
UGP Report

The Graph Isomorphism Problem

Farzan Adil Byramji Mohd Talib Siddiqui

Supervisor: Dr. Nitin Saxena
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Contents
1 Introduction 2

2 Preliminaries 3
2.1 Graphs . 3
2.2 Groups . 3
2.3 Strings . 5

3 The WL Algorithm 6
3.1 The Color Refinement Algorithm 6
3.2 The k-WL algorithm . 7

4 Basic Permutation Group Algorithms 8
4.1 Schreier Sims Algorithm . 8
4.2 Other subroutines . 11

5 Reduction to String Automorphism 15
5.1 Groups arising in the reduction to String Isomorphism 17

6 Luks’ Algorithm for String Isomorphism 21

7 Babai’s Algorithm for String Isomorphism 25
7.1 Bottlenecks for Luks’ Algorithm . 25
7.2 Ideal Domain . 27
7.3 Lifting . 28
7.4 Canonical Structures on the ideal domain 29
7.5 Combinatorial techniques . 30
7.6 Local Certificates . 32
7.7 Master Algorithm . 34

8 Conclusion 36

1

1 Introduction
The computational complexity of the Graph Isomorphism (GI) problem has been
an open problem in the area of computer science for a long time. When Karp
published his paper on NP-complete combinatorial problems, he stated GI as an
open problem. GI is one of the few problems that is in the class NP, but it is not
known to be either NP-complete or in the class P. It is believed unlikely that GI
is NP-complete since that would lead to the collapse of the polynomial hierarchy
to the second level.

In our report, we first look at a combinatorial approach that gives us the
color refinement algorithm. It is an incomplete isomorphism test, that deploys a
simple iteration to update the colors of nodes based on the colors of its neighbours.
Despite being a simple classification algorithm, it was shown that almost all graphs
can be distinguished by it.

A generalisation of the color refinement algorithm came later, called the Weisfeiler-
Leman Algorithm, that coloured tuples of nodes in a graph rather than a single
one. It was much more powerful than colour refinement but was still an incomplete
isomorphism test. However it became exceedingly difficult to construct graphs that
defied this test.

Significant advancement on GI were made by Babai and Luks when they intro-
duced computational group theoretic ideas in this domain. Luks [Luk82] presented
a reduction to string isomorphism problem for bounded degree case, and provided
a recursive algorithm for string isomorphism that worked in ncd time in case of
graphs with degree bounded by d where cd is a constant depending only on d. We
present the algorithm and reduction of Luks in our report. These group-theoretic
ideas when combined with combinatorial ideas of Zemlyachenko were used by Luks
to give an exp(O(

√
n log n)) algorithm for general graphs, sketched in [BKL83].

A related problem is that of Hypergraph Isomorphism. In [Luk99], it was shown
that for a dense input representation, Hypergraph Isomorphism is in polynomial
time. So the input has length Ω(2n). More generally, it was shown that for hyper-
graphs on n vertices isomorphism can be tested in O(cn) time for some constant
c. As corollaries, we obtain that testing structural equivalence and isomorphism
of Boolean functions given by truth tables is in polynomial time. This article also
contained simple algorithms for Graph Isomorphism and Coset Intersection which
run in simply exponential time O(cn) for a constant c.

Later, Babai [Bab16] developed on this and used several new group theo-
retic ideas to reduce the complexity to quasi-polynomial time. The foundation
of Babai’s algorithm is also the divide and conquer strategy of Luks, with some
other group theoretic and combinatorial mechanisms. We sketch some of the main
ideas of Babai’s algorithm towards the end.

2

2 Preliminaries
In this section, we fix some notation, and give basic background on some concepts.

2.1 Graphs

For a graph X, the vertex set is denoted be V(X), and the edge set is denoted by
E(X). We abuse the notation for graphs to denote |X| = |V(X)|. A subgraph of
X, Y is a graph with V(Y) ⊆ V(X), and E(Y) ⊆ E(X). The set of neighbours for
a vertex v ∈ V(X), is given by N (v) = {u|{u, v} ∈ E(X)}. The degree of a vertex
v is just the size of its neighbour set, deg(v) = |N (v)|.

We say that h : V(X) −→ V(Y) is a homomorphism from graph X to graph
Y if, {u, v} ∈ E(X) implies that {h(u), h(v)} ∈ E(Y). h is an isomorphism if
h is bijective and {u, v} ∈ E(X) iff {h(u), h(v)} ∈ E(Y). We use the notation
X ∼= Y to say X and Y are isomorphic. We define a vertex colouring of a graph by
χ : V(X) −→ C, where C is the set of colours. Homomorphisms and isomorphisms
must preserve vertex colourings for vertex coloured graphs. We denote a multiset
by double curly braces {{.}}.

Next, we define Johnson Graphs. J(k, t) is a with t ≥ 1, and k ≥ 2t + 1, is a
graph with vertex set V = {vT |T ⊆ ∆, |T | = t}, where |∆| = k. There is an edge
between two vertices vT and vS iff |T \ S| = 1.

2.2 Groups

Let G be a finite group. If H is a subgroup of G, we write H ≤ G. The set of
(right) cosets of H is denoted by G/H = {Hg | g ∈ G}. The index of H in G is
denoted by |G : H|, which by Lagrange’s theorem, is |G|/|H|. If H is a normal
subgroup of G, we use the notation H ⊴ G and H ◁ G if H is a proper normal
subgroup of G.

For a group G, a chain of subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gn = {1}

is called a subnormal series if for each i ∈ [n], Gi−1 ⊵ Gi. Moreover if Gi ̸= Gi−1

and Gi−1/Gi is simple for all i ∈ [n], a subnormal series is called a composition
series of G. For a composition series of G, the quotient groups Gi−1/Gi are called
composition factors of G. The Jordan-Hölder theorem states that the composition
factors are independent of the composition series up to isomorphism and permut-
ing the factors. A proof can be found in most group theory texts (for instance,
[Mil21, Chapter 6]). The Jordan-Hölder theorem will be used implicitly in 5.1
while reasoning about composition series. The socle Soc(G) of the group G is
defined as the product of its minimal normal subgroups.

3

We will mostly be dealing with permutation groups in this domain. Thus, we
define a permutation group acting on a set Ω, to be a subgroup Γ ≤ Sym(Ω) of
the symmetric group on it. For symmetric groups, we also use the notation Sn
for the symmetric group over a domain of n elements. Similarly, An for Alt(Ω),
alternating group over n elements. The degree of the permutation group is defined
by the size of domain, |Ω| in this case. For any γ ∈ Γ, and any α ∈ Ω, we define
the notation αγ, to denote the image of the element α in the permutation γ. The
orbit of an α ∈ Ω, denoted by αΓ := {αγ|γ ∈ Γ}, the elements α can be permuted
to under any permutation in Γ. The group Γ is said to be transitive if the orbit of
an element (consequently all elements) in Ω is Ω itself.

The stabiliser of some element α ∈ Ω, is denoted by Γα := {γ ∈ Γ | αγ = α},
which is a subgroup of Γ, and all its permutation, fix α. Similarly, for a set A,
we define the pointwise stabiliser, Γ(A) := {γ ∈ Γ|∀α ∈ A,αγ = α}. For a subset
A ⊆ Ω, define the notation Aγ := {αγ|α ∈ A}. Now,using this, we define a setwise
stabiliser for A ⊆ Ω, as the subgroup ΓA := {γ ∈ Γ|Aγ = A}. The set A is said to
be Γ-invariant if ΓA = Γ. Now, for A ⊆ Ω, we define notation Γ[A] :]{γ[A]|γ ∈ Γ},
the induced action of the group Γ on A, where γ[A] is the permutation restricted
to A.

Now, we see some definitions and notations which we encounter while dealing
with transitive permutation groups. We will assume Γ ≤ Sym(Ω) to be transitive.
A non-empty set B ⊆ Ω, is a block if it holds for all γ ∈ Γ that either Bγ = B
or Bγ ∩ B = ϕ. It is easy to see that Ω itself, and all the singleton subsets of
Ω are blocks. We say that the group Γ is primitive if there are no non-trivial
blocks of it. If we have a block B ⊆ Ω then a block system can be built as
B := {Bγ|γ ∈ Γ}. Since we are dealing with permutation groups, we can infer
that B is an equipartition of the domain Ω. The subgroup that stabilises all the
blocks setwise is defined as Γ(B) := {γ ∈ Γ|∀B ∈ B, Bγ = B}. We can also define
a natural action of Γ on the block system B, as Γ[B] ≤ Sym(B), which permutes
blocks.

If we have two block systems, B and B′, then we define, B ⪯ B′, read as B
refines B′, if for every block B ∈ B, we have a block B′ ∈ B′, such that B ⊆ B′.
We denote B ≺ B′, if B ⪯ B′ and B ̸= B′. A block system B is called a minimal
block system if there is no non-trivial block system B′ such that B ≺ B′. B
is minimal iff Γ[B] is primitive. If ∆ ≤ Γ, then we say that a set T ⊆ Γ is a
transversal for ∆, if |T | = |Γ|/|∆|, and {∆δ|δ ∈ T} = {∆γ|γ ∈ Γ}. Intuitively,
the transversal of a subgroup is a set that contains one representative of all cosets
of the subgroup, and no other element.

Now, we define what we refer to as Johnson Groups. Let m and t ≤ m
2
, and

denote
(
[m]
t

)
be the set of all t element subsets of the set [m] = {1, 2, . . . ,m}. Let

S
(t)
m ≤ Sym(

(
[m]
t

)
) be the natural induced action of Sm over

(
[m]
t

)
. Similarly, let

4

A
(t)
m ≤ Sym(

(
[m]
t

)
), denote the natural induced action of Am on the set

(
[m]
t

)
. We

refer to S(t)
m and A(t)

m as Johnson Groups.

2.3 Strings

A string is defined as a map x : Ω −→ Σ, where Ω and Σ are finite sets. The set
Σ is called the alphabet. We will be working with permutation groups which are
subgroups of the symmetric group on Ω. A permutation γ can be applied on the
string x in the following manner:

xγ : Ω −→ Σ

xγ(α) = x
(
αγ

−1
)

Let y be another string, we say that γ is a isomorphism from x to y, if xγ = y.
We write this isomorphism as γ : x ∼= y. We define a Γ−isomorphism, as a
permutation γ ∈ Γ such that γ : x ∼= y. The set of such Γ-isomorphisms is denoted
by IsoΓ(x, y), such that:

IsoΓ(x, y) := {γ ∈ Γ|xγ = y}

An instance of the String Isomorphism Problem, is given by two strings xy : Ω −→
Σ, and a generating set for Γ ≤ Sym(Ω), and it is a yes instance if the two strings
are Γ-isomorphic and a no instance otherwise.

The Γ-automorphism group of x is denoted as AutΓ(x) := IsoΓ(x, x). It is easy
to see that for an arbitrary γ ∈ IsoΓ(x, y), we have:

IsoΓ(x, y) = AutΓ(x)γ

5

3 The WL Algorithm
In this section, we will see some incomplete isomorphism tests. First, we will look
at the color refinement algorithm, which is a very simple isomorphism test. We
then generalise it to k dimesnsions and state the k dimensional Weisfeiler-Leman
Algorithm. The classical WL algorithm, was 2 dimensional, and the k dimensional
generalisation came later.

3.1 The Color Refinement Algorithm

Color refinement is more of a combinatorial approach to distinguish non-isomorphic
graphs. It relies heavily on the degree and number of neighbours coloured with a
colour iteratively.

