
UGP Report

Sankalp Mittal | 220963

April 2024

Contents

1 Introduction 3

2 Preliminaries 3
2.1 Basic Terminology . 3
2.2 Complexity Classes . 3
2.3 Restricted types of Circuits . 4

2.3.1 Multilinear Circuits . 4
2.3.2 Set-Multilinear Circuits 4

2.4 Restricted types of ABPs . 4
2.4.1 Set-Multilinear ABP (smABP) 4
2.4.2 Read-once Oblivious ABP (ROABP) 4

2.5 Restricted types of Formulas . 4
2.5.1 Multilinear Formulas . 4
2.5.2 Syntactic Multilinear formula 5

3 Hardness Bootstrapping 5

4 Presentable VNP 6
4.1 Approximate Circuits . 6
4.2 Interpolation . 7
4.3 Valiant’s Criterion . 7
4.4 Results . 7

5 Super-Polynomial lower bounds for Multi-Linear Formulas 8
5.1 Partial Derivative Matrix (or Coefficient Matrix) 8

5.1.1 Rank of the Matrix . 8
5.2 k-unbalanced . 9

5.2.1 k-unbalanced nodes . 9
5.2.2 k-unbalanced paths . 9
5.2.3 Central Paths . 9
5.2.4 k-weak node . 9

5.3 Results . 9
5.3.1 Random Partition and Assignment 10

1

6 Superpolynomial Lower Bounds for low depth Circuits 11
6.1 Hardness Escalation . 11
6.2 Polynomial Identity Testing (PIT) 11

6.2.1 PIT and Lower Bounds 12
6.3 Results . 12
6.4 Proofs for ∆ = 2 . 13

6.4.1 Relative Rank (relrk) . 13
6.4.2 Proof of Theorem 6.2, Corollary 6.3 and Corollary 6.4 . . 13

2

1 Introduction

This is a report on the UGP on Algebraic Complexity and a summary of what
was learnt during the semester.

The “Holy Grail” of Complexity Theory is the P
?

̸= NP problem. This
problem has been unexpectedly hard to solve.

Leslie Valiant hypothesised V P
?

̸= V NP problem as a stepping stone towards

the P
?

̸= NP problem.
Recent works in Complexity Theory have been trying to show the separation
between various classes that have sprung out of Valiant’s initial classes.

In this report, I will cover some attempts at finding out lower bounds for some
special cases.

2 Preliminaries

2.1 Basic Terminology

Firstly, we will introduce the basic definitions of a few terms which we will be
using

• Algebraic Circuit: An Algebraic Circuit is formally a Directed Acyclic
Graph with a unique sink vertex called the root such that each internal
vertex is labelled as + or ×.

• Formula: A formula is the same as a circuit with the constraint that any
node present in the formula can have at most one outgoing edge.

• Algebraic Branching Circuits: An ABP is a layered directed acyclic
graph with edges labelled with linear polynomials. There is a source vertex
(s) and a sink vertex (t).

2.2 Complexity Classes

• Algebraic Circuits are divided into two complexity classes Valiant’s P
(VP) and Valiant’s NP (VNP)

– VP: Consists of family of polynomials whose size and degree are both
polynomially bounded.

– VNP: Set of all families of polynomials f ∈ F[x1, x2, · · · , xn] such
that there exists a polynomial in VP, g ∈ F[x1, · · · , xn, y1, · · · , ym],
with m = poly(n) and,

f(x) =
∑

a∈{0,1}m

g(x,a)

3

• Formulas have defined on them class VF, it is the set of families of
polynomials, f ∈ F[x1, x2, · · · , xn] that can be represented by a formula
of size poly(n).

• Arithmetic Branching Programs have defined on them VBP, it is
defined as the set of the families of polynomials having an ABP of size
poly(n).

2.3 Restricted types of Circuits

2.3.1 Multilinear Circuits

A multilinear polynomial is one in which is homogeneous, each variable has
individual degree at-most 1.

A multilinear circuit is one that computes a mutilinear polynomial from
the subtree present at each of its nodes.

2.3.2 Set-Multilinear Circuits

Consider a partition of a set of variables {X1, X2 · · ·Xd}
A set-multilinear polynomial is one that is multilinear and and each mono-
mial has exactly one variable from each of the d sets.

A set-multilinear circuit is one that computes a set-mutilinear polynomial
with respect to a partition from the subtree present at each of its nodes.

