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Chapter 1

Introduction

In this chapter, we introduce the problem studied in this thesis, and state the main
results.

1.1 The problem

This work concerns the arithmetic geometry of varieties over finite fields. Specifically,
the focus is on effective methods and algorithms. The main motivation is the following
fundamental question of Serre | , Preface].

Question. Let X be a Z — scheme of finite type. Does there exist an algorithm that, on
input a prime p, computes the point count #X (F,) of the reduction X in time polynomial
in log p?

Equivalently, one asks for the computation of the local zeta function
Z(X/Fp,T) = exp Z#X(ij)7 : (1.1)
j=1
Fix a prime ¢ coprime to q. From the Weil conjectures for X, we know that

P(X/F,,T)--- Py_1(X/F,,T)
Po(X/F,, T Py (X F,, T)

Z(X/F,,T) =

where P,(X/F,,T) := det (1 — TF; | H(X,Qy)) is the (reversed) characteristic polyno-
mial of the geometric Frobenius acting on the i*" ¢ — adic étale cohomology group of
X. The question is well understood in certain cases, due to the work of Schoof | ]
addressing elliptic curves, and Pila | | addressing curves and abelian varieties.

In | , Epilogue], the existence of an algorithm that computes the point count
#X (F,) of a surface X in time polynomial in log ¢ is conjectured. We prove this conjecture
by exhibiting an algorithm that computes the action of Frobenius on the étale cohomology
groups with torsion coefficients H (X, Z/¢Z), for primes ¢ = O(logq), from which the
zeta function of X, and thereby its point count, can be recovered by a Chinese-remainder
process.
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1.2 Main results

Let X C PN be a smooth, projective geometrically irreducible variety of dimension n and
degree D, over a number field K, presented via homogeneous forms fi,..., f,,. Let p be a
prime of good reduction, write F, := Ok /p and denote the variety X /F, upon reduction.

Theorem 1.1. There exists a polynomial ®(x) € Z[x] independent of ¢ and deg X = D,
such that for any extension Fg/F, with

[Fq : Fo] > ®(D),
we have for any uy,uy € U(Fg) chosen uniformly at random,
Poi(X/FqQ, T) = ged (Po1(Xu, [Fo, T), Poo1(Xuy [Fo, T)) 5
with probability > 2/3.

This is proved as Theorem 3.21. Considering the embedding dimension N to be fixed,
one obtains the following algorithmic consequence, via an application of the Lefschetz
hyperplane theorem.

1

Corollary 1.2. There is a randomised polynomial time reduction for zeta function com-
putations of smooth projective varieties to the middle cohomology.

Let X C PY now be a fixed smooth, projective geometrically irreducible surface
of degree D, over a number field K, presented via homogeneous forms fi,..., f,,, each
having coefficients of Weil height bounded by H € R.y. Let p be a prime of good
reduction and write F, := Ok /p.

Theorem 1.3. There exists an algorithm, that, on input X and a prime p as above,
outputs Z(X /F,, T) in time bounded by a polynomial in logq.

This is proved as Theorem 6.6.

A common permeating theme in the proofs of the results is the yoga of vanishing cycles,
originally due to Picard and Lefschetz, adapted to the ¢ — adic setting by Grothendieck,
Katz and Deligne.

1.3 Prior work

It is possible to interpret (1.1) via a trace formula in a suitable Weil cohomology the-
ory. Examples include ¢-adic cohomology, for primes ¢ distinct from the characteristic,
developed by Grothendieck | ]; and rigid cohomology, an extension of crystalline co-
homology due to Berthelot | |. In general, algorithms for computing the zeta function
can be classified broadly into two distinct families, ¢-adic or p-adic, usually based on the
nature of the cohomology theory being employed. The progenitor of the f-adic class of
algorithms is the work of Schoof | |, who gave an algorithm to compute the zeta
function of an elliptic curve over F, with complexity polynomial in logg. This method
was generalised by Pila | | to curves (of fixed genus g), and abelian varieties, with

las is the case with algorithms
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improvements for some special cases due to Huang-Terardi [ ] and Adleman-Huang
[ |. The complexity of these algorithms, while polynomial in logq is exponential or
worse in g. A common theme is the realisation of the étale cohomology H'(X, y,) as the
(-torsion Pic’(X)[/] in the Picard scheme. This has, so far, limited their application to
varieties where this realisation can be made explicit, namely curves and abelian varieties.
There has been work showing the computability of étale cohomology in higher degrees as
well | |, but it has not proven amenable to complexity analysis yet.

