common properties is Lefschetz’s fixed point formula

for a smooth projective variety X/Fq of dimension d, which is actually motivated from

topology. There is an analog formula for counting the fixed points of continuous maps of

topological spaces involving the action of Frobenius on the singular cohomology group of

a topological space.

#X(Fqr) =

2d∑
i=0

(−1)iTr((Frobq)
r;H i

ét(X,Qℓ))

Substituting this into the definition of Z(X/Fq, T ) we get the following.

Z(X/Fq, T ) =
2d∏
i=0

exp

 ∞∑
j=1

Tr((Frobq)
r;H i

ét(X,Qℓ))

 T r

r

−1i

Then the Riemann hypothesis can be obtained form the following observation.



Chapter 3. Computing zeta functions of algebraic curves 16

exp

 ∞∑
j=1

Tr((Frobq)
r;H i

ét(X,Qℓ))

 T r

r

 = det((1− FrobqT );H
i
ét(X,Qℓ))

−1

In general, it may be possible to come up with proofs of Weil conjectures using any Weil

cohomology theory. For example, Kedlaya gave another p-adic proof of the Weil conjectures

using Berthlot’s rigid cohomology [17].

In the following section, we will see how these cohomology theories are useful in coming

up with algorithms for counting points of varieties. As stated in the previous paragarph,

an abundance of p-adic cohomology theories has been discovered compared to ℓ-adic co-

homologies. Therefore, in practise most point counting algorithms are p-adic than ℓ-adic,

more on this in the next section.

3.3 Complexity of point counting on curves over finite fields

Let E : y2 = x3 + Ax + B be an elliptic curve where A,B lies in the finite field of

characteristic p, Fq. Then [18] gave an algorithm having a run-time polynomial in log(p),

to explicitly compute the ℓ-adic Tate module of E. This gave the first computation of the

zeta function of a variety that was also polynomial-time. Since the details of the algorithm

form an important part of the literature on computing zeta functions, we give some details

of the algorithm here.

Let E/Fq be an elliptic curve as above. Then we have explicit polynomials that are satisfied

by the ℓ-torsion points of E called the ℓth division polynomial. The idea is to use these

polynomials to work on the formal roots to compute the Frobenius action on it. This has

been carried out in [18, Section 3]. However, as we will see, this is a very special scenario

for constant genus curves, for varying genus we get into trouble. Recall that Z(E/Fq, T )

is defined as follows,

Z(E/Fq, T ) =
1− aqT + T 2

(1− T )(1− qT )
;

where aq ∈ Z. So, if we can compute aq modulo ℓ for many ℓ, by Chinese remaindering,

we will obtain aq. The number of ℓ needed is specified by the Riemann hypothesis for

E, namely |aq| ≤
√
q. Let ℓ = O(log q), we just need to make sure that

∏
i∈[r] ℓi > 2

√
q,

ℓi ̸= p; Therefore, we need r > O( log(q)
log log q ) many primes in order to obtain aq absolutely in
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poly(log q) time. This also forms the backbone of ℓ-adic algorithms to compute the zeta

function. We will see the application of this in the next chapter.

The situation becomes complicated if g is also allowed to vary along with the prime char-

acteristic of the field. In order to apply Schoof’s trick, one has to go to an extension over

the base field where all the ℓ-torsions are present. Let X/Q be a smooth projective curve

of genus g and let J(X) denote its Jacobian variety. Recall that the ℓ-torsion subgroup

of J(X) for a prime ℓ be denoted as J(X)[ℓ] and is isomorphic to (Z/ℓZ)2g. For a prime

p ̸= ℓ, consider J(X)Fp the reduction of J(X) at p, then there is an induced action of

Frobenius at p on J(X)Fp [ℓ]. This creates a representation of Frobenius at p on the ℓ-

torsion points, and we have a 2g × 2g matrix over Z/ℓZ. Let Fq be an extension of Fp,

so that the action of Gal(Fq/Fp) is trivial on J(X)Fp [ℓ]. The size of Gal(Fq/Fp) can be

at most the size of GL2g(Fℓ) and therefore [Fq : Fp]. Since |GL2g(Fℓ)| is exponential, the

degree of extension may grow to be exponential. The following lemma proves that for an

elliptic curve, [Fq : Fp] is always a polynomial in g. We will see some applications of this

in the next chapter, where we describe modular curve computations.

Lemma 3.3. Let E/Fq be an elliptic curve. Then the maximum extension [F′
q : Fq] such

that Gal(F′
q/Fq) acts trivially on E[ℓ] is (ℓ2 − 1)(ℓ2 − ℓ).

Proof. We have E[ℓ] ∼= Z/ℓZ× Z/ℓZ. The size of GL2(Fℓ) is (ℓ2 − 1)(ℓ2 − ℓ).

We have an algorithm in this scenario due to Pila ([19]) that has a run-time polynomial

in log q but exponential in the genus. In general, we have a trade-off between the genus

and the prime characteristic, which we fix in order to obtain polynomial-time algorithms.

Like in Pila’s algorithm, if the genus is allowed to stay fixed, we will get a poly(log q)-time

algorithm, the same as that of Schoof. There is a wide range of p-adic cohomology theory,

Berthlot rigid cohomology, Monsky washnitzer cohomology, which has yielded efficient p-

adic algorithms in practice ([20], [21]). Kedlaya [20] gave an algorithm to compute the

zeta functions of hyperelliptic curves of arbitrary genus g defined over finite fields of small

characteristics using the Monsky Washnitzer cohomology. The only drawback in p-adic

algorithms is it runs exponentially in the size of the bit representation of p. In general, the

ℓ-adic algorithms are polynomial in the field characteristic and exponetial in genus, where

as p-adic algorithms are polynomial in the genus but exponential in the characteristic.