2.4 Restricted types of ABPs

2.4.1 Set-Multilinear ABP (smABP)

Consider a partition of a set of variables {X1, X2 · · ·Xd} A set-multilinear
ABP is a d+1 layered ABP such that all labels on edges that go from i to i+1
have labels in a variable from Xi.

2.4.2 Read-once Oblivious ABP (ROABP)

An ABP is said to be oblivious if, for each layer, all the edge labels are uni-
variate polynomials in a single variable.
An ABP is called a read-once oblivious ABP (ROABP) if each variable
appears in at most one layer.

2.5 Restricted types of Formulas

2.5.1 Multilinear Formulas

An arithmetic formula is multilinear if the polynomial computed by each gate
of the formula is multilinear.

4

2.5.2 Syntactic Multilinear formula

If in a formula, at each multiplication node(v), the subformula(Φv) is such that
the set of variables in the subtree made at the two child nodes are disjoint, the
formula is called syntactic multilinear.

3 Hardness Bootstrapping

There is a theorem that shows how lower bounds on
∑

smABP can lead to the
separation of classes VBP and VNP.

Lemma 3.1. If a set-multilinear polynomial, with d sets each of size ≤ n can
be calculated by a ABP of size s, it can be calculated by a sum of smABP’s of
total width dO(d)s. [2]

Theorem 3.2. Let n, d be integers such that d = O(log n/log log n). Let Pn,d

be a set-multilinear polynomial in VNP of degree d. If Pn,d cannot be computed
by a

∑
smABP of width poly(n), then V BP ̸= V NP . [2]

Proof. From 3.1, we know that any ABP computing a set-multilinear polynomial
can be replaced by a similar sized (in the low degree regime) smABP and then,
we will proceed using proof by contradiction,
Using the assumption Pn,d cannot be computed note that the width of the∑

smABP is, nω(1), and dO(d)s ≥ nω(1). Using the fact d = O(log n/log log n)
we get dO(d) = poly(n), hence s = nω(1), and we have our desired seperation.

We need a few other lemmas to prove 3.1, these are as follows

Lemma 3.3. A degree d polynomial f that can be computed by an ABP of size
s can also be computed by an homogeneous ABP of width s and length d. [2]

Proof. To homogenize an ABP we will

• Divide each vertex,v into d vertices such that each vertex v(i) computes
the homogeneous part with degree i.

• Now, we will arrange all the vertex that compute the same degree in the
same layer. This gives width s and length d, hence 3.3.

• This works because a vertex v(i) can only have edges going to u(i) or u(i+1)

(each edge is labelled by a linear form).

Lemma 3.4. If a homogenous ABP of width w and length d for a set-multilinear
polynomial is needed, then the polynomial can be calculated by a

∑
smABP of

width d!w. [2]

5

Proof. We begin by writing the ABP for a sm-polynomial in its IMM form,

Pn,d =

d∏
i

Mi,

Here each M is a matrix with w × w entries that are linear forms. Write each
Mi =

∑d
j=1 Mij , such that each Mij has terms from the set Xj .

Pn,d =

d∏
i

d∑
j=1

Mij

We can ignore the non-set-multilinear terms, i.e. ignore the products having
terms like Mij ,Mi′j . This gives the form

Pn,d =
∑
π∈Sd

d∏
i=1

Miπ(i),

Hence we have a sum of d! smABP’s each of width w

Hence we can easily prove 3.1 using 3.3 and 3.4 back to back, using the fact

d! ≈ dO(d)

4 Presentable VNP

We will look at some definitions and techniques necessary to understand this
section.

4.1 Approximate Circuits

There are a few polynomials that can be computed approximately in VP, if we
just provide a little degree of freedom.
Instead of feeding polynomials in the inputs of the circuit we feed polyno-
mials in ϵ and then calculate the polynomial g ∈ F[ϵ][x1, · · · , xn]. We say
f ∈ F[x1, · · · , xn] is approximated by g to an order of approximation M if

g(x, ϵ) = ϵMf(x) + ϵM+1Q(x, ϵ)

If the size of g over the field F[ϵ] is in VP, then f is in VP.
If we restrict the class such that the polynomials in ϵ used must have polynomial-
sized circuits themselves, we get a new class called VPϵ. This is also called
presentable VP.
Similar classes can be defined in the cases of VNP.