On the other hand, p-adic methods encompass a more diverse range of algorithms.
Some early examples are Satoh’s algorithm for elliptic curves | | using canonical
lifts and Kedlaya’s algorithm for hyperelliptic curves | | using Monsky-Washnitzer
cohomology (and extensions thereof | , ]). Lauder-Wan | ], inspired by
work of Dwork on the rationality of the zeta function | |, proposed a more general
algorithm capable of handling arbitrary varieties. Lauder | | also developed an
algorithm for hypersurfaces based on p-adic deformation theory. More recently, there is
the ‘non-cohomological’ work of Harvey | |, who devised an algorithm based on a
novel trace formula. The complexity of these algorithms, while polynomial in the degree
D of the variety, is exponential in logp. A common theme is that they involve a p-adic
lift of the Frobenius, which necessitates working with O(p) monomials in the basis for
the respective p-adic cohomology theory.

1.4 Leitfaden

The thesis is divided into two independent but related results. In Part I, we begin with
an introductory chapter discussing the complexity of counting points on curves, based on
the work [ , §2], which is joint with Roy and Saxena. Chapter 3 is on an effective,
probabilistic version of Deligne’s ged theorem, based on joint work with Kweon | .
It contains material on bounding torsion in the Betti cohomology of varieties (3.2), fol-
lowed by a revisit of the theory of Lefschetz pencils and monodromy (3.3, 3.4), which
combined with certain probability estimates on linear algebraic groups (3.5), culminates
in the proof of the theorem (3.6).

Part II is based on joint work with Saxena [ |, which resolves a conjecture of Cou-
veignes and Edixhoven in computing the étale cohomology groups with constant torsion
coefficients of a surface, thereby providing an algorithm to count points on surfaces in
polynomial time. After a preliminary chapter on cohomology computations (4), we recall
and develop new subroutines to compute monodromy and vanishing cycles (5), followed
by a description of the main algorithm (6), complexity analyses (7), and a collection of
supplementary but known material (8) that is useful for the algorithm.

The results of this thesis are original unless otherwise stated.
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Curves and more
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Chapter 2

Zeta function of curves

In this chapter, we present an AM N coAM protocol for certifying the zeta function of a
curve C'/F,. We assume the input to be a smooth, projective, absolutely irreducible curve
Cy C PV of genus g > 0 and degree §, presented as a system of homogeneous polynomials
f1, .., fm with coefficients in [F;, and of degree < d. Denote by C' the base change to the
algebraic closure F,. The zeta function has the form

P (C/ an T)
(1 =T)(1—qT)’
where P(C/F,,T) € Z[T] is of degree 2g, with constant term 1. We will certify
P (C/F,,T) and the abelian group structure of the Jacobian variety over the base field,

addressing a question of Kedlaya | , §9] on verifying the order of the Jacobian as a
black-box group.

Z(C/F,,T) =

Theorem 2.1 (Zeta & Jacobian). Given an input polynomial P(T) € Z[T], deciding
whether P(T) is the numerator polynomial of the zeta function of the smooth, projective
curve C, given as above (with variable glogq), is in AM N coAM. Moreover, given a
finite Abelian group G (via additive generators), the verification problem

G L Jac(C)(F,) dsin AMNcoAM.

We begin with the preliminary sections 2.1 and 2.2 consisting of standard material.
The AM N coAM protocol of Theorem 2.1 and its proof is presented in 2.3.

2.1 Preliminaries

A divisor D on C'is a formal sum D = "7 n;P;, where P, € C(F,) and n; € Z \ {0}.
The set of points P; occurring in the sum above is called the support of D. The sum
>, ni is called the degree of D.

We denote the group of divisors by Div(C') and the subgroup of degree zero divisors
by Div?(C). Let K denote the function field of C. We have a map div : K* — Div’(C),
sending a function to the sum of its zeros and poles. The image of this map is called the
subgroup of principal divisors, denoted DivP"(C'). We call a divisor D effective, if n; > 0
for all ¢, which we denote by D > 0.

Definition 2.1. There exists an abelian variety (of dimension g) called the Jacobian,
denoted Jac(C'), whose [ -rational points correspond to elements of the quotient group
Div’(C)/DivP ().