In colour refinement, initially we assume a uniform colouring of vertices. Then,
the colouring assumed is refined iteratively by counting the number of neighbours
with each colour and updating the colours.

Let χ1, χ2 be two vertex colorings of a graph G. χ1 refines χ2, denoted by
χ1 ⪯ χ2, if for all u, v ∈ V(G), χ1(u) = χ1(v) =⇒ χ2(u) = χ2(v). We say that
the colorings are equivalent, if χ1 ⪯ χ2 and χ2 ⪯ χ1.

We denote the initial coloring by χ0, which colors every vertex to be of the
same color, and the coloring generated after the ith iteration to be χi. The color
refinement updates the coloring as follows:

χi(v) = (χi−1(v),Mi(v))

whereMi(v) stores the colours of the neighbors in a multiset.

Mi(v) =
{{
χi−1(w)|w ∈ N (v)

}}
The color refinement algorithm refines the coloring in each iteration until a

stable coloring is obtained, i.e., two consecutive iterations return equivalent color-
ings, which happens in at most n iterations. We can then compare the partition of
vertices given by the colors. Since this is an incomplete isomorphism test, if two
graphs do not have the same color partitions in their stable coloring, then they
are not isomorphic. But we cannot infer anything when the partitions match.

The Color Refinement algorithm can be made to run in O((n+m) log n) time
where |V(G)| = n and |E(G)| = m[CC82].

The algorithm, despite being very simple, is still a powerful tool. In essence,
Babai, Erdos and Selkow [BES80] showed that color refinement algorithm can
identify almost all graphs in the limit.

6

3.2 The k-WL algorithm

The k-dimensional Weisfeiler Leman algorithm is a direct generalisation of the
color refinement algorithm. Instead of refining a coloring of vertices, we refine
coloring of k-tuples of vertices. We use colorings of graph G that colors k-tuples:

χk : V(G) −→ C

where C is a set of colors.
Initially all the k-tuples are colored with their atomic types. atp(G, v) for a

tuple v in the graph G, describes the isomorphic nature of the induced subgraph
on the tuple. One way of formally defining atomic type to for a tuple (v1, . . . , vk),
is by a pair of k × k Boolean matrices, one of which is an adjacency, and one
describes equalities among the elements of the tuple. Defining atomic types like
this, it is easy to see that atp(G, v1 . . . vk) = atp(H,w1 . . . wk) for graphs G and H,
if and only if f defined as f(vi) = wi describes an isomorphism from the induced
subgraph of G by v1 . . . vk to the induced subgraph of H by w1 . . . wk.

For k-dimensional WL, initially all the k tuples are colored by their atomic
types, i.e., χk0(v) = atp(G, v) for all v ∈ V(G)k. The refinement is done as follows:

χki (v) =
(
χki−1(v),Mk

i (v)
)

where Mk
i (v) is the generalisation of the multiset from the color refinement algo-

rithm, defined as follows:

Mk
i (v) =

{{ (
χki−1(v[v/1]), . . . χ

k
i−1(v[v/k])

)
|v ∈ V(G)

}}
where v[v/i] represents the tuple v in which the ith vertex is substituted by v.

A stable coloring of k tuples can be found in at most nk refinement iterations.
This is called a k-stable coloring and can be computed in O(nk log n) time [IS19].

It is not hard to see that the 1 dimensional version of this essentially is the
color refinement algorithm. The k-WL is also an incomplete isomorphism test.

The graphs that are not distinguishable by the k-dimensional Wl algorithm
are called k-indistinguishable. It is extremely difficult to construct non-isomorphic
graphs that are k-indistinguishable for k ≥ 3. However, the following result by
Cai, Furer and Immerman constructs small graphs for each k.

Theorem 3.1 ([CFI92]). For all k ≥ 1 there are non-isomorphic 3-regular graphs
Gk and Hk, that are k-indistinguishable, with |Gk| = |Hk| = O(k).

7

4 Basic Permutation Group Algorithms

4.1 Schreier Sims Algorithm

In the domain of efficient permutation group algorithms, the notion of strong
generating sets introduced by Sims is very useful. The Schreier-Sims Algorithm is
one algorithm for creating a strong generating set. We will first define the notions
of base and strong generating sets. The Schreier-Sims algorithm is presented from
[Ser03].

A sequence of elements B = (β1, . . . , βm), where βi ∈ Ω∀i ∈ [m] is called a
base, if the pointwise stabiliser of all elements GB contains only one element which
is the identity permutation. We define a subgroup chain wrt base B as follows:

G = G(1) ≥ G(2) · · · ≥ G(m+1) = {1}

where G(i) is the pointwise stabiliser of elements β1, . . . βi−1, G(β1,...βi−1). The base
is called a non-redundant base if for every i ∈ [m], G(i+1) is a proper subgroup of
G(i).

Next, we define strong generating sets. A generating set S is a strong generating
set (SGS for short) with respect to the base B if the following holds for all i ∈
[m+ 1]:

⟨S ∩G(i)⟩ = G(i)

Since the definition of strong generating set relies on the notion of a base, we write
BSGS to refer to a base and a strong generating set for that base. Once we have
an SGS, it is easy to compute the orbit βG(i)

i using the orbit algorithm from the
next section. This additionally gives a right transversal Ri of Gi/Gi+1 for each
i ∈ [m]. We will always require that the representative of the subgroup itself is
the identity element 1.

By Lagrange’s theorem, |G| =
∏m

i=1 |G(i) : G(i+1)| =
∏m

i=1 |Ri|. Since each coset
in Gi/Gi+1 (and thus each representative in Ri) corresponds to a point in the orbit
βG

(i)

i , |βG(i)

i | = |Ri|. This gives an efficient way of computing |G| once we have a
BSGS and corresponding right transversals. Moreover each element g ∈ G can be
written uniquely as g = rmrm−1 . . . r2r1 for some ri ∈ Ri. These ri’s can be found
by the following procedure called sifting.

The sifting procedure computes the ri’s for a given permutation σ in the fol-
lowing manner. Given a permutation σ, and transversals Ri, and base B, we
can find the ri ∈ Ri, such that σ = rm . . . r1. Let βγ be the image of β un-
der the permutation γ. Then, we start with computing the coset representative
rr ∈ R1 such that βr11 = βσ1 . Then compute σ2 = σr−1

1 . Again, compute r2 ∈ R2

such that βr22 = βσ22 , and compute σ3 = σ2r
−1
2 and so on. In the end, we have

8

σm+1 = σr−1
1 r−1

2 . . . r−1
m =id. The computed r1, . . . rm along the way are the re-

quired coset representatives.
This procedure can also be easily modified to give a group membership algo-

rithm. A permutation h ∈ Sym(Ω) is a member of G if and only if the sifting
procedure is able to find ri, i ∈ [m] and gr−1

1 r−1
2 . . . r−1

m = 1, the identity permu-
tation. The siftee of h is defined using the largest index i ≤ m + 1, that can be
computed during sifting, hi = hr−1

1 . . . r−1
i−1 is called the siftee if we cannot find a

suitable ri ∈ Ri. If h ∈ G, then the siftee is identity.
Now we describe the Schreier-Sims algorithm which can find a base and strong

generating set for a given permutation group (provided as a set of generators) in
polynomial time. The following lemma due to Schreier gives a set of generators of
a subgroup H of G if we have a right transversal R for the cosets and generators
S of G. For a group element g ∈ G, ḡ ∈ R is such that g ∈ Hr, i.e, gr−1 ∈ H.

Lemma 4.1. Let H ≤ G = ⟨S⟩ and R be a right transversal of G/H containing
1. Then the following set T generates H.

T = {rs(rs)−1 | r ∈ R, s ∈ S}

Proof. It is clear that T ⊆ H since for every g ∈ G, gg−1 ∈ H.
So we only need to show that for every element h ∈ H, h = t1t2 . . . tk for

some k ∈ N and some ti ∈ T for all i ∈ [k]. Let h ∈ H. Since S generates G,
h = s1s2 . . . sl for some si’s in S. We will inductively rewrite the expression so
that at the end we use only elements from T .

More precisely, for every i ∈ [l+1], we will define an element hi = t1t2 . . . ti−1risisi+1 . . . sl,
(where tj’s are in T , ri ∈ R and sj’s in S) such that hi = hi−1. The element hi is
1s1s2 . . . sl which is clearly equal to h. By induction, we will thus have hi = h for
all i. For the induction step, suppose we have hi for 1 ≤ i ≤ l, then

hi+1 = t1t2 . . . ti−1risisi+1 . . . sl

= t1t2 . . . ti−1(risi(risi)
−1)risisi+1 . . . sl

= t1t2 . . . ti−1tiri+1si+1 . . . sl

where ti = risi(risi)
−1 and ri+1 = risi.

Finally hl+1 = t1t2 . . . tlr for some ti’s in T and r ∈ R. Since hl+1 = h ∈ H
and t1t2 . . . tl ∈ H, h(t1t2 . . . tl)−1 ∈ H. As the representative of H in R is 1, we
deduce r = 1. Therefore h = t1t2 . . . tl.

The following lemma gives a criterion for recognizing a strong generating set.

Lemma 4.2. Let {β1, . . . , βk} ⊆ Ω and G ⊆ Sym(Ω). For 1 ≤ j ≤ k + 1, let
Sj ⊆ G(β1,β2,...,βj−1) and for j ≤ k, ⟨Sj⟩ ≥ ⟨Sj+1⟩ holds. Also suppose Sk+1 = ∅,
G = ⟨S1⟩ and for all 1 ≤ j ≤ k,

⟨Sj⟩βj = ⟨Sj+1⟩.

9

Then (β1, . . . , βk) is a base for G and S = ∪j∈[n]Sj is a strong generating set for
G relative to the base B = (β1, . . . , βk).

Proof. The proof is by induction on k. If k = 0, the statement is trivial since in
this case G = ⟨∅⟩ = {1}.

For the induction step, suppose the statement is true for k − 1 ≥ 0. We are
given {β1, β2, . . . , βk} and Sj’s as described in the statement. By the induction
hypothesis, S ′ = ∪kj=2Sj is an SGS for ⟨S2⟩ relative to the base B′ = (β2, . . . , βk).
Define G(i) = G(β1,...,βi−1) as done while defining strong generating sets. Now we
need to verify that for j ∈ [k], ⟨G(j) ∩ S⟩ = G(j).

For j = 1, this holds since G = ⟨S1⟩ and G(1) = G = ⟨S1⟩ ≤ ⟨S ∩ G(1)⟩. The
other direction is obvious.

For j = 2, G(2) = G(β1) = ⟨S1⟩(β1) = ⟨S2⟩ ≤ ⟨S ∩G(2)⟩ since S2 ⊆ G(2).
For j > 2, we shall make use of the induction hypothesis. Now G(j) =

(Gβ1)(β2,...,βj−1) = ⟨S2⟩(β2,...,βj−1) = ⟨S ′ ∩G(j)⟩ ≤ ⟨S ∩G(j)⟩.
This finishes the proof.

The Schreier-Sims algorithm proceeds by maintaining a partial base (β1, β2, . . . , βi)
and associated sets Sj, 1 ≤ j ≤ i. Throughout we shall maintain the following
assumptions of Lemma 4.2. Sj ∈ G(β1,...,βj−1) for all j ∈ [i] and ⟨Sj⟩ ≥ ⟨Sj+1⟩. S1

will be the input generating set T of G. Si+1 will implicitly be the empty set. We
say that the structure is up to date below level k, if for all j > k, ⟨Sj⟩βj = ⟨Sj+1⟩.
The main aim of the algorithm is to ensure that the structure becomes up to date
below level 0. Once this happens, Lemma 4.2 tells us that the union of the Sj’s is
an SGS with respect to the base (β1, β2, . . . , βi).