6

4.2 Interpolation

Consider a polynomial P (x1, · · · , xn, y) and degyP = d then the polynomial can
be written as,

P (x1, · · · , xn, y) = P0(x1, · · · , xn) + P1(x1, · · · , xn)y + · · ·+ Pd(x1, · · · , xn)y
d

Consider d distinct constants α0, · · · , αn and let P (αi) = P (x1, · · · , xn, αi).
Each of the Pi can be calculated using the following matrix multiplication.

P0

P1

...
Pd

 =

1 α0 · · · αd

0

1 α1 · · · αd
1

...
...

. . .
...

1 αd · · · αd
d

−1

P (α0)
P (α1)

...
P (αd)

This method is used to find out the coefficients of one of the variables in any
polynomial.

4.3 Valiant’s Criterion

This is a theorem relating the coefficients of a polynomial to whether the poly-
nomial is in VNP.

Theorem 4.1. Let f =
∑

e cex
e be a polynomial in n variables of degree poly(n)

over a field F. Suppose that there exists a string function ϕ : {0, 1}∗ → {0, 1}∗
in #P/poly such that ϕ(⟨e⟩) = ⟨ce⟩. Then, the polynomial f is in VNP over the
field F.

4.4 Results

Theorem 4.2. Over any finite field V NP = V NP ϵ. [1]

Proof. To prove this we will show V NP ⊆ V NP ϵ and V NP ϵ ⊆ V NP .
The first containment is trivial from the definition. We will proceed as follows
for the second one
We have access to f ∈ VNPϵ using the approximation

g(x, ϵ) = ϵMf(x) + ϵM+1Q(x, ϵ)

This is of the hypercube form,

g(x, ϵ) =
∑

a∈{0,1}m

h(x, a, ϵ)

We will extract the coefficients of ϵMxe in g using interpolation and taking the
interpolation points to be the roots of unity. Consequently ce can be obtained
as a hypercube sum of an exponential degree circuit of polynomial size.

7

Using finite field arithmetic and the closure of the Boolean class #P under
exponential sums, we can go to the boolean world.

Thus, we can show that the algebraic circuit above can be replaced by a (multi-
output) Boolean circuit of polynomial size and the hypercube sum computing
the coefficient function is demonstrated in #P/poly.

Now using Valiant’s criterion (4.1) we can claim,

V NP ϵ ⊆ V NP =⇒ V NP ϵ = V NP

5 Super-Polynomial lower bounds for Multi-Linear
Formulas

We will be discussing the proof of the fact that multi-linear formulas for perma-
nent and determinant are of super-polynomial size; for this purpose, we will be
looking at some definitions and techniques necessary to understand this section.

5.1 Partial Derivative Matrix (or Coefficient Matrix)

Let f be a multilinear polynomial over the set of variables {y1, · · · , ym} ∪
{z1, · · · , zm}. For a multilinear monomial p in the set of variables {y1, · · · , ym}
and a multilinear monomial q in the set of variables {z1, · · · , zm}, denote by
Mf (p, q) the coefficient of the monomial pq in the polynomial f . Since the num-
ber of multilinear monomials in a set of m variables is 2m, we can think of Mf

as a 2m × 2m matrix, with entries in the field F .

For each node v, Φv represents the formula made by the subtree of v, and denote
by Yv the set of variables in {y1, · · · , ym} that appear in Φv and similarly Zv is
the set of variables in {z1, · · · , zm} that appear in Φv.

b(v) =
|Yv|+ |Zv|

2

a(v) = min(|Yv|+ |Zv|)
d(v) = b(v)− a(v)

5.1.1 Rank of the Matrix

We are interested in the rank of the matrix Mv. The following is a set of results
regarding the same.

1. Rank(Mv) ≤ 2a(v)

This result is easy to see as this is bounding the rank by the number of
non zero rows or columns, whichever is smaller.

8

2. Rank(Mv) ≤ Rank(Mv1)+Rank(Mv2)
This is a result that basically states

Rank(A+B) ≤ Rank(A) +Rank(B)

3. Rank(Mv) = Rank(Mv1)·Rank(Mv2)
This result is a direct result of the tensor product of two matrices.

5.2 k-unbalanced

5.2.1 k-unbalanced nodes

We say that a node v is k-unbalanced if d(v) ≥ k.