11
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Let D be a divisor on C'. We recall the Riemann-Roch space of D.
L(D) :={fe K" |div(f)+ D >0}U{0}.
Further, denoting by K¢ the canonical divisor of C'; the Riemann-Roch theorem states
dim £(D) = deg(D)+1—g+dimL(Kc — D).

Addition on the Jacobian is performed by using an effective Riemann-Roch theorem.
However, in order to invoke algorithms | , | computing the Riemann-Roch
spaces, we first reduce our curve to a planar model.

In particular, we seek to find a curve C’ C P? birational to C, given by a homogeneous
form F. A singular point P € C’ is said to be a node if it is an ordinary double point,
i.e., has multiplicity two, with distinct tangents. A curve is nodal if all its singularities
are nodes. We recall | , IV.3.11].

Lemma 2.2 (Planar model). Let C C PV be as above. There is a randomised algorithm
that computes a nodal curve C' C P? and a birational morphism ¢ : C — C' that runs in
time polynomial in glogq.

Proof. We describe how to obtain an equation defining C” algorithmically. The key idea
is to choose a random point O € PV, with O ¢ C, and project C' onto a hyperplane
from O. For generic O (lying outside any secant or tangent of C') and N > 4, the
resulting map is an embedding. Repeating the process, we get a sequence of morphisms
C — PNl — ... — P3 Again, generically!, by [ , Theorem V.3.10] for O € P3,
the image of the projection of C' from O onto P? has at worst nodal singularities. Denote
by ¢ : C — P? the composite morphism of all projections. It is a birational morphism
with deg(¢(C)) < 6. Therefore, the polynomial F' cutting out C’ in P? has total degree
at most 6. Writing the linear projection ¢ explicitly and computing the image of ©(5?)
many points P; € C', we can recover F' by a bivariate interpolation algorithm. [

Sampling points in C(FF,;) (which exist after an extension) can be achieved in ran-
domised polynomial-time as follows. Consider an affine piece of C'in AY (with coordinates
(y1,--.,yn)) by taking the complement of a hyperplane. Fixing a value of ; amounts to
intersecting with a hyperplane in AV, giving a finite set of points. The Weil bound (see
Theorem 2.3 below) for C' guarantees that with high probability, after 2¢g < 442 fixings of
y1 in Fy, the resulting zero-dimensional system has [ -rational points. Extracting them
can be done in randomised polynomial-time by using the main result of | ] for the F,
-root-finding of a zero-dimensional N-variate system.

We conclude this section with a statement of the Weil-Riemann hypothesis for curves

[ : Ik
Theorem 2.3 (Weil). |#C(F,) — (¢+ 1)] < 29,/7 .

2.2 Jacobian arithmetic

Recall the standard results showing that elements of Jac(C)(F,) can be presented con-
cisely and divisor arithmetic therein can be performed efficiently. We know by | ,
§8] that C' injects into its Jacobian, by the choice of a rational point, which we call cc.

'the locus of ‘bad’ projections forms a subvariety of P? of dimension at most 2, with degree bounded
by a polynomial in ¢ := deg(C'). Hence, this locus can be avoided with high probability at the cost of a
field extension of degree at worst poly(d).
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and a unique effective

Lemma 2.4 (Reduced form). Given D € Jac(C), 30 <1 < g an
) (C)(Fy).

<
divisor E of degree g — i such that D = E — (g —i)(00) in Jac
Proof. By the Riemann-Roch theorem, we have dim £(D + g(o0)) = 1+dim L(K¢c—D —
g(00)) > 0. Iteratively, subtracting oo from the divisor D + g(c0), we choose the largest
0 < i < g so that dim £L(D + (g — 7)(00)) is still positive. In particular, for such an i,
we have dim £(D + (g —i)(0c0)) = 1. Thus, one gets a ‘unique’ (upto a constant) rational
function f in the basis of £(D + (g — ic0)). Therefore, one obtains a unique effective
divisor E := div(f)+ D+ (g—1i)(c0) > 0, which is the same as saying D = E— (g—1)(00)
in the arithmetic of Jac(C)(F,). O

We recall next a method to compute bases of Riemann-Roch spaces.

Proposition 2.5 (Riemann-Roch basis). Let D be a divisor on a curve C' of degree and
support-size < §. A basis of the Riemann-Roch space L(D) can be computed efficiently
in O(6'%logq) time.