As a side note we should mention that not all algorithms of point counting came from a

cohomology theory. There is a quite recent example [22] where the authors used a Dwork’s

trace formula to obtain the zeta function. Another example is a quantum polynomial
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time algorithm and is due to Kedlaya ([7]) which is polynomial in both genus and the

characteristic. There is also an average polynomial time algorithm to compute the zeta

functions due to David Harvey [23].

We now come to our contribution. We assume that the input curve X/Fq is presented as

a system of polynomial equations over Fq. The curve presented in this form is non-planar

so we need to change it to a planer model first. It is well known that every curve X ⊂ Pn
Fq

is bi-rationally equivalent to a planer curve X ′ ⊂ P2 with singularities at most nodal. This

means that the singular points of the curve X ′ ⊂ P2
Fq

have a vanishing multiplicity of two

in X ′, and the tangents are distinct. We can compute this X ′ via [24, Lemma 2.2]. This

planar model is now used by our AM ∩ coAM protocol to verify #X(Fqd) for any given

extension d of Fq.

Before we proceed to our protocol, we need some estimates of the point count and a

structure theorem of the Jacobian variety, which we state below. For a proof, refer [25, pg

70-71] and also [26, pg 206].

Proposition 3.4 (Hasse-Weil bound). Let X/Fq be a smooth projective curve over Fq of

genus g. Then its Jacobian J(X) satisfies

(
√
q − 1)2g ≤ J(X)(Fq) ≤

√
q + 1)2g

For the proof of the following lemma, see [24, lemma 2.4].

Lemma 3.5. Let X be as in the above proposition. Let D ∈ J(X) be a divisor. Then

∃d ∈ [g] and an effective divisor E of degree D such that D ∼= E + d∞, where ∞ is a fixed

point decided by injection X ↪→ J(X).

Remark 3.6. Let D ∈ J(X)(Fq) and D =
∑j≤g

i=1 Pi − j∞, then the coordinates of Pi can

be in at most g degree extension over Fq. This is easy to see since D is fixed by the action

of Gal(Fq/Fq) so Pi is permuted by the action.

Refer to [24, Algorithm 2] for the full details of our protocol. Here we will just provide the

sketch. Let X be a smooth projective curve over Fq, and N be a number in the Hasse-Weil

range of Theorem 3.4, which Arthur will send to Merlin. In response, Merlin will send some

certificate by which Arthur has to verify whether N = X(Fq). But Arthur also has to catch

on Merlin’s response if it is fraudulent. Merlin would always try to convince Arthur that

N is the actual count.
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To avoid this scenario, we need to do two things. Firstly, for a given genus g of X, we

need to choose a q so that the Hasse-Weil gap (3.4) is small enough. This is done to ensure

that 2N,N/2 both falls outside the gap (see [24, pg 9]). Secondly, we need to use a tool

called the Hash function H : {0, 1}2g log q 7→ {0, 1}L+1 where 2L−1 ≤ N ≤ 2L, which Arthur

chooses randomly so that with high probability we can make sure Arthur catches Merlin’s

fraudulence ([24, Lemma 2.8]).

Therefore, Arthur chooses a random H and a random b from the range of H and sends this

information to Merlin. Merlin then generates an x so that H(x) = y, by sending a basis of

J(X)(Fq) along with their orders and a x presented expressed as a linear combination of

that basis. From Lemma 3.5 Merlin can provide a basis for the space J(X)(Fq). Now, if

N = J(X)(Fq), Merlin will provide the correct set of basis elements and Arthur can take

the product of the order of the basis element to confirm the count. If not, then Merlin

is fraudulent and Merlin only can send a set of elements that are dependent since the

independence scenario is already ruled out by our choice of the Hasse-Weil bound. Since

they are dependent, the space spanned by the basis is actually less than #J(X)(Fq)/2

and with high probability Arthur catches Merlin. The rest follows from [24, Lemma 2.8,

2.9].

Remark 3.7. Note the difference from the Goldwasser Sipser protocol we gave in Section

2.4. Here, the Hasse-Weil bound actually allows us to compute the exact size instead of

just a lower bound.

3.4 Applications towards higher dimension and torsion counts

Let X be a smooth projective geometrically irreducible variety of dimension n > 1, for

example, a surface or a cubic threefold. Let H ⊂ Pn be a hyperplane cutting X transversely.

This means that for all points x ∈ X ∩H with X, H does not contain the tangent space

at x. In this scenario, Y = H ∩X is a smooth irreducible subvariety of co-dimension one

in X and is called a hyperplane section of X.

Theorem 3.8 (Lefschetz Hyperplane theorem). Let X be an n-dim smooth projective

variety over Fq. Then if U = X/Y is smooth, then we have for n > 2

H1
ét(X,Qℓ) ∼= H1

ét(Y,Qℓ)

and

H1
ét(X,Qℓ) ↪→ H1

ét(Y,Qℓ)
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for n = 2.

So in order to compute the Frobenius action on the first étale group for a smooth projective

variety of dimension n, it suffices to compute the first étale cohomology of a surface obtained

by taking the hyperplane section repeatedly to come down to dimension 2, which we can

do by the effective Bertini’s theorem [24, Proposition 4.2]. For n = 2 the situation is more

delicate and is done by using Hard Lefschetz and Deligne’s pgcd theorem ([24, Theorem

3.3]) to reduce it to the curve case. This has been carried out by Madhavan Venkatesh and

is covered in the second part of our paper.

Higher étale cohomology groups are even more difficult to handle. For a surface, this can

be done (see [27]). For a general threefold, this is still open. However, we can do better

for Abelian varieties of arbitrary dimension because of the following theorem (see [28]).

Theorem 3.9. Let A be an abelian variety as in the last theorem. Then

H i
ét(A,Qℓ) =

n=i∧
n=1

H1
ét(A,Qℓ)

.