5.2.2 k-unbalanced paths

Let γ be a simple path from a leaf w to a node v of the formula. We say that
γ is k-unbalanced if it contains at least one k-unbalanced node.

5.2.3 Central Paths

We say that γ is central if for every u, u1 on the path γ , such that u1 is a direct
son of u (i.e., there is an edge from u1 to u), we have b(u) ≤ 2b(u1).

5.2.4 k-weak node

We say that a node v of the formula is k-weak if every central path that reaches
v is k-unbalanced.

5.3 Results

Lemma 5.1. Let Φ be a syntactic multilinear arithmetic formula over the set
of variables {y1, · · · , ym}∪{z1, · · · , zm} and let v be a node in Φ. If v is k-weak
then, [4]

Rank(Mv) ≤ |Φv| · 2b(v)−k/2

Proof. This can be proved by considering the base case of v being a leaf and
then conditioning based on if v is a

• k-unbalanced node

• plus gate

• product gate

We are aiming to show that |Φv| is small, for our final proof for lower bounds.

9

5.3.1 Random Partition and Assignment

X is the set of variables present in the formula. We think of X as a matrix of
variables with n rows and n columns. Let m = ⌈n1/3⌉.

First, choose, uniformly at random, for every i ∈ [m] two values qi, ri ∈ [n],
such that all the 2m chosen values are different. (We think of qi, ri as the
indices of rows). Then choose, uniformly at random, for every i ∈ [m] two ad-
ditional values si, ti ∈ [n], such that all the 2m chosen values are different. (We
think of si, ti as the indices of columns).
With equal probability, one of the following two assignments is done,(

xqi,si xqi,ti

xri,si xri,ti

)
−−−−−→

(
yi zi
1 1

)
(
xqi,si xqi,ti

xri,si xri,ti

)
−−−−−→

(
yi 1
zi 1

)
All other variables in X are assigned values in {0, 1}.

Lemma 5.2. Let Φ be a syntactic multilinear arithmetic formula over the set of
variables X = {xi,j}i,j∈[n], such that every variable in X appears in Φ, and such

that |Φ| ≤ nϵlog n where ϵ is a small enough universal constant (e.g., ϵ = 10−6).
Let A be a random assignment to the variables in X, as above. Then, with
probability of 1− o(1) the formula A is k-weak, for k = n1/32. [4]

We show that with a very large probability, the formula after the assignment
A is k-weak for k = n1/32.

Proof. We will show that for every vi, the probability that vi is not k-unbalanced
is smaller than O(n−δ), even when conditioning on the event that v1, · · · , vi−1

are not k-unbalanced.

Here we require k = n1/32 this is as during the construction of the proof, we
require that d(vi) < k is not true and as d(vi) has to be an integer which has
the probability of O(k · n−1/16), for this to be of the required order O(n−1/32)
we need k = n1/32.

Theorem 5.3. Any multilinear arithmetic formula for the permanent or the
determinant of an n× n matrix (over any field) is of size nΩ(log n). [4]

Proof. Permanent and determinant follow similar proofs, we use proof by con-
tradiction, assume that |Φ| ≤ nϵ log n.
Let A be a random assignment to the variables in X, as defined earlier. Then, ΦA

is a syntactic multilinear arithmetic formula over the set of variables {y1, · · · , ym}∪
{z1, · · · , zm}. With probability of 1 − o(1) the formula ΦA is k-weak, for
k = n1/32. Hence, with a probability of 1− o(1).

Rank(MΦA
) ≤ nϵ log n · 2m−k/2 < 2m (1)

10

At the other hand, since the output of Φ is the permanent of X, the output of
ΦA must be the permanent of the matrix {A(xi,j)}i,j∈[n]. By the definition of
A, the permanent of that matrix is always,

f(y1, · · · , ym, z1, · · · , zm) ≡
m∏
i=1

(yi + zi)

And the determinant of that matrix is,

g(y1, · · · , ym, z1, · · · , zm) ≡
m∏
i=1

(yi − zi)

Note that Mf is a permutation matrix, because for every multilinear monomial
p in the set of variables {y1, · · · , ym} there is exactly one multilinear monomial
q in the set of variables {z1, · · · , zm} such that Mf (p, q) = 1 (and otherwise
Mf (p, q) = 0), and vice-versa. Hence,

Rank(MΦA
) = Rank(Mf) = 2m

This is in direct contradiction to 1, and hence our initial assumption was wrong,
and the bounds are superpolynomial.