In the beginning, β1 is chosen to be any element of Ω which is not fixed by all
of G, i.e. there is some generator in the input generating set U of G which moves
the element to some other element. At this point, the structure is up to date below
level 1.

Now suppose the structure is up to date below level k. By using Lemma 4.2,
we have an SGS for ⟨Sk+1⟩ with respect to the base (βk+1, . . . , βi). The algorithm
checks now if the structure is also up to date below level k − 1. It only needs
to check if ⟨Sk⟩βk ≤ ⟨Sk+1⟩ since ⟨Sk⟩βk ≥ ⟨Sk+1⟩ holds by the invariants of the
algorithm. For checking if Sk+1 generates ⟨Sk⟩βk , it is sufficient to check if a set
of generators of ⟨Sk⟩βk is generated by Sk+1. We consider the Schreier generators
of Lemma 4.1. We can do this since a transversal of ⟨Sk⟩βk in ⟨Sk⟩ can be easily
computed by the orbit and transversal computation of the next subsection. For
each such Schreier generator, the algorithm checks if it lies in ⟨Sk+1⟩ by sifting
since we have a BSGS for ⟨Sk+1⟩. If each Schreier generator is in ⟨Sk+1⟩, then we
have verified that the structure is up to date below level k − 1.

On the other hand, if we find a Schreier generator which does not lie in ⟨Sk+1⟩,
we add a non-trivial siftee to Sk+1. At this point, the structure is still up to date

10

below level k + 1. Now the algorithm checks if the structure is up to date below
level k and continues in this manner until the structure is up to date below level 0.
When k = i, we also pick βk+1 to be any point not fixed by the Schreier generator.

For the above algorithm to be efficient, we must not do any recomputation, such
as checking Schreier generators that have previously been checked, creating the
entire transversal from scratch, etc. Though there are several improvements that
can be made to further speed up the above algorithm, it still runs in polynomial
time. Now we analyze the time complexity of the above version of Schreier-Sims.

We shall need the following simple estimates on the size of B and the size
of each Si. Since only points which are moved are picked as base points, there
can be at most lg |G| base points finally since for each base point, the size of the
corresponding transversal is at least 2. Similarly since Si ≤ G and each generator
of Si at least doubles the size of the subgroup generated by the previously added
generators by Lagrange’s theorem, |Si| ≤ lg |G|.

The image computation for a base point takes O(n) time when a new generator
is added. The set Sk changes at most lg |G| times for k > 1. So the image
computation for all base points in the entire algorithm takes O(|B| lg |G|n+ |T |n)
time. The transversal computation for the orbit of a base point requires at most
n × O(n) time since each permutation multiplication takes O(n) time and the
size of an orbit is at most n. Over all base points, O(n2 lg |G|) time is spent in
transversal computation.

The sifting of Schreier generators takes the most time. One sifting requires at
most O(lg |G|) permutation multiplications since |B| ≤ lg |G|. The total number
of Schreier generators across all base points is

∑
k |Rk||Sk| = O(n lg2 |G| + |T |n)

since each |Rk| ≤ n for all k and |Sk| ≤ lg |G| for all k > 1. The total cost of the
Schreier-Sims algorithm is therefore O(n2 lg3 |G|+ |T |n2 lg |G|).

4.2 Other subroutines

We also use some other subroutines in the algorithm we present for string isomor-
phism. We try to sketch them below for completeness. These are not the most
efficient approaches but are conceptually simple.

Computing Orbits

We are given a set S, as a generator set for a permutation group such that ⟨S⟩ = G
and an element α ∈ Ω. We need to find the orbit of α in the group G.

We construct a graph G, whose vertices denote the elements in the domain Ω.
For every element δ in the generator set, we add an edge (β, βδ), for all β ∈ Ω.

After this construction, the problem essentially is a reachability problem. It
is not hard to see that all the elements reachable from α in the graph G will be

11

the orbit. We can use any graph reachability algorithm like depth-first search to
compute the orbit.

We can label each edge by the permutation γ it is derived from. Now, while
computing the orbit, if we discover a previously undiscovered vertex β from a
vertex δ, via an edge labelled by σ, we call σσ′ the representative of β, where σ′

is the representative of δ. The base case being the representative of α being the
identity permutation.

The graph construction will only take polynomial time, since for each permu-
tation in S, we’re adding at most n edges. The constructed graph will also have
edges at most polynomially bounded, and we know that DFS runs in linear time.
Hence, we can compute the orbit in polynomial time.

Compute a minimal block system

Given a set of generators S, we want to find a minimal block system for the group
generated by them. Let S be the generator of the group G. The basic idea here is
to find some block containing at least two elements from the domain.

Let us fix an element α from domain Ω. Now, pick β ̸= α from the domain, and
compute the orbit of {α, β} under the natural action of G on the unordered pairs
of elements from Ω. Now, construct a graph with vertices as the domain Ω, such
that (u, v) is an edge if {u, v} was in the computed orbit of {α, β}. The connected
component containing α and β, is the smallest block that contains both α and β.
If the graph is connected, then this is a trivial block, in which case, we start with
another β not checked before. If this happens for all β, then the group is primitive,
else, the connected components will form a block system of the group generated
by the given generating set. Let us denote this block system by B = {B1, . . . , Bk}.
Now, to get a minimal block system, we recursively call the minimal block system
procedure on the block system, restricting the domain and the group action to
blocks. At the end, since we have already checked if the group is primitive or not,
we can obtain the minimal block system, by expanding all the sets in the returned
system. For example, if the returned set was B′ = {B′

1, . . . , B
′
l}, on the domain

B, to get the minimal block system on the domain Ω, we just expand all the sets
in the blocks B′

i.
To get the idea of this being a polynomial time procedure, it is easy to see all

the computation is in polynomial time. Now, we want the number of recursive
calls to be polynomial. To see that, we can easily see that the domain size always
reduces in each recursive call, since the number of blocks in a non singleton block
system is less than the number of elements in the domain. Thus the domain
size strictly decreases in each recursive call, and hence the number of calls is also
polynomial in the domain size.

12

Pointwise Stabiliser

This is a simple application of the Schreier-Sims approach. Let G be a permutation
group with generating set T , α ∈ Ω and suppose we have to compute Gα. If each
element of T (and thus G) fixes α, then Gα = G. So suppose G does not fix α.
Now in the Schreier-Sims algorithm we pick α to be the first base point and then
proceed as usual. Finally if the sets S1 = T, S2, . . . of generators are obtained, S2

generates the stabiliser of α and ∪i≥2Si is an SGS for Gα with base (β2, β2, . . .).
This idea easily generalizes to the pointwise stabilizer of a set of points. To do

this, the elements of the set are made the initial base points and then we proceed
as usual.

Setwise stabiliser of a block system

We define the setwise stabiliser of a block system as the subgroup Γ(B), which
stabilises all the blocks setwise.

Now, given a set of blocks B, a generating set S for the group G, we want to
compute the generator set for the group that stabilises all the blocks in the set B.

Now, until we have only one block left in the set B, we do the following iterative
procedure:

Pick a block B from the set B, and pick an α ∈ B. Compute the generating
set S1, for the stabiliser of a. Let X be the set α⟨S⟩ ∩B, where α⟨S⟩ is the orbit of
α in ⟨S⟩. Let S2 be the set of representatives for elements in the set X. We can
remove the identity from this set, since we are considering generators. Now, set
S = S1 ∪ S2, and remove the block B from B.

In the end, we return S, as it remains at the end of all iterations. It is also not
hard to see that the running time of this algorithm is polynomial.

The idea behind this procedure, is that for any element in the setwise stabiliser
of blocks, it fixes all the blocks. So for all the blocks, and for any element in the
block, either a permutation can keep it fixed, or map it to other elements in the
block. Hence, our iterative procedure, constructs the generators by first adding
the generators fixing an element in a block, and then adding permutations which
are representatives and map the element to other elements inside the block.

Homomorphisms

A homomorphism φ : G → Sym(∆) on a permutation group G = ⟨S⟩ ≤ Sym(Ω)
is given by the images φ(s) for s ∈ S. For working efficiently with this homomor-
phism, we will consider G as a permutation group on Ω ∪∆ (where Ω and ∆ are
disjoint). Specifically for an element g ∈ G, we will store the permutation (g, φ(g))
acting as g on Ω and as φ(g) on ∆. Let G′ denote the corresponding permutation
group. Now the kernel of φ is precisely the pointwise stabilizer G′

(∆).

13

To efficiently find images of elements inG, we shall keep a baseB1 = (β1, β2, . . . , βm)
and a corresponding strong generating set S1, such that B1 contains points only in
Ω. Then to compute φ(g), sift (g, 1) to get (1, h) as the siftee for some h ∈ Sym(∆).
Then φ(g) = h−1.

Similarly, if we want a preimage of h ∈ ϕ(G) or want to check membership in
φ(G), we keep a base B2 = (β1, β2, . . . , βm) and a corresponding strong generating
set S2, such that there is a 1 ≤ k ≤ m where (β1, β2, . . . , βk) contains points only
in ∆ and the remaining base points lie in Ω. To check membership of h ∈ ϕ(G),
sift (1, h) until we have gone over all base points up to βk. If the resulting siftee
is of the form (g, 1), accept, otherwise reject. For finding a preimage, we follow
the same sifting procedure and a preimage of h is given by g−1. The coset of all
preimages is ker(φ)g−1.

14

5 Reduction to String Automorphism
We will describe a reduction for the graph isomorphism problem for connected
trivalent case, to the problem of string automorphism. To do this, we will first
reduce the isomorphism problem for connected trivalent graphs, to the problem
of finding automorphisms of connected trivalent graphs with a distinguished edge.
Let X be a connected trivalent graph, then, Aute(X), is the automorphism group
of the graph X that preserves the edge e. Now, we have the following proposition:

Proposition 5.1 ([Luk82]). Testing isomorphism of two connected trivalent graphs
is poly-time reducible to the problem of determining generators for Aute(X), where
X is a graph and e is a distinguished edge.

Proof. Let X1, X2 be two connected trivalent graphs. Now, we will fix an edge in
the graph X1. Let this be e1. Now, we iterate over each edge in the graph X2. Let
e2 be any edge of X2. Now, we want to test if there is an isomorphism of X1 and
X2 that maps edge e1 to e2. If we can do this for each e2, we can determine if the
graphs X1 and X2 are isomorphic. Now, to test whether there is an isomorphism
from X1 to X2, which maps e1 to e2, we construct a new graph X. The new graph
X, has the vertex set V(X1) ∪ V(X2) ∪ {v1, v2}, where v1 and v2 are new vertices
inserted in the edges e1 and e2 respectively. Now, to finally construct the graph,
we join v1 and v2 by an edge e. It is easy to see that X is connected and trivalent.
Thus, the graphs X1 and X2 have an isomorphism that maps e1 to e2, if the group
Aute(X) has an automorphism swapping v1 and v2. It is also trivial that if such
an element in the automorphism group fixing e exists, then any set of generators
of this group Aute(X), will contain an element that flips v1 and v2.

Since we have the above reduction, it is sufficient to show a reduction for the
problem of finding a generating set of Aute(X), for a connected trivalent graph X,
and a distinguished edge e to the string isomorphism problem.

From here onward, we will work with a connected trivalent graph X with n
vertices, and a distinguished edge e, for the reduction.