Proof. After computing a plane model ¢ : C' — C’ C P? one uses | , §2] to compute
the Riemann-Roch space of a divisor on the normalisation of C” (which is isomorphic to
(). While | | requires the singular points of C” to lie over the base field (essentially
to ensure an efficient resolution of singularities), this can be bypassed by using | ]
instead. The complexity follows from | , §2.5]. This strategy was also utilised in the

algorithm of | , 86] as a preprocessing step to do basic arithmetic in the class group
(=Jac(C)). O

Using Proposition 2.5, we can now check when a divisor of degree zero is trivial
in the Jacobian. Recall that for D € Div’(C), we have dim £(D) = 1 if and only if
D e DivP"(C). This implies the following.

Lemma 2.6 (Zero test). Given D € Div’(C), whether D € DivP'(C) is testable in
polynomial time. In other words zero-tests in Jac(C') can be performed in polynomial
time.

Combining Lemma 2.4, Proposition 2.5 and Lemma 2.6, one obtains a polynomial
time algorithm to put a given divisor D € Jac(C)(F,) into reduced form. Indeed by
Lemma 2.4, one knows that the support of D can be chosen to be of size at most poly(g).
Then, Proposition 2.5 can be applied to obtain the effective divisor £ and the integer 1,
so that D = E — (g —i)oo is in reduced form as an element of Jac(C).

Remark. The points occurring in the support of the effective divisor E associated to the
reduced form of D in the above description each lie in a poly(g) extension of F,. However,
one never needs to go to an extension of F, containing all of them simultaneously (which
may be exponentially large in degree). The issue is handled exactly the same way in
[ , §6]. See also | , §3] for more on this implicit representation of divisors used
in their algorithm to do Jacobian arithmetic.

We are now ready to describe a randomised polynomial-time Algorithm 1 to compute
the sum of two elements in Jac(C') in the canonical representation described above.
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Algorithm 1 Adding two points on the Jacobian
o Input: Two divisors Dy = £} —my(00) and Dy = Ey —may(00) of degree zero, with
my,me < g lying in the Jacobian of a smooth projective curve C'/FF,, presented in
the reduced form as per Lemma 2.4.

e Output: D3 = D; + D, as D3 = E3 — mg(oo) where Ej is effective of degree mis.

1: (Reduction loop) For each i, compute £(D+ Dy + (g —i)(00)) using Proposition 2.5,
starting from ¢ = 0. If dim £(D;+ Dy+ (g —1)(00)) = 1 then we get a unique effective
divisor E :=div(f) + D1+ Dy + (g — i)(00), where the representation of div(f) can
be found in randomised polynomial-time [ ]. Choose the largest such i and set
mg=g¢g—iand F3 =F.

2: Output E3 — mg(00).

2.3 AMNcoAM protocol

In this section, we present an AM N coAM protocol to certify the order (and group
structure) of Jac(C)(IF,). We then show how to certify the zeta function of C' using this.
We first recall a result of Weil | , pp.70-71] which generalises a theorem of Hasse
[ , p-206] from elliptic curves (g = 1) to abelian varieties (g > 1).

Proposition 2.7 (Hasse-Weil interval). For an abelian variety A of dimension g over
the finite field F,, the number of F,-rational points is in the following range:

(Va—1* < #A(F,) <(Vq+1)*.

Reduced gap. Given an input curve of genus g we want to choose ¢ so that the above
gap is small enough, namely, ((/g+1)/(/g — 1))* < 2. In particular, we require

log 2 log2  (log2)?
<21/29:exp(0g >:1+Og +(og)+

1
* 2g 2g 8g?

2
Ji—1
Truncating, we notice that ¢ > (8¢ + 1)? suffices.

Hash functions are pseudorandom maps from large strings to small strings, in a way
that minimizes collision as much as possible. Let h : {0,1}" + {0,1}*;: k < n be from a
hash family. We require that for X € {0,1}" and a random Y € {0, 1}*, Prjy[h(X) =
Y] = 1/2*. One can show that, for a random k x n matrix A over Fy, and a random
vector b € {0,1}*, h : X — AX + b satisfies this property (see | , Theorem 8.15]).
Using this concept, Algorithm 2 is the AM N coAM protocol to verify the Jacobian size,
over Fg D F, assuming @ > (8¢ + 1)%

Lemma 2.8 (Probability of Algorithm 2). In Algorithm 2 (given candidate N), if
#Jac(C)(Fg) = N, then Arthur accepts with probability > 2/3. Else, Arthur rejects
with probability > 2/3.