6 Superpolynomial Lower Bounds for low depth
Circuits

The following basic definitions would be helpful in this section. This section is
based on proving superpolynomial lower bounds for constant-depth arithmetic
circuits.

6.1 Hardness Escalation

This is a technique used to prove lower bounds on more general circuits by
proving lower bounds on restricted forms on arithmetic circuits.
This is widely used in proving results in many areas of computational complexity.

6.2 Polynomial Identity Testing (PIT)

PIT is the problem of efficiently determining whether two multivariate poly-
nomials are identical. More formally, a PIT algorithm is given a circuit that
computes p in a field and decides whether p is the zero polynomial. Finding
deterministic algorithms for PIT is one of the most important open problems
in algebraic computing complexity.

11

6.2.1 PIT and Lower Bounds

People have shown that superpolynomial lower bounds for general algebraic
circuits imply deterministic sub-exponential time algorithms for general PIT.
It has also been shown that the hardness of constant-depth circuits implies
deterministic PIT for constant-depth circuits.

6.3 Results

Theorem 6.1. Let N, d,∆ be growing parameters with d = o(log N). As-
sume F has characteristic 0 or greater than d. There is an explicit polynomial
PN,d(x1, · · · , xN) that has no algebraic circuits of product-depth ∆ and size at

most Ndexp(−O(∆))

. [3]

Theorem 6.2. Assume d ≤ (log n)/100. For any product-depth ∆ ≥ 1, any
set-multilinear circuit C computing IMMn,d of product-depth at most ∆ must

have size at least ndexp(−O(∆))

. In the particular case that ∆ = 2, the size of C

must be at least nΩ(
√
d). [3]

Any homogeneous circuit computing a set-multilinear polynomial can be
converted into a set-multilinear circuit of the same depth and size s · dO(d),
combining with 6.2 we get,

Corollary 6.3. Assume d ≤ (log n)/100. For any product-depth ∆ ≥ 1, any
homogeneous circuit C computing IMMn,d of product-depth at most ∆ must

have size at least ndexp(−O(∆))

. In the particular case that ∆ = 2, the size of C

must be at least nΩ(
√
d). [3]

Any (possibly non-homogeneous) algebraic circuit of product depth ∆ and
size s computing a homogeneous polynomial P of degree d can be converted to
a homogeneous circuit for P of product-depth 2∆ and size poly(s) · dO(d). This
conversion assumes that the underlying field has characteristic 0 or greater than
d. Combining with Theorem 6.2 we get,

Corollary 6.4. Assume d ≤ (log n)/100 and char(F) = 0 or greater than d.
For any product-depth ∆ ≥ 1, any algebraic circuit C computing IMMn,d of

product-depth at most ∆ must have size at least ndexp(−O(∆))

. In the particular

case that ∆ = 1, the size of C must be at least nΩ(
√
d). [3]

This will allow us to directly show 6.1 as here N = dn2, and this allows us
to say log n/100 = o(log N).

6.2 also allows us to prove the following theorem for constant-depth Algebraic
circuits. This means that circuits of depth Γ are superpolynomially more pow-
erful than circuits of depth Γ− 1.

Theorem 6.5. Assume that the underlying field F has characteristic 0. For
any constant Γ ≥ 2 and s a growing parameter, there exists a set-multilinear

12

polynomial QΓ of depth Γ and size s such that any depth (Γ−1) circuit computing
QΓ must have size sω(1). [3]

Using the PIT and Lower Bound relation we can also derive the following
result,

Corollary 6.6. Let µ > 0 be a real number and F a field of characteristic 0.
Let C be an algebraic circuit of size s ≤ poly(n), depth ∆ = o(log log log n)
computing a polynomial on n variables, then there is a deterministic algorithm
that can check whether the polynomial computed by C is identically zero or not
in time (s∆+1 · n)O(nµ). [3]

Listing down the ideas for all these proofs is out of the scope of this report,
so we will be listing down only the proof ideas for some of the results for the
special case of ∆ = 2.