Now, we will define graphs Xr. Xr is the graph that is formed by edges and
vertices of X, which are present in paths of length at most r, that pass through
the edge e. Thus, X1 is just the graph edge e and Xn−1 is just X. Note that Xr is
not the induced subgraph, in the manner that if some two vertices v1 and v2 are
in Xr, and if there is an edge between them, it is not necessarily in the graph Xr.

Now, we will try to build an automorphism group for Xr’s inductively. Let πr
be the induced homomorphism defined as follows:

πr : Aute(Xr+1) −→ Aute(Xr)

15

where, for any σ ∈ Aute(Xr+1), πr(σ) is just the restriction of σ to the smaller
graph Xr. Now, this induced homomorphism helps us determine Aute(Xr+1), if
we can determine the following efficiently:

• R such that ⟨R⟩ = Kr, the kernel of πr

• S such that ⟨S⟩ = πr(Aute(Xr+1)), the image of π

If we can do this, then we can determine a set S ′, such that πr(S ′) = S, then we
have ⟨R∪S ′⟩ = Aute(Xr+1). We will see that computing the generator for image,
will eventually reduce to the string isomorphism problem. Let us define the set
Vr = V(Xr+1) \ V(Xr), to be the new vertices introduced in Xr+1. Now, since the
graph is trivalent, it is easy to argue that any vertex in Vr will have at least one
and at most three neighbours in V(Xr). Let us define a set A in the following
manner:

A =

(
V(Xr)

1

)
∪
(
V(Xr)

2

)
∪
(
V(Xr)

3

)
which is essentially the set of subsets of V(Xr), of sizes one, two and three.

Now, we can define a neighbour function f as follows:

f :Vr −→ A,

f(v) = {u ∈ V(Xr)|{u, v} ∈ E(Xr+1)}

Now, to compute the kernel of πr, we observe that for any σ ∈ Kr, we have that
f(v) = f(σ(v)). This is because since σ is in the kernel, it should fix all vertices
in Xr. Since σ is an automorphism on Xr+1, mapped vertices must have the
same neighbours, because the f function gives the set of neighbours in Xr but all
those vertices are fixed in σ. We observe that triplets of vertices v, v′, v′′ such that
f(v) = f(v′) = f(v′′) cannot exist. This is because,if such a triplet exists, then
there is a vertex u in Xr that connects to v, v′, v′′, making the degree more than
3, since u will have at least one edge in Xr. Thus, at most, pairs of vertices with
the same neighbours can exist. By the above two arguments, it is easy to infer
that Kr would be the group generated by transpositions that contains two distinct
vertices in Vr and have the same neighbour set. Thus this kernel computation can
be done in polynomial time by just taking pairs of vertices in Vr, and comparing
their neighbour sets.

Next we show how to compute the image of π. We start with some obser-
vations. Let S ∈ A and σ ∈ Aute(Xr+1). Then |f−1(S)| = |f−1(σ(S))| since
σ ∈ Aute(Xr+1). Put another way, only the sets in A having preimages of the same
size can be permuted by σ. Now let x, y ∈ V(Xr) and {x, y} ∈ E(Xr+1) \ E(Xr).
Then {σ(x), σ(y)} ∈ E(Xr+1) \ E(Xr).

16

Interestingly these two simple conditions are also sufficient for an automor-
phism of Xr to lie in the image of π as is explained now. Let σ : V(Xr)→ V(Xr)
be an automorphism of Xr satisfying the following properties. For every S ∈ A,
|f−1(S)| = |f−1(σ(S))|. For any x, y ∈ V(Xr), {x, y} ∈ E(Xr+1) \ E(Xr) if and
only if {σ(x), σ(y)} ∈ E(Xr+1) \ E(Xr). To extend σ to an automorphism σ′ of
Xr+1, we need to find suitable images of vertices in Vr. The first condition readily
allows us to do this since {f−1(S) | S ∈ A} forms a partition of Vr and we can
map f−1(S) to f−1(σ(S)) bijectively for each S ∈ A with f−1(S) non-empty. From
here, it is clear that the new edges between vertices in Vr and those in V(Xr) are
preserved by σ′. The second property is required to ensure that all the new edges
with both vertices in Xr are already preserved by σ.

So we only need to find the subgroup of automorphisms of Xr satisfying these
two properties. This can be encoded as a string automorphism problem in the
following way. The domain Ω is A. The alphabet Σ is {(i, b) | i ∈ {0, 1, 2}, b ∈
{0, 1}}. The string s : A → Σ is defined in the following way. For T ∈ A,
s(T) = (|f−1(S)|, b) where b = 1 if T ∈ E(Xr+1) \ E(Xr) and b = 0 otherwise.
The group G ≤ Sym(Ω) is given by the induced action of Aute(Xr) on A. The
subgroup ⟨S⟩H ≤ G obtained as output from a string isomorphism subroutine can
be easily converted to a subgroup of Sym(V(Xr)) by considering the restriction of
each permutation to

(V(Xr)
1

)
. A pullback S ′ can be constructed by extending each

permutation in S in the manner described previously.
In this way, we have shown how Aute(Xr+1) can be computed using string

isomorphism in the trivalent case. The above reduction easily generalizes to degree
d > 3. We sketch the changes required for the general constant degree d case now.
The kernel computation remains the same. Here a set S in V(Xr) of size at most
d can be the neighbour set of at most d − 1 vertices in Vr and these vertices in
Vr with the same neighbour set can be permuted arbitrarily. During the image
computation, the string isomorphism instance has an alphabet of 2d size since for
any S ∈

⋃d−1
i=0

(V(Xr)
i

)
, 0 ≤ |f−1(S)| ≤ d− 1.

5.1 Groups arising in the reduction to String Isomorphism

We now look at the structure of the groups arising in the reduction discussed
above, since the structure of these groups is crucial to the polynomial running
time of the string isomorphism algorithm described in the next section.

First we discuss the simpler case of trivalent graphs. As argued earlier, the
kernel Kr is generated by transpositions on disjoint pairs of vertices. So Kr

∼= Zk2
for some k. We claim that Aute(Xr) is an elementary abelian 2-group for each
r. We prove this by induction on r. For r = 1, this is clear since Aute(X1) is
the group generated by the transposition swapping the ends of e. By induction,
Aute(Xr) is an elementary abelian 2-group and so is the image of πr since the

17

image is a subgroup of Aute(Xr). Hence Aute(Xr+1) is also an elementary abelian
2-group. The following lemma describes the primitive p-groups, and, in particular,
primitive 2-groups.

Lemma 5.2. Let P be a primitive p-subgroup of Sym(Ω). Then P is a cyclic group
of order p acting on Ω of cardinality p.

Proof. Let pk be the order of P . We need to show that k = 1.
Fix an element a ∈ Ω. Then Pa is a maximal subgroup of P . If not, then we

Pa ≤ pk−2 and by the Sylow theorems, we can find H < P such that Pa < H and
|H| = pk−1. H cannot be transitive since if it were, we would be able to write
every element of P as a product of an element from Pa and an element from H.
So H cannot be transitive.

Consider the orbit aH of a under H. We claim that S = aH is a block of
imprimitivity for P . Let g1, g2 ∈ P and suppose Sg1 ∩ Sg2 ̸= ∅. Suppose bg1 = cg2

for some b, c ∈ S. Since S = aH , suppose ah1 = b and ah2 = c for some h1, h2 ∈ H.
Then h1g1(h2g2)

−1 = h1g1g
−1
2 h−1

2 ∈ Pa ⊊ H implying g1g−1
2 ∈ H. Now consider

any element d ∈ S. Then dg1 = dg1g
−1
2 g2 . Since d ∈ S and g1g

−1
2 ∈ H, dg1g

−1
2 ∈ S

and thus dg1 ∈ Sg2 . This shows that Sg1 = Sg2 . Hence S is a block of imprimitivity.
But this contradicts the assumption that P is primitive. So our assumption that
Pa is not a maximal subgroup is wrong.

Now that we have shown that Pa is a maximal subgroup of size pk−1, we only
need to show that the stabilizer Pa is trivial. By the orbit stabilizer theorem,
|Ω| = p. Any permutation in Pa can only have cycles of length less than p since a
is fixed and its order must be a power of p. So the only possibility is that it must
be the identity. This proves that k = 1 and hence |P | = p. Since p is prime, the
only group of order p is the cyclic group.

The lemma implies that a primitive 2-group just acts on 2 points.
Now we discuss the general case for degree d. The following definition describes

the groups involved. The set Γd contains the groups whose composition factors
are subgroups of Sd. We will show in the following lemmas (from [Luk82]) that
for each r, Aute(Xr) lies in Γd−1.

Lemma 5.3. If N ⊴G and G/N,N ∈ Γd, then G ∈ Γd.

Proof. Let N ▷ N1 ▷ · · · ▷ Nk = {1} be a composition series of N . Let G/N ▷
H1/N ▷H2/N ▷ · · ·▷Hl/N = {N} be a composition series of G/N . Then we can
combine the composition series to get G▷H1▷. . . Hl−1▷N▷N1▷· · ·▷Nk−1▷{1}.
The composition factors ofG are given by the union of the composition factors ofN
and G/N since (Hi/N)/(Hi+1/N) ∼= Hi/Hi+1 by the third isomorphism theorem.
Since G/N,N ∈ Γd, this implies G ∈ Γd.

18

The converse of the above lemma follows by essentially reversing the steps of
the proof, starting from a composition series of G containingN and then extracting
a composition series for N and a composition series for G/N .

The lemma suggests the following inductive approach (similar to the trivalent
case) for showing that Aute(Xr+1) ∈ Γd−1. For the induction step, it is sufficient
to show that the kernel and image lie in Γd. The next two lemmas imply these
statements.

Lemma 5.4. The subgroups of Sd lie in Γd.

Proof. Let G ≤ Sd. Suppose N is a non-trivial normal subgroup of G and G/N
is simple. By the previous lemma, it is sufficient to show that G/N is a subgroup
of Sd since induction on the length of composition series gives N ∈ Γd. Let
G(i) = G(1,2,...,i−1) for 1 ≤ i ≤ d. Consider the following subgroup chain.

G(d)N ≤ G(d−1)N ≤ · · · ≤ G(1)N

Note that G(1)N = G and G(d) = N . By using the facts that |G(i)N/N | =
|G(i)/(G(i) ∩N)| and G(i+1) ≤ G(i),

|G(i)N |
|G(i+1)N |

=
|G(i)||N |
|G(i) ∩N |

· |G
(i+1) ∩N |
|G(i+1)||N |

≤ |G(i)|
|G(i+1)|

≤ d− (i− 1) ≤ d

where the second last inequality uses the fact that the cosets of G(i+1) in G(i)

correspond to the images of i under G(i). Since N is a non-trivial subgroup of G,
there is some i ∈ [d − 1] such that G(i+1)N ⪇ G(i)N = GN = G. Then G acts
on the set C containing cosets of G(i+1)N in G(i)N = G in the natural way. Note
that N acts trivially on C since it is normal in G. Therefore this induces an action
of G/N on C. Since |C| > 1 by the choice of i, this action of G/N is non-trivial
since it is transitive. Since G/N is simple, the kernel of this action must therefore
be trivial. So the action is faithful, which proves that G/N ≤ Sd.

The above lemma implies that the kernel of πr is in Γd−1 as we explain now.
The computation of generators for the kernel shows that Kr

∼= Si1×Si2×· · ·×Sik
for some k where each ik satisfies ik ≤ d − 1. For j ∈ [k], define the group
Kj
r = Sij × Sij+1

× · · · × Sik . Then

{1}◁Kk
r ◁Kk−1

r ◁ · · ·◁K2
r ◁K1

r = Kr

is a subnormal series of Kr, where each factor group Ki+1
r /Ki

r is Sij for some
j ∈ [k]. By the lemma, the composition factors of each Sij are subgroups of Sd−1.
Combining the composition series for each of the Sij using the above subnormal
series gives a composition series of Kr showing that Kr ∈ Γd−1.