The following corollary is immediate since we can compute Pi(T ), the characteristic poly-

nomial of the action of Frobenius on the ith étale cohomology group (see the Riemann

hypothesis part of the Weil conjectures 3.2), we just have to compute P1(T ).

Corollary 3.10. Computing the zeta function of an abelian variety A over Fq is in AM ∩
coAM.

We now explore another application of point counting on curves over finite fields. We

can give an effective bound on the number of torsion points of an Abelian variety over

an extension of a number field. Let X/Q be a smooth curve and J(X)) be its Jacobian

variety. Then the following is due to Katz (see [29, Appendix]).

Theorem 3.11. Let K be a number field and A be an abelian variety. Let p ∈ OK be an

unramified prime ideal. Then

A(K)tors ↪→ A(Fp).

However, this does not give us an algorithm to count the torsion points. The first point

that comes to mind is whether we can take a lot of primes so that we can compute the

torsion size by taking gcd. In [29], Katz has shown a counterexample in which we cannot
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get to the torsion point count by taking gcd. But this can help us to get better bounds on

the torsion size over number fields. Under the assumption that the rank of the Jacobian

is zero (rank in the sense of an abelian group), the above theorem gives us some results.

To understand this, the reader needs to be familiar with the Chebotarev density theorem

(see, for example, [30]). Let C/Q be a curve and J(C) be its Jacobian. Since we assume

the rank of J(C)(Q) to be zero, under reduction by a good prime p, #J(X)(Q) divides

#J(X)(Fp). We have a very high probability that J(X)(Fp) contains a point that lies on a

number field of degree three or more. This is because if this is not the case, then there are

some polynomials that do not have Q roots but Fp roots. This probability is very low by

Chebotarev density, and therefore one would expect to obtain better bounds by repetition

with many random primes and taking gcd to remove the errors coming from quadratic

extensions over Q.



Chapter 4

Zeta functions of modular curves

In this chapter, we discuss point counting for a special class of curves called modular curves.

A modular curve is not always available in the form of a defining equation; instead, there

is a different parameter called the level of the modular curve, which we consider as input.

We will show how to compute its equation and as a consequence we will be able to show

that computing the characteristic polynomial of the action of Hecke operators on the space

of cusp forms is in AM ∩ coAM.

The first algorithm to compute the zeta function of modular curves over finite field was

due to Manin [31]. The key idea in [31] was to compute the action of Hecke operator Tp on

the space of modular symbols and use Eichler-Shimura theorem to get to zeta functions.

However, the algorithm was exponential in the bit representation of p. Here we provide

a survey of a work of Bas Edixhoven [32], showing how to compute Ramanujan tau at

a prime p in poly(log p). His results later gave a polynomial-time algorithm to compute

the zeta function of modular curves, assuming the generalized Riemann hypothesis (GRH)

over number fields. The result can be referred from [33] and [34] and also [33].

In the following, we will introduce modular curves, modular forms, Hecke operators and

explore the connection between modular curves and modular forms. We will show how

modular forms allow us to compute the defining equation for modular curves.

4.1 Modular curves

Let H ⊂ C denote the complex upper half-plane and let Γ0(N) denote the congruence

subgroup of level N which we define as follows.

22
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Γ0(N) = {γ ∈ SL2(Z) | γ ≡

[
∗ ∗
0 ∗

]
(mod N)}

It is trivial to check that the above forms a group, it acts on H as follows.

γ : z ∈ H 7→ az + b

cz + d
∈ H

The action called fractional linear transformation defines an automorphism on H and these

actions form the group of all automorphisms of H. We can also see the group Γ0(N), as

the group of all symmetries of H. H quotiented by the action of Γ0(N), denoted as

Y0(N) = H/Γ0(N) is known as the fundamental domain of the action of γ0(N) on H. It

turns out that Y0(N) is not compact as a topological space and one has to include finitely

many points called cusps to compactify it. It follows that this construction makes it a

compact Riemann surface. This is due to the Riemann existence theorem, which says that

every compact Riemann surface is a complex projective algebraic curve. We denote this

complex curve by X0(N). We denote the genus of X0(N) as g. It is well known that

g = O(N logN log logN) ([35]).

Modular curves X0(N) are moduli spaces parameterizing complex elliptic curves having

cyclic groups of order N . A pair of elliptic curves E,E′ over C are called cyclic N -isogenic,

if there exists a map ϕ : E 7→ E′ that has a kernel which is a cyclic subgroup of E of order

N . Thus, X0(N) can be seen as parameterizing pairs of complex ellitic curves E,E′ with

a cyclic N -isogeny. To see this, recall that E can be seen as a quotient of the complex

plane C by a complex lattice L = ⟨1, τ⟩. Let L′ be another lattice so that L ⊆ L′ and

ϕ : E = C/L 7→ C/L′ = E′, where the map ϕ from E to E′ is induced by the inclusion

L ⊆ L′. Let N = [L′ : L], then we have NL′ ∼= L′ and NL′ ⊆ L; therefore, we have the

following inclusion of lattice

NL′ ⊆ L ⊆ L′;

where the former inclusion induces the maps ϕ̂ E′ 7→ E the dual of ϕ induced by the later

inclusion.
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4.2 Modular forms

A modular form f(z) for Γ0(N), is a meromorphic function that remains bounded on H
and satisfies the following,

f(γz) = f

(
az + b

cz + d

)
= (cz + d)−kf(z),

where

γ =

[
a b

c d

]
∈ Γ0(N),

where k is a non-negative integer. Note that the modular forms are not invariant under the

action of Γ0(N) on H, instead the factor (cz + d)−k appears as an extra term in the RHS.

This extra term is called the automorphy factor associated to the form f and the integer k

is called the weight of f . The form f has a Fourier series expansion f(z) =
∑∞

i=−∞ an(f)q
n

where q = e2πiz, where an are zero for all n < 0, excluding finitely many. We obtain this

Fourier expansion by taking the Laurent series expansion of f on H and applying the map

z ∈ H 7→ e2πiz ∈ D, which maps H to the unit disc D centered at the origin of radius

one. The Fourier coefficients of a form are related as amn = aman, for all co-prime m,n

and apr = apr−1ap− pn−1apn−2 for p odd. Thus, a form gets uniquely specified by just the

prime indexed coefficients.