6.4 Proofs for ∆ = 2

6.4.1 Relative Rank (relrk)

Consider the set of words on an alphabet A ⊆ Z\{0}. Let w = (w1, · · · , wd) ∈
Ad. For S ⊆ [d], let ws denote

∑
i∈S wi and Pw = {i|wi ≥ 0} and Nw = {i|wi <

0}.
We say w ∈ Ad is b-unbiased if |w[d]| ≤ b for every t ≤ d.
Let MP

w and MN
w denote the sets of set-multilinear monomials over only the

positive and only the negative variable sets.
Define Mw(f) as the matrix of size |MP

w | × |MF
w |. Where the coefficient at the

entry (m1,m2) is the coefficient of the monomial m1m2 in f . Then define the
relative rank as,

relrkw(f) =
rank(Mw(f))√
|MP

w | · |MF
w |

The following properties are similar to the previous section

1. relrkw(f) ≤ 2−|w[d]|/2

2. relrkw(f + g) ≤ relrkw(f) + relrkw(g)

3. If f = f1 · f2 · · · · · ft, then

relrkw(f) =
∏
i∈[t]

relrkw(fi)

6.4.2 Proof of Theorem 6.2, Corollary 6.3 and Corollary 6.4

Lemma 6.7. Let w ∈ Ad be any word which is b-unbiased. If there is a set-
multilinear circuit computing IMM2b,d of size s and product-depth ∆ then there
is also a set-multilinear circuit of size s and product-depth ∆ computing a poly-
nomial Pw ∈ Fsm[X(w)] such that relrkw(Pw) ≥ 2−b/2. [3]

13

Claim 6.8. Let d ≥ 16 and k > 2
√
d be an integer. Let w be any word of length

d on the alphabet {−k, ⌊k − k/
√
d⌋}. Then, any set-multilinear formula C of

product depth 2 and of size s satisfies. [3]

relrkw(C) ≤ s · 2−
k
√

d
8

Proof. This is proved by dividing C as C = C1 + . . . Ct where each Ci is of the
form

∏∑∏∑
and then we make cases based on if Ci has degree ≥

√
d/2.

Using the two above results, we can obtain the following results,
Fix k = ⌊log2n⌋ =⇒ k > 2

√
d, We can construct by induction a word w on the

alphabet which is k-unbiased, if |w|[i] ≤ 0, we choose wi+1 = ⌊k − k/
√
d⌋, else

choose wi+1 = −k.

s ≥ 2
k
√

d
8 2−k ≥ 2(log2n)

√
d

8 −log2n ≥ n
√

d
8 2−

log2n
16 −log2n ≥ n

√
d

8 − 17
16

Lemma 6.9. For n ≥ 4
√
d+1, any set-multilinear circuit C of product-depth 2

computing IMMn,d has size at least nΩ(
√
d). [3]

This directly proves 6.2 and 6.3 for ∆ = 2 and 6.4 for ∆ = 1 as the product
depth doubles on homogenisation.

14

References

[1] C.S. Bhargav, Prateek Dwivedi, and Nitin Saxena. Learning the coefficients:
A presentable version of border complexity and applications to circuit fac-
toring. 2023.

[2] C.S. Bhargav, Prateek Dwivedi, and Nitin Saxena. Lower bounds for the
sum of small-size algebraic branching programs. 2023.

[3] Nutan Limaye, Srikanth Srinivasan, and Sebastien Tavenas. Superpolyno-
mial lower bounds against low-depth algebraic circuits. 2021.

[4] Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. 2009.

15

	Introduction
	Preliminaries
	Basic Terminology
	Complexity Classes
	Restricted types of Circuits
	Multilinear Circuits
	Set-Multilinear Circuits

	Restricted types of ABPs
	Set-Multilinear ABP (smABP)
	Read-once Oblivious ABP (ROABP)

	Restricted types of Formulas
	Multilinear Formulas
	Syntactic Multilinear formula

	Hardness Bootstrapping
	Presentable VNP
	Approximate Circuits
	Interpolation
	Valiant's Criterion
	Results

	Super-Polynomial lower bounds for Multi-Linear Formulas
	Partial Derivative Matrix (or Coefficient Matrix)
	Rank of the Matrix

	k-unbalanced
	k-unbalanced nodes
	k-unbalanced paths
	Central Paths
	k-weak node

	Results
	Random Partition and Assignment

	Superpolynomial Lower Bounds for low depth Circuits
	Hardness Escalation
	Polynomial Identity Testing (PIT)
	PIT and Lower Bounds

	Results
	Proofs for =2
	Relative Rank (relrk)
	Proof of Theorem 6.2, Corollary 6.3 and Corollary 6.4