19

Lemma 5.5. If G ∈ Γd and H ≤ G, then H ∈ Γd.

Proof. Consider the following composition series of G

{1}◁Gk ◁ . . . G2 ◁G1

By taking intersection with H, we get the following subnormal series of H,

{1}◁Gk ∩H ◁ . . . G2 ∩H ◁G1 ∩H = H

The multiset of composition factors of H will be the union of the composition
factors of the factor groups Gi ∩H/Gi+1 ∩H. If we can show that each of these
factor groups lies in Γd, we will be done. Since Gi ∩H/Gi+1 ∩H ∼= Gi/Gi+1 and
G ∈ Γd, Gi ∩ H/Gi+1 ∩ H is a subgroup of Γd. This finishes the proof of the
lemma.

Since the image of a homomorphism is a subgroup, the above lemma implies
that the image of πr is in Γd−1 as Aute(Xr) ∈ Γd−1 by induction. Combining this
with what was shown for the kernel and using Lemma 5.3, Aute(Xr+1) ∈ Γd−1.
Lemma 5.3 also implies that the induced action of a permutation group in Γd−1

on a block system also belongs to Γd−1 since the blockwise stabilizer is a normal
subgroup.

20

6 Luks’ Algorithm for String Isomorphism
Luks designed a recursive algorithm for the String Isomorphism problem. The
algorithm presented by Luks [Luk82], uses two kinds of recursions. We will present
the algorithm as presented by Grohe and Neuen [GN20].

Algorithm 1 Luks’ Algorithm : StrIso(x, y, G, γ,W)

1: if γ ̸= id permutation then
2: return StrIso(x, yγ−1

, G, id,W)γ
3: end if
4: if |W | == 1 then
5: if x(α) == y(α) for α ∈ W then
6: return G
7: else
8: return ϕ
9: end if

10: end if
11: Pick α from W
12: W ′ ← orbit of α
13: if W ̸= W ′ then
14: return StrIso(x, y, StrIso(x, y, G, id,W ′),W \W ′)
15: end if
16: Compute minimal block system B of action of G on W
17: Compute ∆ = G(B), subgroup that stabilises all the blocks
18: Compute transversal T of ∆ in G
19: return ∪γ∈TStrIso(x, y,∆, γ,W)

Algorithm 1, is the Luks’ string Isomorphism algorithm. Let us define some
notation to better understand the logic behind the two recursions used by Luks.
Let x, y be two strings x, y : Ω −→ Σ. Let K ⊆ Sym(Ω) be a set of permutations
and W ⊆ Ω be a window, then we define:

IsoWK (x, y) := {γ ∈ K|∀α ∈ W : x(α) = y(αγ)}

In our context, we will maintain that K is a coset of some G ≤ Sym(Ω) and our
window W is G-invariant. Let K = Gγ, for a representative γ of the coset K,
then:

IsoWK (x, y) = IsoWGγ(x, y) = IsoWG (x, yγ
−1

)γ

We can exploit this relation, and consider cases in which we are only dealing K
which are groups. Thus, we can solve the problem of string isomorphism restricting
K to cosets, by only solving the problem for K which are subgroups.

21

The input to the algorithm are two strings x, y, a set of generators for a group
G, and a representative γ (in case K is a coset), and a window W . The first step
of the algorithm 1 is to check if the representative is identity permutation or not,
else we permute the second string, and make K a group.

Note that for the top call of the recursion, the window W is the full domain
Ω, because we ant to compare the whole string. We will maintain the G-invariant
nature of W throughout. The two searchable entities here are the window W , and
the group G.

In the first kind of recursion, we split the window. This is done when the group
in consideration is not transitive on W . Then, we pick an element α, and compute
its orbit Wα. Then, we can restrict the group G to IsoWα

G (x, y), and our window
to W \ Wα. This is just basically doing string isomorphism on the substrings
x[Wα] and y[Wα] (where x[Wα] is the string x with domain restricted to Wα), and
restricting our set of permutation set on which these are isomorphic. It is clear
that:

IsoWG (x, y) = IsoW\Wα

K′ (x, y) where K ′ = IsoWα
G (x, y)

It is easy to see that in each recursion call, the window is always invariant over
the set of permutations we are searching in.

The other recursion is when the group G is transitive over W . In this case, we
cannot split the window to test string isomorphisms on substrings. Therefore, in
this case, we restrict the set of permutations we are trying to find an isomorphism
over. Now, let ∆ be the subgroup that stabilises all the blocks of some minimal
block system B of G, i.e., ∆ = G(B). Now, let T be the transversal of ∆, and
G[B] be the induced action of G on the minimal block system. We can see that:

IsoWG (x, y) = ∪γ∈T IsoW∆γ(x, y)

Let t = |T |. It is easy to see that t = |G[B]|, which is a primitive group since B is a
minimal block system. This holds true because, the transversal has representatives
of cosets of ∆, and ∆ stabilises each of the blocks, so each permutation in the
transversal, permutes the blocks, which is exactly the group action of G on the
minimal block system B.

The top call of the algorithm is done with a group G and permutation iden-
tity. The window W remains G invariant because, if we employ the first type of
recursion, then we already know that the orbits are G invariant. Otherwise, the
window is already ∆ invariant since ∆ ≤ G under which W was invariant. And
the first step after employing the recursion is to just just apply the representative,
and again the window remains invariant of the group passed.

To analyse the time complexity of the algorithm, let us assume n = |Ω| and let
us denote the number of recursive calls to the procedure by f . Thus, if we employ

22

the first type of reduction, we have:

f(n) ≤ f(n− n1) + f(n1)

where n1 is the length of orbit computed. For the second recursion, if |B| = b,
then we can easily see that the orbit of any element in ∆ is going to be at most
length n/b. Thus, there are going to be t problems with window size at most n/b,
and they will employ the first type of recursion because ∆ is not transitive. Thus,
we have:

f(n) ≤ t · b · f
(n
b

)
This is because, all subroutines in section 4.2 were polytime algorithms. The

gap here is that, we also need a transversal for the setwise stabiliser of the block
system. This can be done in the following manner. Let S be a generating set of the
group G, and let B be a minimal block system on this. For any permutation σ, let
π be the corresponding induced action of σ in the group G[B]. Construct S ′ to be
the set of generators induced on this, i.e., S ′ = {π1, . . . , πk}. Now, we use Scheier
Sims algorithm on this generator to get an SGS and also store the transversals of
the subgroup chain defined by the base. A slight modification is that, whenever
we operate on a permutation π, we store the corresponding σ. For example, if we
have to do πiπj anywhere in Schreier Sims, we store the corresponding σiσj for it.
Doing this, we obtain transversals as well as an SGS for the induced group G[B]
and also a pre-image for G corresponding to all the permutations considered. Now,
using the stored transversals, we generate the whole group from the SGS, and store
the corresponding permutations in G. This constructed set of permutations in G,
will be the transversal for the setwise stabiliser of the block system B. It is not
hard to see that the procedure described runs in time poly(|G[B]|), which is in
turn poly(t).

The basic idea behind the above procedure is that the setwise stabiliser of
blocks, ∆, fixes all the blocks, so if we take the induced action of permutations on
the group G[B], then all the permutations in G[B] permute the blocks as a whole,
which is exactly what is present in the transversal of ∆. Hence, we only need to
construct all permutations in G[B] and store one pre-image for all of them in G,
which will be the required transversal.

Thus, the time complexity of Luks’ string isomorphism algorithm heavily de-
pends on the size of primitive groups involved in the recursion. For the graph
isomorphism problem with bounded degree d, we have already seen the reduction
which leads us to groups that are in Γ̂d. Using a result from Babai, Cameron,
Palfy [BCP82], we have:
Theorem 6.1. There is a function g such that for every primitive permutation
group G ∈ Γ̂d, we have that |G| ≤ ng(d), where n is the size of domain of permu-
tation group.

23

In our case, the domain size is b, since the primitive group is over the minimal
block system, we have t = bg(d), we have:

f(n) ≤ bO(g(d)) · f
(n
b

)
From this, we can infer that the number of recursive calls to the procedure are

polynomially bounded. Using the fact that all other subroutines are polynomial
time procedures, one call to Luks’ procedure takes polynomially bounded time.

Thus, for the bounded degree case, the graph isomorphism problem can be
solved in polynomial time.

24

7 Babai’s Algorithm for String Isomorphism
We have seen two kinds of recursions in Luks’ algorithm previously. We will refer
to them as follows:

Orbit-by-orbit processing For a group G in consideration, and a G-invariant
window W , if G is not transitive over W , we can split W into several G−invariant
windows as orbits, W = W1 ∪W2 · · · ∪Wd. We recurse in the following way:

• L← G

• for i = 1 . . . d

– L← IsoL(xWi , yWi)

This is a very efficient recurrence, because we only incur a small overhead and we
get smaller instances of the problem.

f(n) ≤
d∑
i=1

f(ni) + overhead

Subgroup Descent Given a subgroup H ≤ G, we can descent to H, and obtain
|G : H| instances of H isomorphism problems. However, get |G : H| number of
problems of the same size, but on H instead of G.

IsoG(x, y) = ∪γ∈RIsoHγ(x, y)

where R is the set of right coset representative for H.
This can be inefficient when the index is large.

7.1 Bottlenecks for Luks’ Algorithm

In Luks’ algorithm, we descend to a subgroup, which stabilises all the blocks of
a minimal block system B. Let us denote the subgroup by GB. Now, the index
|G : G(B)| is equal to the size of the induced action of group on the blocks G[B].
We know that G[B] is primitive since B is minimal. Hence, if the size of this
group is large, we incur a large multiplicative cost for subgroup descent, since we
reduce our group to G(B), but we get |G[B]| instance of SI of the same size. Thus,
large primitive groups create the bottleneck for efficient Luks’ recursion.

Theorem 7.1. (Cameron[Cam81], Maróti[Mar02]) For n ≥ 25, if G is a primitive
group with |G| ≥ n1+logn then G is a Cameron Group. G ≤ Sn is a Cameron group
with parameters s, t ≥ 1 and k ≥ max(2t, 5) if for some s, t ≥ 1 and k ≥ 2t we
have n =

(
k
t

)s
, the socle of G is isomorphic to Ask (which just the direct product of

Ak s times) and
(
A

(t)
k

)s
≤ G ≤ S

(t)
k ≀ Ss (wreath product).

25

Babai showed the equivalence of such Cameron groups to Johnson groups in
the following result.

Theorem 7.2. (Babai, [Bab15]) Let G ≤ Sn be a primitive group of order |G| ≥
n1+logn, where n is greater than some absolute constant. Then there is a polynomial-
time algorithm to compute a normal subgroup N ⊴ G of index |G : N | ≤ n, and
a block system B such that N [B] is permutationally equivalent to A

(t)
m for some

m ≥ log n.

This theorem effectively says that the hard groups that Luks’ recursion cannot
handle are (essentially) Johnson Groups. The algorithmic part of the theorem is
due to Babai, Luks and Seress [BLS87].

Now, we explain the procedure Reduce-to-Johnson, as described by Babai
[Bab15]. The procedure takes input a group G ≤ Sym(Ω), and strings x, y : Ω→ Σ
and gives output either the isomorphism group IsoG(x, y), or we get a new G, x, y,
with G transitive, and a block system B on which G[B] is equivalent to a Johnson
Group.