Proof. We adapt the protocol from | , §9.4]. Let S C {0,1}?9°6@ denote the set
Jac(C)(Fq) with the elements written as binary strings. Let G be the group generated
by the divisors D;’s that Merlin provided. Suppose it has size N, as Merlin claimed. In
particular, G = S as we have made the Hasse-Weil ‘gap’ small enough so that only a
unique multiple of A" can lie in that interval. For a random y € {0,1}**! and a random



2.3. AM N coAM PROTOCOL 15

Algorithm 2 Verifying the size and structure of the Jacobian of C'/Fq

Input: A smooth projective curve C C PV of genus ¢ and degree §, given by polynomials
(fi)i<i<m- A candidate integer N lying in the Hasse-Weil interval. Set L: 2571 < A < 2%,

1: Arthur: Choose a random hash function A : {0,1}291°8Q — {0, 1}L+1 by picking a
matrix A and a vector b randomly as stated above. Pick a random y € {0,1}£+!
and send (h,y) to Merlin as a challenge. Note: Arthur could send O(L) many
such independently chosen pairs (h,y) to reduce the error probability exponentially.
Below, we use only one pair for the simplicity of exposition.

2: Merlin:

 Pick r generators D; € Jac(C)(Fg) (i € [r]) such that
Jac(C)(Fg) ~ (D1) x ...x (D,)

with each D; of order n;, with n;|n;1 and [[;_, n; = N. Each D; is presented
in canonical form as D; = E; — m;(c0), with E; effective of degree m;. The
divisors E; in turn are presented as a sum of Fg — rational points of C, each
defined over an extension of F¢ of degree at most poly(g) thanks to Lemma 2.4.

 Send a response consisting of r quadruples {(¢;, D;, n;, P;) }1<i<, with the claim
that the divisor ) . ¢;D; =: z, for ¢; € Z/n;Z, satisfies h(z) = y. Every P, is
a set of pairs: each consisting of a prime factor of n; and the corresponding
exponent in its factorisation.

3: Arthur:

o Check whether D; indeed represents a point in Jac(C)(Fg). This is done by
evaluating the Frobenius Fy on D; = E; — m;(00) and checking for invariance.
If not, Reject.

o Check the factorization data P; of each n;. Check the order n; as follows: verify
n;D; = 0, and for each distinct prime factor p; ; of n;, verify (n;/p;;)D; # 0.
Check that N = [[;_, n;. If a check fails, Reject. Calculate z = ). ¢;D;.

o Check h(z) = h(>_,¢;D;) =y, if yes then Accept; otherwise Reject. All the
checks can be easily performed by Arthur using: basic arithmetic, or Algorithm
1, combined with the standard trick of repeated-doubling.
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hash function h (chosen from a uniform distribution over matrices A and vectors b such
that h: x — Az +b), the probability that there is an x € G = S, such that h(z) = y is

#s> 1 _(#S) 1 45 (#9)?

Pri3z € G =35, h(z) =y| > (

1 ) 9L+l 9 | " 92(L+1) oL+1  92(L+1)+1
#5S #S #S

from the inclusion-exclusion-principle, and applying the inequality 2¢7! < #5 = A < 2%,

Conversely, suppose #S # N, as Merlin bluffed (so, G # S). Since Arthur checked
that the product of the orders of the divisors D;’s equals N, we deduce that #G < #S5/2
(as the order of the subgroup G properly divides that of the group S). So, simply by the
union-bound we get

(2.2)

Pr[3z € G, h(z) = y] < (#g) L < 5. 25

1 ) 9L+t = Y7 9Lyl

Thus, Eqns.2.1-2.2 have a noticeable difference in the probability estimate. Now, we can
repeat, with Arthur choosing several (h,y) pairs, take the ‘majority vote’, and use the
Chernoff bound | , §7.4.1]. This amplification trick brings the probabilities above
2/3 (in Eqn.2.1) and below 1/3 (in Eqn.2.2) respectively. The number of repetitions will
be inverse-polynomial in #S /251 > 1/4; which is only a constant blowup in our time
complexity. O

Remark. The steps of Merlin require exponential resources (i.e. Step 2), so we do not know
how to compute them in polynomial-time in practice. The purpose is to only provide a
concise certificate, using which Arthur can verify the Jacobian-size efficiently and reliably
(with high probability).