The space of all modular forms of weight k for Γ0(N) is a complex vector space and is

denoted Mk(Γ0(N)). The subspace of Mk(Γ0(N)) that vanishes on the cusps of X0(N) is

denoted Sk(Γ0(N)), known as the space of cusp forms of weight k.

Example 4.1. Important examples of modular forms are the Eisenstein series of weight

2k; k ≥ 2 which are of the following form.

G2k(τ) =
∑

(m,n)∈Z2/{0,0}

1

(m+ nτ)2k
.

These functions come up in the context of deriving an equation for complex elliptic curves.

Remark 4.1. Another important modular form that arises in connection with complex

elliptic curves is the discriminant modular form ∆(z). It is a modular form of level 1 and

weight 12 that has the following form.

∆(z) =

∞∑
n=1

τ(n)qn = q
∏
n>0

(1− qn)24; q = e2πiz.
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where τ(n) is defined as the Ramanujan tau function. Ramanujan conjectured that

|τ(p)| ≤ 2p11/2, p being a prime, which was proved by Deligne using the theory of étale co-

homology [36]. As we shall see, this connection between étale cohomology and Ramanujan

tau actually gives us an algorithm to compute τ(p) in poly(log p). This was the result of

[32]. In general, for the pth Fourier coefficent ap(f) of an eigen-cusp form f , its absolute

value is upper bounded by √p (see, for example, [37]).

Definition 4.2 (Hecke operator). The mth Hecke operators denoted as Tm, for m ≥ 1 are

linear operators on Mk(Γ0(N)) acting as follows. Let f =
∑∞

i=0 aiq
i ∈ M2(Γ0(N),C) and

let Tp(f) =
∑∞

i=0 biq
i, then we have

bn =
∑

d>0, d|(n,p)

dk−1anp/r2 (4.2.1)

The Z-algebra generated by all Tm of weight k and level N is denoted as T(N, k). In

addition, the Hecke operators of different levels are related as Tmn = TmTn for co-prime

m,n and Tpr = Tpr−1Tp − pn−1Tpn−2 for p odd. Therefore, it is clear that T is generated

by Tp for all prime p.

Definition 4.3 (Hecke polynomial). Let the genus of X0(N) be g. The characteristic

polynomial of the Hecke operator acting on S2(Γ0(N)) is called the Hecke polynomial. It

is a monic integral polynomial of degree g.

4.3 Modular forms and Galois representations

There is a fundamental way via which modular forms rise from elliptic curves over Q that

is worth mentioning. The Dirichlet L series is a series of the following form.

L(s) =
∞∑
n=1

a(n)

ns
;

where an ∈ C and s is a complex variable. Provided that the growth of an is polynomial in

n, the series locally uniformly converges in a region of the complex plane with Re(s) > C,

C being a constant. The most famous example of an L series is the Riemann zeta function

(substitute an≥1 = 1). For every modular form f =
∑∞

n=1 anq
n we have an associated

Dirichlet series as L(f, s) =
∑∞

n=1 ann
−s. Recall the Hasse-Weil zeta function of E reduced
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at a prime p; it has the following form

Lp(T )

(1− T )(1− pT )
;

where Lp(T ) = 1−apT +T 2; ap ∈ Z. Let us denote the set of all good primes of reduction

of E as S ⊂ Z (this means that E mod p is an elliptic curve for all p ∈ S). The L-function

of E is defined as

L(E, s) =
∏
p∈S

(1− app
−s + p1−2s)−1

∏
p/∈S

(1− app
−s)−1 =

∞∑
n=1

ann
−s;

where ap = {−1, 0,+1};∀p /∈ S, depending on the type of bad reduction. If we expand the

above as a Dirichlet series, the series corresponds to a Dirichlet series of a cusp eigenform

of weight 2. We state this in the following.

Theorem 4.4 (Modularity theorem). Let E be an elliptic curve over Q and p be a prime

of good reduction, that is, E stays non-singular when reduced at p. Then the sequence of

integers p+ 1−#E(Fp), for the primes of good reduction p, forms the pth coefficient of a

cusp form of weight 2.

This was proved by Wiles [3] to complete his proof of Fermat’s last theorem. The proof

of the above follows by showing that for level N integral modular forms, there exists an

elliptic curve with conductor N and a map J0(N) 7→ E. These elliptic curves occur as

quotients of the modular Jacobian J0(N). The connection between Hecke eigen values

and the point counts (as stated above in the theorem) can be obtained by constructing a

two-dimensional representation of the absolute Galois group Gal(Q/Q).

Recall from Schoof that we can compute the coefficients ap in time poly(log p). Therefore,

this gives us the following result.

Corollary 4.5. For an elliptic curve E/Fq, one can compute the pth coefficient of the

associated cuspform for an arbitrary p in run-time poly(log p).

The basis for the proof of modularity is due to the work of Eichler, Shimura and Deligne,

one can attach to every modular form of weight k, a two-dimensional representation of

the absolute Galois group. In this section, we will give a brief overview of the proof. The

following theorem due to Eichler and Shimura [38] states the relation between the Frobenius

map at p and the Hecke operator Tp in the endomorphism ring of J0(N).
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Theorem 4.6 (The Eichler-Shimura relation). Let Frobp and Tp denote the Frobenius

Hecke action at p respectively, on J0(N) mod p. Then they are related as follows

Tp = Verp + Frobp

where Verp·Frobp=Frobp·Verp = p.

Due to the Eichler-Shimura theorem stated below, one can associate to every cusp form of

weight two, a two-dimensional Galois representation as follows.