Reduce to Johnson

• if G ≤ Aut(x):

– if x = y then return G

– else return ϕ

• if |G| < C0, where C0 is some constant, chosen to deem the combinatorial
results usable, then we can compute IsoG(x, y) by bruteforce

• if G is intransitive, we can continue Luks’ reduction using orbit by orbit
processing

• Now if G is transitive, compute a minimal block system B, let |B| = n0 the
subgroup that stabilises all blocks G(B) and let G[B] be the induced action
of G on the block system B

• if |G[B]| < n1+n0
0 then we can continue with subgroup descent to G(B)

• Now, since G[B] is a primitive group of order ≥ n1+logn0

0 , then using Theorem
7.1, reduce G[B] to a Johnson group. Since by the theorem, the index is at
most n0, the multiplicative cost incurred is at most n0.

• return G,B(modified), G[B](reduced to Johnson), x, y

26

Now we define a giant representation. A giant representation of a group H, is
a homomorphism ε : H → Sym(Γ′), for some domain Γ′ such that Hε ≥ Alt(Γ′).

It is easy to see that we can obtain a homomorphism φ : G → Sym(Γ), for
some domain Γ, with |Γ| = m. This is a giant representation of G. This is
because there is a trivial homomorphism from G to G[B], and G[B] is isomorphic
to a Johnson Group. Johnson groups, S(t)

m and A
(t)
m , in turn are isomorphic to

symmetric and alternating groups on domain size m. Note that we will use the
term giant representation and giant homomorphism interchangeably.

We call this domain Γ the ideal domain.

7.2 Ideal Domain

Now we discuss some things about the ideal domain as described in the previous
section. Now, again we have two cases if we consider the automorphism group
AutG(x).

If AutG(x) admits a giant representation, i.e., for a giant representation φ : G→
Sym(Γ) of G, we have AutG(x)φ ≥ Alt(Γ), then we have a way to lift permutations
from the ideal domain to the original domain.

However, when the automorphism group does not admit a giant representation,
then we want to find an encasing subgroup of AutG(x), such that H ≤ Sym(Γ)
and AutG(x)φ ≤ H.

Now, in our algorithm, in the second case, what we want is to find homomor-
phisms to encasing subgroups, which have giant representations in a significantly
smaller domain. Thus, we are trying to shrink our ideal domain in every step.
This is because m = |Γ| goes in the exponent of the time complexity. Hence, our
goal is to bring down m upto poly log n to achieve a quasipolynomial bound.

Our target recurrence would be as follows, with n and m = |Γ| ≤ n:

f(n,m) ≤ q(n)f(n, 9/10m)

i.e., with q(n) multiplicative cost, we want to shrink the ideal domain size by a
constant factor. We decide on a threshold value m0 = poly log n, beyond which
we bruteforce on the ideal domain (lifting, described later) to reduce the original
domain by a constant factor. This is equivalent to performing strong Luks reduc-
tion to reduce to the kernel of the giant homomorphism. This has a multiplicative
cost of m0! which is quasipolynomial in n. Thus for m ≤ m0:

f(n,m) ≤ q(n)f(9/10n, 9/10n)

Now, if the multiplicative costs that we incur during these steps is quasipoly-
nomial in n, then the recurrence solves to quasipolynomial time.

27

7.3 Lifting

The main group-theoretic theorem used in Babai’s algorithm is described next.
We shall need the following definition.

Now, we define the notion of affected points. Given a giant homomorphism
φ : G → Sym(Γ) where G ≤ Sym(Ω), a point α ∈ Ω is said to be affected if
Gφ
α ≱ Alt(Γ). Also, if βσ = α for some β ∈ Ω and σ ∈ G, then Gβ = σGασ

−1.
Therefore, Gφ

β = σφGφ
α(σ

−1)φ. Thus, if α is unaffected so is β. We can infer that
either all points of an orbit are affected or none of them are. If all of them are
affected, we call that orbit an affected orbit.

Theorem 7.3. Let φ : G→ Sym(Γ) be a giant homomorphism. Let n = |Ω|, k =
|Γ|. Let U be the set of points of Ω unaffected by φ.

1. (Unaffected Stabilisers lemma) Assume k > max{8, 2+log2 n}. Then (G(U))
φ ≥

Alt(Γ). In particular, U ̸= Ω (at least one point of Ω is affected).

2. (Affected Orbit lemma) Assume k ≥ 5. If ∆ is an affected G-orbit, then
ker(φ) is not transitive on ∆. Each orbit of ker(φ) in ∆ has length at most
∆/k.

We do not go into the proof of the Unaffected Stabilisers here, but it uses
the O’Nan-Scott theorem describing the structure of maximal permutation groups
and CFSG via Schreier’s hypothesis. Schreier’s hypothesis states that the outer
automorphism group of any simple group is solvable. The second statement in
Part 1 follows from the first as we argue now. If U = Ω, by the first statement
(G(Ω))

φ ≥ Alt(Γ). But G(U) = {id} which cannot be mapped to Alt(Γ) since
k > 8. So there must be an affected point.

Part 2 has an elementary proof.

Proof of the Affected Orbit lemma. Let x ∈ ∆ and N := ker(φ). The orbit of x
under the action of N is

|xN | = |N |
|Nx|

=
|N |

|N ∩Gx|
=
|NGx|
|Gx|

=
|G : Gx|
|G : NGx|

=
|∆|

|Gφ : (Gx)φ|

Since x is affected, (Gx)
φ ≱ Alt(Γ). Now if Gφ = Alt(Γ), any proper subgroup of

Alt(Γ) has index at least k since k ≥ 5 so that Alt(Γ) is simple. If Gφ = Sym(Γ),
any subgroup of Sym(Γ) which is not Alt(Γ) also has index at least k. So |xN | =

|∆|
|Gφ:(Gx)φ| ≤

|∆|
k

.

Suppose φ : G → Sym(Γ) is a giant homomorphism. Let ḡ ∈ Alt(Γ). Since φ
is a giant homomorphism, there is some g ∈ G such that φ(g) = ḡ. Now we want
to find g′ ∈ AutG(x) such that φ(g′) = ḡ. The following lifting procedure does this.

28

Algorithm 2 Lifting
1: K := ker(φ)
2: find g such that φ(g) = ḡ
3: return AutKg(x)

The set of automorphisms mapped to ḡ is given by AutG(s)∩Kg = AutKg(x) =
IsoK(x, xg

−1
)g. So we have reduced finding the coset of automorphisms which map

to ḡ to a single K-isomorphism instance. Every K-orbit has size at most n/m by
the Affected Orbit lemma.

Now we see how this can be used to determine AutG(x) when AutG(x)φ ≥
Alt(Γ). Let S be a set of generators of Alt(Γ). For instance, one can take the
set of all 3-cycles in Γ. Lift each element of S to AutG(x). If any of these is
empty, AutG(x)φ ≱ Alt(Γ). If all of them lift, AutG(x)φ ≥ Alt(Γ). To check if
AutG(x) is actually generated by the lifts, lift a transposition on Γ to AutG(x). If
it also lifts, AutG(x)φ = Sym(Γ) and AutG(x) is generated by the lifts of S and the
transposition. If the transposition does not lift, AutG(x)φ = Alt(Γ) and AutG(x)
is generated by the lifts of S.

7.4 Canonical Structures on the ideal domain

We start by abstractly defining the notion of a canonical structure. Later we de-
scribe what kinds of structures we will mainly be using. Let f be a function on
strings x : Ω → Σ which associates a structure f(x) on Γ satisfying the following
property. For every pair of strings x, y and σ ∈ IsoG(x, y), σφ is an isomorphism
between f(x) and f(y). Then we say that f(x) is canonically obtained from x.
Note that since every isomorphism of strings transforms into an isomorphism of
the corresponding canonical structures, we can try restricting the set of potential
isomorphisms of given input strings by lifting isomorphisms between the corre-
sponding canonical structures. If the canonical structures are not isomorphic,
then we already know that the strings are not isomorphic. Otherwise we have
shrunk the coset inside which we were looking for isomorphisms.

The two main kinds of canonical structures which will appear repeatedly through-
out Babai’s algorithm are colourings and equipartitions. A colouring of the ideal
domain Γ is simply a function c : Γ → [l] where l is the number of colours.
Equivalently it is an ordered partition of Γ. An equipartition of Γ is a partition
{Γi | i ∈ [l]} where each part is of the same size (for each i ∈ [l], |Γi| = |Γ|/l).

We say that we have a good colouring, if all the colour classes are at most 90%
of the size of the domain we are working on. We will now describe how obtaining a
good colouring or an equipartition helps in reducing the domain size. Let f(x) and
f(y) be canonical structures associated with strings x and y respectively. These

29

will be colourings of the domain possibly with some additional structure if the
colouring is not good.

Algorithm 3 Align
1: If f(x) and f(y) are not Gφ-isomorphic, reject.
2: Pick any σ̄ ∈ IsoGφ(f(x), f(y)) and σ ∈ φ−1(σ̄).
3: Set y = yσ

−1 and G = φ−1(Aut(f(x))).
4: if f(x) is not good then
5: if the dominant colour class ∆ in f(x) has an equipartition then
6: Let Γ′ be the set of parts of this equipartition.
7: else
8: ∆ is the vertex set of a Johnson graph J(s, t), then associate ∆ with(

Γ′

t

)
where |Γ′| = s.

9: end if
10: Set Γ = Γ′

11: Update φ to be the composition of the original φ and the natural action of
the automorphism group on the additional structure to Sym(Γ′)

12: end if

We now look at some more details related to the Align procedure. The iso-
morphism test in the first line can be performed efficiently since Gφ = Sym(Γ)
or Gφ = Alt(Γ). By what was explained earlier, x and y cannot be G-isomorphic
if f(x) and f(y) are not Gφ-isomorphic. Then we lift a Gφ-isomorphism between
f(x) and f(y) to G and perform a shift appropriately. In this way, IsoG(x, y) ⊆
AutG′(x, yσ

−1
) where G′ = φ−1(Aut(f(x))) is the updated G. If the colouring f(x)

is good, G is intransitive with each orbit having length at most 0.9n. So in this
case, we have shrunk the actual domain significantly. In the other cases, we shrink
the ideal domain. When there is a non-trivial equipartition on the dominant colour
class, since each block has size at least 2, the new domain Γ′ has size at most m/2.
The Johnson graph case is explained in detail later.

7.5 Combinatorial techniques

Suppose we have a canonically embedded regular graph on the ideal domain Γ.
Then we want to find good colourings or equipartitions on it. However, some
graphs are resistent to good colouring or partition. One case being Johnson graphs,
which are resilient to combinatorial techniques used in these cases.

But, we see that Johnson graphs give a very large reduction in the domain
size. Suppose we can find a Johnson graph J(m′, t), for t ≥ 2. We know that the
automorphism group is S(t)

m′ which is isomorphic to Sm′ . Thus, we can reduce our

30

ideal domain to m′. It is easy to see that:

AutG(x)→ Sym(Γ)→ Aut(J(m′, t))→ Sm′

m′ < 1 +
√
2m

Thus, reduction from m to m′ is very efficient. If we keep getting Johnson graphs
on new domains, the size shrinks very quickly t poly log n, in just log log n rounds.

However, the good part is, that the only hard cases for good colourings or
equipartitions are Johnson Graphs. This is by the Split-or-Johnson routine de-
scribed by Babai.