Theorem 4.7 (Two dimensional representation of modular forms). Let f be a cusp form

of weight 2 for Γ0(N). Then one can attach a two-dimensional representation as follows,

ρf : Gal(Q/Q) 7→ GL2(Qℓ)

such that for all p ∤ Nℓ, we have ρf unramified and the image of Frobenius at p has

characteristic polynomial, x2 − ap(f) + p.

Here we give a basic overview of the proof. We assume some knowledge of sheaf. Recall

that the first ℓ-adic étale cohomology group H1(X0(N),Qℓ) is a 2g dimensional vector

space over Qℓ, g being the genus of X0(N). This is isomorphic to the ℓ-adic Tate module

of the modular Jacobian J0(N) base changed to Qℓ. We can consider the action of the

absolute Galois group Gal(Q/Q) on the Tate module. Let Ω is defined as the sheaf of

holomorphic differentials generated by the differential 1-forms df for a modular form f and

H0(X0(N),Ω) is its global section (this is the zeroth De-Rham cohomology group described

in Section 2.3). Now we have a Hodge decomposition, H1
sing(X0(N),C) ∼= H0(X0(N),Ω)⊕

H0(X0(N),Ω) and S2(Γ0(N)) ∼= H0(X0(N),Ω) on the map f 7→ df . From the comparison

theorem ([14, Appendix C]) we have H1
sing(X0(N),C) ∼= H1

étale(X0(N),C). Therefore we

have the following,

H1
ét(X0(N),C) ∼= S2(Γ0(N)⊕ S2(Γ0(N) (4.3.1)

From the observation that the Fourier coefficients of the eigenforms of Tp of S2(Γ0(N))

are totally real, S2(Γ0(N) ∼= S2(Γ0(N). It also follows that Tp is diagonalizable. The

eigenvalues of Tp are totally real; hence, the associated matrices are hermitian. Due to the

existence of Petersson’s inner product, we have a spectral decomposition. Therefore, with

a cuspform f we can associate a two-dimensional subspace of H1
ét(X0(N),C). Now we can

use Theorem 4.6 to apply Frobp + Verp and the operator Tp on the LHS and the RHS of

4.3.1 respectively, to obtain the result. In case the cusp form f has integer coefficients, the
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two-dimensional subspace of H1
ét(X0(N),C) is precisely the ℓ-torsion subspace associated

with the elliptic curve corresponding to f which occurs as a quotient of J0(N).

We conclude this section by stating a connection between modular forms of weight k > 2

and weight 2 ([39]). We have seen how the modular forms of weight 2 are related to the

first étale cohomology of modular curves. When k > 2 then the analogues result can be

referred from [32, Theorem 2.5.2]. However, that does not give us efficient ways to compute

coefficients of these higher weight modular forms. We have a way around it, which is due

to the following.

Theorem 4.8. Let f be a cuspidal eigenform of weight ℓ ≥ k > 2 and level N , ℓ being a

prime. Then there is a weight 2 cuspform f ′ of level Nℓ such that f ∼= f ′ mod ℓ.

Recall that the weight of the two cuspforms was realized under the Hodge decomposition

of the first étale cohomology of X0(N). In the case of higher-weight modular forms of

level N , we can realize it under the Hodge decomposition of the first étale cohomology of

a separate variety called the Kuga sato variety ([32, Section 2.4]). For the proof of the

reduction, refer [32, Section 2.5] and also [40]. The following corollary follows from [32,

Thm 2.5.2].

Corollary 4.9. Let f ′ be a weight k eigen-cuspform, of level N , then we have a two-

dimensional representation of the absolute Galois group over Q similar to that of Theorem

4.7, the only difference being that the representation occurs in J0(Nℓ)[ℓ] and the charac-

teristic polynomial of the Frobenius action is x2 − apx+ pk−1.

Consider X0(N), the modular forms of level N and weight 1 are the rational functions of

X0(N). The higher-weight modular forms arise from a more geometric point of view. We

will see this in the next section.

4.4 Modular forms as line bundles

We will now introduce modular forms in a more geometric way. In particular, we will

state what a twisting sheaf is on a projective curve and what we mean by very ample line

bundles. We will see that modular forms can be realized as a twisted sheaf on the modular

curves. Using this machinery, we can use modular forms to find the equation of a modular

curve, as we will see in the next section. In the following, we will briefly introduce the

theory of sheaves.
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Let X/Fq be an algebraic curve and let OX denote its structure sheaf, the sheaf of regular

functions on X. A line bundle L is an invertible sheaf, which associates a OX(U) module

to all open sets U ⊆ X. We can associate a divisor to every line bundle and vice versa (see,

for example, [14, Chapter 2, Section 6]). The degree of a line bundle, denoted as deg(L),
is the degree of the associated divisor, denoted as L(D).

Definition 4.10 (Very ample line bundles). A line bundle L on an algebraic curve C over

an algebraically closed field is very ample if deg(L) ≥ 2g + 1, g being the genus of C.

A very ample line bundle L shares many important properties with regard to embeddings in

projective space. For example, consider a line bundle L such that dim(H0(X,L)) = n+1.

Suppose that ϕ : X → Pn is an embedding of X in the n-dim projective space using the

global sections of L, where a point P ∈ X is mapped to s1(P ) : s2(P ) : . . . : sn+1(P ) ∈ Pn.

The global sections of a very ample line bundle L give rise to a closed immersion of X to

Pn such that the pullback of the global sections of the sheaf O(1) (generated by x0, . . . , xn)

on Pn corresponds to the global sections of L on C.

Lemma 4.11. A modular form of weight 2k can be seen as the global section of the canon-

ical sheaf raised to power k. The divisor corresponding to it is the kth multiple of the

canonical divisor K.

For modular curves X0(N), let Ω denote the canonical bundle. The fact that the global

sections of Ω are isomorphic to the space S2(Γ0(N)) follows from [41, Lemma 2]. Recall

that K denotes the canonical divisor and since Ω is the corresponding line bundle, deg(Ω) =

2g − 2. Now we proceed to computing the defining equation.

4.5 The defining equation for modular curves

From the Riemann existence theorem we have X0(N) is a projective curve over C and,

therefore, has an equation defined over C. It can be shown that the defining equation of

X0(N) is actually over Z, there are several ways to show this. Shimura [38, Proposition 6.9]

showed that X0(N) admits the structure of projective algebraic curve over Q by showing

that the space S2(Γ0(N),C) is spanned by basis elements having Fourier coefficients in Q.

After that, due to Deligne and Rapoport [42] we have S2(Γ0(N),C) has a basis over Z.

Therefore, it has an equation over Z and hence, over Fp for all good primes p.

As a side note, we should remark that there is a standard polynomial called the mod-

ular polynomial that defines the equation of X0(N). Recall that a point τ ∈ X0(N)
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parametrizes a complex elliptic curve by the lattice ⟨1, τ⟩. Consider the j-invariant, a

modular form of level one and weight zero, which is defined via its Fourier expansion as

follows.

j(τ) =
1

q
+ 744 +

∞∑
i=1

anq
n;

where q = e2πinτ and an ∈ Z. Then we can show that j(τ) and j(Nτ) are algebraically

dependent, and the annihilating polynomial is known as the Nth modular polynomial.

However, we did not compute this in our algorithm. Instead, we use the result of Fujita,

St. Donat, and Mumford, which says that given a line bundle L with deg(L) ≥ 2g + 2,

the equation of the curve embedded in the projective space by the global sections of L
is generated by quadrics. If we have access to global sections of such line bundles, we

can use this to set up a system of linear equations to find the quadrics. We first give the

construction of such line bundles and then we will explain how to find the quadrics.

From [43, corollary 12.3.12] we have S2(Γ0(N),C) ∼= S2(Γ0(N),Z)⊗C. Therefore, we can

take the base change S2(Γ0(N),Z)⊗ Fp for p ∤ N and from [43, Theorem 12.3.2] it follows

that S2(Γ0(N),Z) ∼= S2(Γ0(N),Z)⊗ Fp.

From [44], it follows that any modular form can be uniquely specified by its first few

Fourier coefficients (a1(f), . . . , ar(f)) up to the index r = [SL2(Z) : Γ0(N)]/6. Recall the

definition of homology groups from Section 2.2. In the homology group, it is not easy

to represent elements and perform computations. There is an explicit group called the

group of modular symbols that is isomorphic to H1(X0(N),C) ([45, Section 8.1]). This

allows one to compute the Hecke action explicitly and compute the Hecke polynomial. As

follows from [45, Section 3,8], we can compute the Hecke polynomials for Tp in run-time

polynomial in p (see [45, Section 8.3.3]). Then it comes down to finding the roots of the

above polynomial over the field of definition of X0(N), which can be done in poly(N, log p)

by using standard root finding algorithms like Berlecamp Rabin. Therefore, we have the

following lemma.

Lemma 4.12. The Hecke eigenvalues of Hecke operators T2, . . . , Tr can be computed over

finite fields of characteristic p in time poly(log p,N), where p is coprime to N and r =

[SL2(Z) : Γ0(N)]/6.

The only thing left is to map the eigenvalues obtained to a specific eigenform, which would

give the eigenbasis of S2(Γ0(N)). In order to do so, we first group the individual eigenforms
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which are conjugate to each other under the action of the absolute Galois group Gal(Fp/Fp).

We factor the polynomials obtained from the lemma 4.12, factor them over Fp and map

the irreducible factors to one another clearly this can be done in poly(g, log p) and hence

poly(N, log p). Thus, the problem of mapping eigenvalues is reduced to groups of Hecke

operators f1, . . . , fn stable under Galois action.

Now we need to map the eigenvalues among the stable Galois conjugacy classes of eigen-

forms, to do this we need eq. 4.2.1. Recall that we have obtained a set of irreducible

polynomials of the same degree whose roots are the eigenvalues of eigenforms fixed under

the action of the absolute Galois group over Fp.

Algorithm Computing an eigenbasis for the space S2(Γ0(N)) over Fp.

Input: A set of r − 1 irreducible polynomials V2, . . . , Vr where r = [Γ0(N) : SL2(Z)]/6,
of fixed degree d whose roots over Fp are eigenvalues corresponding to eigenforms stable

under the action of Gal(Fp/Fp).

Output: A set of eigenbasis stable under the action of Gal(Fp/Fp).

• Fix a degree d extension over Fp, call it Fq where q = pd. Find all the roots of the

input polynomial V2 in Fq using Berlekamp-Rabin algorithm.

• Let α be one eigenvalue obtained from the last step and let f1 be the eigenform

having α as the second Fourier coefficient. We apply eq. 4.2.1 to compute the second

Fourier coefficient of T3(f), let it be α′.

• Compute the roots of V3 in Fq and pick a root β1 s.t. α1β1 = α′
1. Hence, β1 is the

third Fourier coefficient of f .

• For each σ ∈ Gal(Fq/Fp), map ασ to βσ. It is clear that these satisfies ασ
1β

σ
1 = α′σ

1 .

From this we obtain the q-expansion upto the third Fourier coefficient of f1, . . . , fd.

• Apply the above steps repeatedly upto the Sturm bound r, so that we obtain the

q-expansion of f1, . . . , fd upto the sturm bound. Return f1, . . . , fd.

Lemma 4.13. An eigenbasis for the space S2(Γ0(N)) reduced at a prime p ∤ N can be

efficiently computed in time poly(N, log p).