Theorem 7.4. (Split-or-Johnson) Given a nontrivial regular graph on Γ, at quasipoly-
nomial multiplicative cost, we can find one of the following:

1. a good canonical colouring (∀ colour classes ≤ 0.9, or

2. a canonical equipartition on the large colour class > 0.9, or

3. a canonically embedded Johnson graph on the large colour class > 0.9

We can only invoke the Split-or-Johnson lemma when we have a canonically
embedded regular graph on the ideal domain Γ. However, we cannot directly
deduce a regular canonical structure on Γ. What we get is a canonical k-ary
relation on Γ by the local certificates routine (described later).

A k-ary relation X = (Γ, R) is such that R ⊆ Γk. We call ∆ ⊆ Γ a symmetric set
if Sym∆ ≤ Aut(X). Using this, let us define the symmetry defect. The symmetry
defect of X is min{|T | | Γ \ T is a symmetric set for X}. Note that a graph is just
a binary relation.

On the k-ary relations given by local certificates, we can invoke the following
lemma called Design Lemma due to Babai:

Theorem 7.5. (Design Lemma) Given a k-ary relation with a symmetry defect
≥ 1

10
one can find, at mO(k) multiplicative cost, one of the following:

1. a good canonical colouring (∀ colour classes ≤ 0.9, or

2. a canonical equipartition on the large colour class > 0.9, or

3. a canonically embedded non-trivial regular graph on the large colour class
> 0.9

In our case, the k-ary relation given by the local certificates algorithm is such
that k = O(log n), and thus, the multiplicative cost remains quasipolynomial. We
can also see that we do not need the condition on the symmetry defect in the Split-
or-Johnson statement, because non-trivial regular graphs already have a symmetry
defect of at least 1

2
.

31

7.6 Local Certificates

We now look at the core group-theoretic subroutine used in Babai’s algorithm.
Informally the idea is to consider small test sets on the ideal domain and look at
the action of automorphisms fixing the test set. Considering such local pieces of
information, we can combine them to obtain information about the whole automor-
phism group. This local-to-global approach crucially relies on the group-theoretic
facts mentioned earlier.

A test set T ⊆ Γ has size |T | = k > max{8, 2 + log2 n} and k = O(log n). We
also assume thatm > 10k since otherwise we can apply brute force. Given a test set
T , denote by GT the setwise stabiliser of T in G, GT = {σ ∈ G | σφ ∈ Sym(Γ)T}.
Let ψT : GT → Sym(T) be the homomorphism defined by σψT = σφ|T . A test
set is said to be full if AutGT

(x)ψT ≥ Alt(T). We need to compute whether a
given test set is full or not. Moreover we need meaningful certificates of fullness or
non-fullness. These are defined next. A fullness certificate for a full test set T is a
subgroup K(T) ≤ AutGT

(x) such that K(T)ψT ≤M(T). A non-fullness certificate
is a subgroup M(T) ≤ Sym(T) which is not a giant such that AutGT

(x)ψT ≤M(T).
The local certificates algorithm decides if T is full and returns an appropriate
certificate. For W ⊆ Ω, let A(W) = AutGT

(xW), the automorphism group of the
partial string xW in GT .

Algorithm 4 Local Certificates
1: W := ∅
2: while W ̸= Aff(A(W)) and A(W)ψT ≥ Alt(T) do
3: W = Aff(A(W))
4: Update A(W)
5: end while
6: if A(W)ψT ≥ Alt(T) then
7: return “full”, A(W)(U) where U = Ω \W
8: else
9: return “non-full”, A(W)ψT

10: end if

The details of how to update A(W) will be given later. We first argue cor-
rectness of the algorithm. First note that in the beginning A(W) = G since W is
empty. Therefore A(W)ψT ≥ Alt(T) since A(W) is a giant. Also by the Unaffected
Stabilizers lemma, there is at least one point affected by A(W) = G. Therefore the
while loop is entered at least once. Since each orbit is either affected or unaffected,
the window W is always a union of orbits. Moreover the set of affected points can
only grow, since A(G) becomes smaller and thus the corresponding pointwise sta-
bilisers can also only get smaller. There can be at most n = |Ω| many iterations

32

of the while loop, since in every iteration the window W grows.
Now suppose the if condition is satisfied. By the termination condition for the

while loop, it must be that W = Aff(A(W)). So the set U = Ω\W is unaffected by
A(W). Now we use the Unaffected Stabilizers lemma to deduce that A(W)ψT

(U) ≥
Alt(T). Moreover A(W)(U) ≤ AutGT

(x) since A(W) only contains automorphisms
of xW and each point outside W is fixed by permutations in A(W)(U). Therefore
A(W)(U) is indeed a fullness certificate.

In the other case, A(W)ψT ≱ Alt(T). Since AutGT
(x) ≤ A(W), AutGT

(x)ψT ≱
Alt(T). Also AutGT

(x)ψT ≤ A(W)ψT , so A(W)ψT is a non-fullness certificate.
For the update step, let Wold be the window before it is changed.

Algorithm 5 Updating A(W)

1: N := A(Wold)(T)
2: L := ∅
3: for σ̄ ∈ A(Wold)

ψT do
4: pick σ ∈ A(Wold) such that σψT = σ̄
5: L(σ̄) = AutWNσ(x)
6: L = L ∪ L(σ̄)
7: end for
8: A(W) = L

In the first line N is the kernel of the map ψT : A(Wold) → Sym(T). The
set L will eventually contain the generators of A(W). The main idea used in the
algorithm is the following decomposition of A(Wold) into cosets:

A(Wold) = ∪σ̄Nσ

Now we perform Luks descent. This proves correctness. For efficiency, note that
by the Affected Orbit lemma, each orbit of N in W has length n/k. The number
of σ̄’s we go over is at most k!. So overall the recomputation of A(W) requires
at most n · k! instances of String Isomorphism calls on windows of length at most
n/k.

Theorem 7.6 (Aggregate Certificates). Let max{8, 2+log2 n} < k < m/10. Then
at a multiplicative cost of mO(k), we can either find a good canonical colouring of Γ,
or a good canonically embedded k-ary relational structure with relative symmetry
defect ≥ 1/2 or reduce the determination of IsoG(s1, s2) to nO(1) instances of size
≤ 2n/3.

We now give a rough idea about how the AggregateCertificates routine pro-
ceeds, but no details are provided here. First compute local certificates for all

(
Γ
t

)
test sets. Also run CompareLocalCertificates on pairs of test sets (this is similar

33

to the LocalCertificates routine). Now look at the subgroup F generated by the
fullness certificates. If the nontrivial orbits of F in Γ cover at least 0.1 fraction and
no orbit has length greater than 0.9 fraction of all points, we have a good canonical
colouring. Otherwise if there is a large orbit, we check if Fφ is a giant. If yes,
we can try using lifting ideas to break the problem into smaller instances of string
isomorphism. Otherwise the degree of transitivity of Fφ is small. In this case, we
can find a structure with high symmetry defect by individualizing a few points.
In the remaining case, where most points in Γ are fixed, we can find a canonically
embedded k-ary relational structure with relative symmetry defect ≥ 1/2.

7.7 Master Algorithm

The following algorithm assumes that we have performed the procedure Reduce-
to-Johnson and have the ideal domain Γ, the giant homomorphism φ and a set
of blocks Φ = {Bt | T ∈

(
Γ
t

)
} on which G acts as a Johnson group. Following

Babai [Bab15], whenever a good colouring is returned, we perform orbit by orbit
processing on the strings and then recurse on the smaller windows. If some other
structure is returned, we continue with the algorithm.

The procedure ProcessHighSymmetry is described now. Let C be the unique
symmetric class of size ≥ |Γ|/2. If x has such a class Cx but y does not or the sizes
of such classes Cx and Cy in x and y are different, we can reject. Otherwise let σ̄
be a permutation sending Cx to Cy. Now we can align by setting y = yσ where
σφ = σ̄, so that Cx = Cy. Using the partition {Cx,Γ \ Cx}, we can colour each
point x ∈ Ω based on the number of points in Cx contained in x. Since we are
in the primitive case, each point is a block which corresponds to a k-subset of Γ.
Now each colour class corresponding to sets having at most k − 1 elements of Cx

has size at most n/2 (which can be checked by a small calculation). Let C0 be the
remaining colour class in Ω consisting of sets all of whose elements lie in C.

Now we have reduced the problem to the group H = φ−1(Alt(Γ)C) and we
need to find IsoH(x, y). This further reduces to two instances with group H ′ =
φ−1(Alt(C)×Alt(Γ\C)), IsoH(x, y′) for y′ = y and y′ = yσ where σ is a permutation
which is the product of a transposition on C and a transposition on Γ \ C. As
C is a symmetric class, any permutation σ ∈ φ−1(Alt(C)) leaves xC0 unchanged.
Therefore if xC0 ̸= yC0 , we can reject. Otherwise they are the same and we can
recurse on the other colour classes each of which has size less than n/2.

We next explain how to find IsoG(x, y) when t = 1. In this case, we first
check if x and y contain each letter in Σ with the same frequency. If not, we can
reject. Otherwise we find a permutation σ ∈ G such that xσ = y. This is always
possible if G = Sym(Ω). If G = Alt(Ω), such a permutation always exists as long
as some letter appears at least twice. If not, there is at most one isomorphism.
Now suppose we have such a permutation σ. Then we only need AutG(x, x). This

34

Algorithm 6 Babai’s SI
1: if m ≤ (log n)3 then
2: apply Luks descent to reduce to kernel of action on the blocks
3: else
4: set N = ker(φ)
5: if G primitive (each block BT is a singleton) then
6: if t = 1 then
7: return IsoG(x, y)
8: else
9: view x, y as edge-coloured t-uniform hypergraphs H(x) and H(y) on

Γ
10: if relative symmetry of H(x) < 1/2 then
11: Perform ProcessHighSymmetry on H(x)
12: else
13: Apply Design Lemma, followed by Split-or-Johnson if required
14: Align
15: end if
16: end if
17: else
18: Run AggregateCertificates
19: if a canonical k-ary structure is returned then
20: Apply Design Lemma, followed by Split-or-Johnson if required
21: end if
22: Align
23: end if
24: end if

is a direct product of symmetric groups on positions having the same letter if
G = Sym(Ω). If G = Alt(Ω) we need to only consider such even permutations.

35

8 Conclusion
We have looked at some of the main algorithms for the graph isomorphism problem.
Much more work has been done on restricted classes on graphs and understanding
the power of the different approaches. We note that in practice, several instances
of GI can be handled efficiently by programs such as nauty and traces. We refer
the reader to [MP14] for more on practical graph isomorphism. In this section, we
briefly look at some connections of GI with other isomorphism problems.

Group Isomorphism

Given two groups G1, G2 explicitly via their Cayley tables, are G1 and G2 isomor-
phic? This is the Group Isomorphism problem (GpI). There is a simple polynomial
time reduction from GpI to GI. In fact, isomorphism of any kind of first-order
structures (using functions, relations, constants) reduces to GI [Mil79]. Here we
describe the reduction from GpI to GI.

For a group G, construct graph X = (V,E) where V = {vg | g ∈ G} ∪
{a(g,h), b(g,h), c(g,h), d(g,h) | (g, h) ∈ G×G}. So if |G| = n, |V | = n + 4n2. For each
pair (g, h) ∈ G×G, we add the following 6 undirected edges to X:

(vg, a(g,h)), (vh, b(g,h)), (vgh, d(g,h)),

(a(g,h), b(g,h)), (b(g,h), c(g,h)), (c(g,h), d(g,h)).