Now, we can use this to set up a system of quadrics defining X0(N). Here we note that

the Hecke eigenvalues may not be integers but algebraic integers. We use the eigenforms

to compute the Z-basis of S2(Γ0(N)). The quadrics in Pg−1 are degree four homogeneous

polynomials, applying the pullback map of x1, . . . , xn, we get the same system with xi
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replaced by fi. That would give us a zero modular form in S2(Γ0(N)) since all the points

of X0(N) are evaluated to zero. We use the Z-basis of S2(Γ0(N)), multiply them to form a

quadric with unknowns, and solve a system of linear equations over Fp to find the quadrics.

However, to perform the linear algebra operation, one has to go to an exponentially large

degree extension, to represent the set of all eigenvectors. We would achieve this by a little

modification of the query request that Arthur makes to Merlin. We will talk in details on

this in Section 4.7.

4.6 Computing Ramanujan Tau in polynomial time

Recall Corollary 4.5, which stated that given an elliptic curve over Fq one can compute the

pth coefficient of the associated cusp form by modularity, in polynomial time by counting

points on the elliptic curve. Now, the following question arises; Is there an algorithm that

can compute the pth coefficient of the cusp form without having access to the associated

elliptic curve? The answer to this question is yes, the idea being first to construct the

modular curve and then come down to the elliptic curve by taking a quotient of the modular

Jacobian by an Abelian subvariety. The material of this section is from [32].

In Schoof’s algorithm (Section 3.3), we have seen that we can go to an extension so that

we have all the ℓ-torsions present (Lemma 3.3). Recall from Theorem 4.7 we have a two-

dimensional representation of the Galois group attached to all modular forms of weight k,

where the Frobenius at p satisfies a characteristic polynomial x2 − apx+ p where ap is the

pth Fourier coefficient of f . Therefore, similarly to Schoof, we can work on the ℓ-torsion

points of J0(N) where the representation associated with f takes place, define it as Vf .

The problem is how to explicitly find the ℓ-torsion subspace Vf for a particular modular

form f .

The first thing to show is how to obtain an ℓ-torsion divisor. An approach is to consider

cuspidal divisors. A divisor D in J0(N) is called a cuspidal divisor if the support of D

consists of only the cuspidal points of X0(N). The significance of a cuspidal divisor is that

it is always torsion (Manin-Drinfeld theorem). They have shown how to approximate a

cuspidal point of appropriate order in J0(N). Instead of working on J0(N) directly, they

work on X0(N)g so we can identify a tuple of cusps (P1, . . . , Pg) ∈ X0(N)g with a torsion

divisor P1 + . . . + Pg − g∞. This is the content of [32, Ch. 8-12] and requires a lot of

heavy machinery from Arakaelov theory, and the techniques involved are purely complex

analytic.
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Another approach to obtain the ℓ-torsion is to assume access to the defining equation. This

line of approach was given by Couveignes, see [46] and is more computation-friendly. By

[31], the zeta function of X0(N) reduced at small primes p, is computable in poly(p). In

this scenario, one can come up with the ℓ-torsions of J0(N) using [46, Theorem 1]. Using

the Arakaelov theory, an explicit upper bound on the height of a torsion point embedded in

P1
Q can be obtained. Therefore, if we can compute Vf,Fp for many primes p we can obtain

Vf,Q by the Chinese remainder.

By [46, Lemma 22] we have the action of Hecke action on the torsions in polynomial

time. Take f = ∆, where ∆ =
∑∞

n−1 τ(n)q
n is the discriminant modular form. Assume

ℓ ∤ τ(p)2 − 4p11. Recall that the discriminant modular form is of level 1 so from Theorem

4.8 it follows that V∆ ⊂ J0(ℓ). Now, the determination of Vf,Fp follows from [46, Section

12].

Recall that from Corollary 4.9, we have the characteristic polynomial of the Frobenius

action at a prime p ̸= ℓ on V∆ is x2 − τ(p) + p11. Recall that we have the Ramanujan

bound τ(p) ≤ 2p11/2, therefore, we can apply the same steps as in Schoof, compute τ(p)

mod ℓ for many primes ℓ satisfying ℓ ∤ τ(p)2 − 4p11 and obtain τ(p) over Z by the Chinese

remainder.

4.7 Some unconditional complexity results on counting points

on modular curves and computing Hecke polynomials

Here, we give some unconditional algorithms and protocols to compute the zeta functions

and Hecke polynomials for X0(N).

Recall the strategy we developed in Section 4.5. The coefficients of the Z-basis of S2(Γ0(N))

can be upper bounded by the bound of the Fourier coefficients of the eigen-cusp forms.

This gives a bound on the integer coefficients of the system of quartic polynomials that we

will obtain.

Recall that for every eigen-cusp form we have a two-dimensional group of ℓ-torsions cor-

responding to the associated Galois representation. Also, the degree of extension over the

base field of the field of Fourier coefficients of an eigen-cusp form is very less (Lemma 3.3).

Therefore, the Galois-conjugate cuspforms have isomorphic fields of Fourier coefficients.

Therefore, over finite fields we have this to be a unique extension over the base field. By
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Chebotarev density, we have a lot of primes so that the Hecke polynomial has fewer num-

ber of irreducible factors. The idea is in the AM ∩ coAM protocol, Arthur queries Merlin

to send a modified certificate consisting of all these primes. Now, we can compute the

quartics modulo these primes and take the Chinese remaindering to obtain the quartics

over integers. This now can be used to complete the protocol. Therefore, we have the

following.

Theorem 4.14. Computing the zeta function of the modular curve X0(N) is in AM ∩
coAM.

Now we come to the computation of the Hecke polynomial.

Proposition 4.15. Consider the modular curve X0(N) defined over Fp. Let Tp ∈ T(N, 2)

be the pth Hecke operator. Let h(T ) be the Hecke polynomial of Tp on S2(Γ0(N),Fp). Then,

h(q + 1) = |J0(N)Fp)(Fq)|,

where Fq is a degree d extension over Fp.

Proof. Let Frobp denote the pth and Verp are as in proposition 4.6. We have the identity

Frobp ·Verp = p

over the endomorphism ring of J0(N) reduced at p. From the Eichler-Shimura relation

we have the Hecke operator at p related to Frobp as stated in Proposition 4.6. Over Fq,

we have Tq = Verq + Frobq over J0(N)(Fq), where Tq = (Tp)
d is computed by composing

Tp with itself d times. Now, the above follows from the fact that P (1) = |J0(N)Fq)(Fq)|,
where P (T ) is the characteristic polynomial of the action of Frobenius at p on the Tate

module of J0(N).

We already have the verification of the group orders in AM ∩ coAM. For a given polynomial

we generate the candidate counts over extensions of the base field and verify them. From

([7, Section 8]) we need to verify the count upto an extension that is maximum of 18 and

2g, g being the genus. Therefore, we have the following.

Corollary 4.16. Computing the Hecke polynomial for the action of Tp on S2(Γ0(N)) is in

AM ∩ coAM.
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Conclusion

After our result on the curves, the immediate improvement could be to show that the zeta

functions of smooth projective curves is in NP ∩ coNP. However, from the algorithm we

have seen so far, it did not give us an idea to show this. Modular curves are a special case

where we have a two-dimensional representation associated to cuspforms. That allowed us

to break the computation into parts. For a general curve, we do not have this structure.

So, it is not clear what certificate Merlin could present that Arthur can verify efficiently.

At this point, it seems that computing zeta functions of varieties requires an entirely new

mathematical idea. Some belief is there that it may come from mathematical physics,

namely from the directions of Gauss-Manin connections (although these directions are all

p-adic), or some analytic results on the zeta function might prove helpful.

Since we have shown that computing the zeta function of curves is in AM ∩ coAM, the

problem is unlikely to be an NP-hard problem. Therefore, the search for a polynomial-

time algorithm will continue. In case of ℓ-adic algorithms we can believe that it runs

exponentially in the genus g, since mostly we use the ℓ-torsion points in this case and

we cannot do better if we do not have a nice structure on the ℓ-torsions as in modular

curves. But in the case of p-adic algorithms, we do not yet have a proof that the runtime

will always be a polynomial in p and g. Why would a huge class of p-adic cohomology

theories always yield the same runtime? Could there exist a p-adic algorithm that would

perform better in both parameters? We need to answer these fundamental questions to

find solutions to the bigger problem.

35
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Appendix

6.1 Torsions of modular curves

In this part, we provide some insight into the torsion subgroup of X0(N). We will see

that the computation of torsion subgroup of prime levels is much easier to handle than

that of a composite level. For prime leveled modular curves, Ogg conjectured ([47]) that

J0(N)(Q)tors, the rational torsion subgroup of J0(N) equals the order of the cuspidal

subgroup denoted as CN . Two years later, Mazur ([48]) proved the conjecture, showing

that J0(N)(Q)tors is a cyclic group, generated by the cuspidal divisor class of (0) − (∞).

This element is the generator of all cuspidal divisors since, for prime levels (0) and (∞)

are the only two cusps. Its order computation came from a third object called Tamagawa

numbers, since for prime levels this equals both the order of J0(N)(Qtors) and CN . Thus,

for prime levels, Mazur gave the group structure as well.

However, these structural results do not give us an algorithm to compute the torsion order

or even the cuspidal order. A standard approach to the upper bound on the order of the

torsion subgroup comes from [29, Appendix], which says that for unramified primes p in

the Hecke field K, the reduction map

J0(N)OK
→ J0(N)p

results in injection of the torsion points into J0(N)p. Now, under the assumption that

the Mordell-Weil rank of J0(N) is zero over K, one can apply standard point counting

algorithms to compute J0(N)(Fp). In fact, the order of J0(N)(K)tors divides the order of

J0(N)(Fp), so one can try to reduce it over many primes and take their gcd. But that does
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not guarantee us the number of steps needed for this algorithm to halt. Also, it does not

give us any control over the error (the number of torsion in an extension of K, lying in

J0(N)(Fp))) occurring by reducing modulo p.

According to Manin-Mumford conjecture which is now a theorem due to Raynaud, says

that for smooth, projective, geometrically irreducible curves C of genus at least 2, C∩Jtors

is always finite. Here, J refers to the Jacobian variety of C. Matthew Baker showed that

for the modular curve X0(N), X0(N) ∩ J0(N)tors is precisely the cuspidal subgroup ([49,

Proposition 4.1]). Few years later, Bjorn Poonen came up with an algorithm with run-

time exponential in log p to compute the intersection C∩Jtors for a projective geometrically

irreducible curve C of genus at least 2 ([50]). Therefore, this could be a promising direction

for torsion count, although there is no guarantee of effectivity in complexity.

As pointed out in the previous section, the first result on the problem of counting torsion

points of X0(N) was due to Mazur ([48]) for prime levels. In this case he provided a

formula for counting torsion points over Q, which also worked for the cuspidal subgroup

since the two are equal in this case. Later, Takagi (see [51], [52]) gave a formula (class

number formula) for the size of the cuspidal subgroup, for square-free levels. But since

we need the factors of N for the formula to apply, it would be no better than a quantum

algorithm. In the square full case, he gave a formula which only applies for X1(N) and it

is quite disjoint approach from the case of X0(N).

Recall that the cuspidal subgroup of X0(N) always injects into the torsion subgroup of

J0(N) ([31] and [53]). We only have some partial result towards the equality of the torsion

and the cuspidal order for composite level modular curves, comes from Lorenzini’s work

([54]). He showed that for a prime p, if N = pk the prime to 2p part are equal for these two

groups. For N square-free, a recent work of Ribet and Wake has shown that for a prime

p, the p-primary part (p ∤ 6N) of the cuspidal subgroup and rational torsion subgroup are

equal.
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