Now the reduction to GI transforms groups G1 and G2 into graphs X1 and X2. It
is clear that any isomorphism φ : G1 → G2 gives an isomorphism ψ : X1 → X2 as
follows

ψ(vg) = vφ(g)

ψ(a(g,h)) = a(φ(g),φ(h))

ψ(b(g,h)) = b(φ(g),φ(h))

ψ(c(g,h)) = c(φ(g),φ(h))

ψ(d(g,h)) = d(φ(g),φ(h)).

For the other direction, we first claim that any isomorphism ψ : X1 → X2 must
map c vertices of X1 to c vertices of X2. Any c vertex has degree 2, one neighbour
(a d vertex) with degree 2 and another neighbour (a b vertex) with degree 3. Note
that no v, a, b or d vertex satisfies these conditions if n > 1. (If n = 1, there is
a unique group of order n, so there is nothing to check.) So a c vertex must be
mapped to a c vertex. Now the neighbours of a c vertex must also be mapped to
corresponding neighbours and similarly for the neighbours of neighbours. So the
map ψ must preserve the type of a vertex: a, b, c, d or v.

36

Define φ : G1 → G2 in the following way. For all g ∈ G1, if ψ(vg) = vh,
define φ(g) = h. Since φ is a bijection from X1 and X2, φ is a bijection from
G1 to G2. To see that it preserves the group relations, suppose g1g2 = g3. Then
we have a corresponding gadget in X1 with vertices a(g1,g2), b(g1,g2), c(g1,g2), d(g1,g2).
These are mapped by ψ to a(h1,h2), b(h1,h2), c(h1,h2), d(h1,h2) respectively for some
(h1, h2) ∈ G2 × G2. Then vg1 , vg2 , vg3 are mapped to vh1 , vh2 , vh3 respectively
where h3 = h1h2. Therefore φ(g1g2) = φ(g1)φ(g2).

So we have a polynomial time reduction from GpI to GI. Combined with Babai’s
algorithm, this gives a quasipolynomial algorithm for GpI. However this is unnec-
essary. For decades now, an nlogn+O(1) algorithm for GpI has been known ([Mil78]
where the algorithm is attributed to Tarjan). This relies on the fact that any
group of order n has a generating set of size at most log2 n. Given such a gener-
ating set, we only need to check all possible maps from this generating set to G2

and check if any of them extend to an isomorphism. This check can be performed
in polynomial time. Improving the complexity to no(logn) for GpI is open.

We briefly state now how combinatorial approaches like Weisfeiler-Leman have
been useful for understanding the group isomorphism problem. Brachter and
Schweitzer [BS20] studied three WL-type algorithms in the context of GpI and the
notion of WL-dimension. They show that these WL-type algorithms are equiva-
lent in the sense that the WL-dimension with respect to different algorithms only
differ by a constant factor. One of these algorithms performs the above reduction
transforming a group to a graph, performs k-WL on the obtained graph and then
pulls back the obtained colouring to the group. Another version applies the ideas
of k-WL to the group itself, while the third does the same while also taking the
subgroup generated by a tuple into account. They also construct non-isomorphic
graphs having some common isomorphism invariants which are distinguished by
WL. Grochow and Levet [GL21] showed that WL for groups also captures isomor-
phism for several classes of groups for which different polytime tests were known.

Chattopadhyay, Torán and Wagner [CTW13] proved that Graph Isomorphism
is strictly harder than Group Isomorphism under a weak notion of reductions.
Specifically they showed that GI is not ACC0[p] reducible to GpI even when the
reduction is allowed to be randomized. The rough idea for this is as follows.
First it is shown that GpI can be decided by a restricted class of polynomial size
nondeterministic circuits, while this restricted class of circuits cannot compute
Parity. Since Parity is AC0 reducible to GI, this implies that there is no AC0

reduction from GI to GpI.
Recently Dietrich and Wilson [DW22] showed that Group Isomorphism is

nearly-linear time for most orders. More formally they showed that there is a
dense subset Y ⊆ N and a deterministic Turing machine that decides GpI for
input size n ∈ Y in time O(n2(log n)c) for some constant c. Here a dense subset

37

Y is a subset satisfying limn→∞
|Y ∩[n]|
n

= 1. It is worth emphasizing, however, that
this does not show that most instances of GpI are efficiently solvable since there
are “many” groups of orders excluded from Y . One class excluded from Y is that
of prime powers, and it is believed that groups with prime power orders form the
bottleneck for efficient group isomorphism testing.

Boolean function Isomorphism

In this subsection, we consider the problem of deciding when to Boolean functions
given as input are ‘equivalent’. Here one needs to define the notion of equivalence
and how the functions are encoded. For instance, if the notion of equivalence is
both functions being the same and each function is described as a formula, this
problem is coNP-complete since a certificate for two functions not being the same
is an input where they differ and TAUT obviously reduces to this problem in
polynomial time. Now suppose we relax the notion of equivalence to isomorphism:
there is some permutation σ ∈ Sn such that f(x) = g(σx). Then this is the
problem of Formula Isomorphism (FI). Agrawal and Thierauf [AT00] showed that
FI cannot be Σp

2-complete unless the polynomial hierarchy collapses.
Instead of a succinct representation as a formula, suppose each function is

given by its truth table. So the input has length Ω(2n), where n is the number
of variables. Luks [Luk99] showed that this can be done in O(cn) time. If we
also allow flipping some of the input bits in our notion of equivalence, we get the
problem structural equivalence of functions which can also be solved in the same
time. Structural equivalence of f and g can be expressed as the existence of a
permutation matrix P ∈M(F2, n) and a vector v ∈ Fn2 such that f(x) = g(Px+c).
This motivates looking at equivalence under the action of general and general-affine
linear groups. One of the open problems in [Luk99] is to find a polynomial time
algorithm for isomorphism testing under the action of these groups. A polynomial
time algorithm for GI would give rise to such an isomorphism test for the general
linear group since there is a polynomial time Karp reduction from this problem to
GI. We note that Babai’s algorithm is not useful here since the exponent there is
greater than 2 while testing equivalence via enumeration requires only O(2cn2

) =
O(N c logN) time where N = 2n.

SI/GI on groups with restricted composition factors

For groups in Γ̂d, we have already seen that Luks’ algorithm terminates in nO(d)

time. Let us define a slightly general SI instance, the Set-of-Strings Isomorphism
Problem. It takes input two sets of strings X = {x1, . . . , xm} and Y = {y1, . . . , ym},
where xi, yi : Ω→ Σ are strings and a group G ≤ Sym(Ω) and asks whether there
is some γ ∈ G such that Xγ = {x1, . . . , xm} = Y.

38

This is interesting because the Hypergraph isomorphism problem for Γ̂d groups
is polynomial time reducible to the Set-of-Strings isomorphism problem for Γ̂d
groups under many one reductions. It is also interesting to see that the Set-of-
Strings problem on Γ̂d groups is solvable in (n +m)poly log d time, which is better
than a trivial bound using Luks.

There are various classes of graphs that can be reduced to SI on groups with
restricted composition factors. One such example is t-CR-bounded graphs. A graph
(G,χ), where χ is a vertex colouring, is a t-CR-bounded graph if, the colouring χ
can be converted to a discrete colouring, i.e., a colouring in which each vertex has
its own colour, by applying the following two operations repeatedly in any order:

• apply color refinement algorithm, or

• For a color class of size less or equal to t, assign discrete colors

For this class of graphs, a polynomial time Turing reduction from GI to Set-of-
Strings Isomorphism problem under Γ̂t groups is known. And as a corollary, the
Isomorphism of t-CR-bounded graphs can be decided in npoly log t time.

Similarly, a number of results with restricted group structures or graph classes
are known. For a more intricate survey of these results, we refer the reader to
[GN20].

39

References
[AT00] Manindra Agrawal and Thomas Thierauf. The formula isomorphism

problem. SIAM Journal on Computing, 30(3):990–1009, 2000.

[Bab15] László Babai. Graph isomorphism in quasipolynomial time, 2015.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Comput-
ing, pages 684–697, 2016.

[BCP82] László Babai, Peter J Cameron, and Péter P Pálfy. On the orders of
primitive groups with restricted nonabelian composition factors. Journal
of Algebra, 79(1):161–168, 1982.

[BES80] László Babai, Paul Erdos, and Stanley M Selkow. Random graph iso-
morphism. SIaM Journal on computing, 9(3):628–635, 1980.

[BKL83] László Babai, William M Kantor, and Eugene M Luks. Computational
complexity and the classification of finite simple groups. In 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983), pages 162–
171. IEEE, 1983.

[BLS87] L. Babai, E. Luks, and A. Seress. Permutation groups in nc. In Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’87, page 409–420, New York, NY, USA, 1987. Association
for Computing Machinery.

[BS20] Jendrik Brachter and Pascal Schweitzer. On the weisfeiler-leman di-
mension of finite groups. In Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 287–300, 2020.

[Cam81] Peter J Cameron. Finite permutation groups and finite simple groups.
Bulletin of the London Mathematical Society, 13(1):1–22, 1981.

[CC82] Alain Cardon and Maxime Crochemore. Partitioning a graph in
O(|A| log2 |V |). Theor. Comput. Sci., 19(1):85–98, 1982.

[CFI92] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound
on the number of variables for graph identification. Combinatorica,
12(4):389–410, 1992.

[CTW13] Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner. Graph
isomorphism is not ac0-reducible to group isomorphism. ACM Trans-
actions on Computation Theory (TOCT), 5(4):1–13, 2013.

40

[DW22] Heiko Dietrich and James B Wilson. Group isomorphism is nearly-
linear time for most orders. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 457–467. IEEE, 2022.

[GL21] Joshua A Grochow and Michael Levet. Weisfeiler-leman for group
isomorphism: Action compatibility. arXiv preprint arXiv:2112.11487,
2021.

[GN20] Martin Grohe and Daniel Neuen. Recent advances on the graph isomor-
phism problem. arXiv preprint arXiv:2011.01366, 2020.

[IS19] Neil Immerman and Rik Sengupta. The k-dimensional Weisfeiler-Leman
algorithm. arXiv preprint arXiv:1907.09582, 2019.

[Luk82] Eugene M. Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. Journal of Computer and System Sciences,
25(1):42–65, 1982.

[Luk99] Eugene M Luks. Hypergraph isomorphism and structural equivalence
of boolean functions. In Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 652–658, 1999.

[Mar02] Attila Maróti. On the orders of primitive groups. Journal of Algebra,
258(2):631–640, 2002.

[Mil78] Gary L Miller. On the nlog n isomorphism technique (a preliminary
report). In Proceedings of the tenth annual ACM symposium on theory
of computing, pages 51–58, 1978.

[Mil79] Gary L Miller. Graph isomorphism, general remarks. Journal of Com-
puter and System Sciences, 18(2):128–142, 1979.

[Mil21] James S. Milne. Group theory (v4.00), 2021. Available at
www.jmilne.org/math/.

[MP14] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism,
ii. Journal of symbolic computation, 60:94–112, 2014.

[Ser03] Ákos Seress. Permutation group algorithms. Number 152. Cambridge
University Press, 2003.

41

	Introduction
	Preliminaries
	Graphs
	Groups
	Strings

	The WL Algorithm
	The Color Refinement Algorithm
	The k-WL algorithm

	Basic Permutation Group Algorithms
	Schreier Sims Algorithm
	Other subroutines

	Reduction to String Automorphism
	Groups arising in the reduction to String Isomorphism

	Luks' Algorithm for String Isomorphism
	Babai's Algorithm for String Isomorphism
	Bottlenecks for Luks' Algorithm
	Ideal Domain
	Lifting
	Canonical Structures on the ideal domain
	Combinatorial techniques
	Local Certificates
	Master Algorithm

	Conclusion