Lemma 2.9 (Complexity of Algorithm 2). Arthur’s verification algorithm runs in ran-
domised polynomial-time.

Proof. Step 1 simply involves addition and multiplication, of matrices over Fy, so it
needs poly(glog@) = poly(glogq) time. In Step 3, since the number of prime factors
of any integer n is O(logn), the prime factor checking computation can be performed
in poly(log ') time. Applying the Hasse-Weil bound, this is poly(glogq) time. For the
Jacobian arithmetic, Arthur uses Algorithm 1 and repeated-doubling. This sums up the
complexity of our protocol to poly(g, log q)-time. O

The zeta function is intimately connected to the order of the Jacobian. From | ,
§8]:
Lemma 2.10 (Count to zeta function). Assume we are given #Jac(C)(F), for every
1 < j < max(18,2¢g). Then, P\(C/F,,T) can be reconstructed from these counts, in
poly(glog q)-time.

Kedlaya | , §8] also shows the following, connecting the zeta function of a larger
Frobenius to that of a smaller Frobenius.
Lemma 2.11 (Base zeta function). Let primes my, my with my < mo, be such that m;—1
is divisible by a prime greater than 2g, for j € {1,2}. Assume further that ¢™ > (8g+1)2.
Then, P(C/F,,T) can be recovered from Py(C/Fm;,T), j € {1,2}, in time polynomial
in glogq. Further, the existence of such my, my bounded by a polynomial in glogq is
quaranteed. >

by [ , Theorem 1.2]
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Proof of Theorem 2.1. Using Algorithm 2, we can verify the structure of Jac(C)(Fg)
for any Q@ > (8¢ + 1)2. This implies P(C/F,,T) can be certified by first certifying
P (C/Fymi,T) and P(C/Fyms,T) and next applying Lemma 2.11. Each P (C/Fm;,T)
can be computed, uniquely, using the counts #Jac(C)(F im; ), for 1 < i < max(18, 2g),
by Lemma 2.10. This completes the proof of the first part of the theorem, verifying the
zeta function.

Group structure. In the second part of the theorem statement, suppose a candidate
G has been provided via additive generators { Ay, ..., A}, with each A; of order n; such
that G decomposes as a direct sum of the subgroups (A4;), where n; | n;11. We need to
verify whether Jac(C)(F,) ~ G. For this, Merlin first convinces Arthur of the structure
of Jac(C)(Fg), and provides the additive generators for @ > (8¢g+1)?. Using this, Arthur
can compute P, (C/F,,T), thereby obtaining the count #Jac(C)(F,) = P,(C/F,, 1). For
the subgroup Jac(C)(F,) C Jac(C)(Fg), Merlin presents divisors D; with support in
C(Fg), that are candidates corresponding to each A;. Arthur first checks whether the D;
all belong to Jac(C')(F,) (by evaluating the ¢g-Frobenius on them and verifying invariance).
Next, Arthur verifies the independence of the D; as in Algorithm 2. This provides a lower
bound for #G. Comparing it with the verified count #Jac(C)(IF,) certifies the structure.
The proof then follows from Lemmas 2.8-2.9. ]



Chapter 3

Effective gcd theorem

In this chapter, we prove an effective, probabilistic version of Deligne’s ‘théoreme du pged’
[ , Théoreme 4.5.1] for a smooth, projective, geometrically integral (nice) variety
Xo C PV over F, of dimension n and degree D, obtained via good reduction from a
nice variety Xy over a number field K at a prime p C Og. As a consequence of the
hard-Lefschetz theorem for X, Deligne | , Théoreme 4.5.1] showed the following.

Theorem. The polynomial P,—1(X /F,, T) is the least common multiple of all polynomials
A1) =1]0 - a1) e 1],
J

satisfying the condition that for any t € U(F,), the polynomial

FO)D =T]0-a7)

J
divides P,_1(X¢/Fp, T).
Treating the embedding dimension N as constant, our result is as follows.

Theorem. There ezists a polynomial ®(z) € Z[z] independent of ¢ and deg X = D, such
that for any extension Fg/F, with

[Fq : Fo] > ®(D),
we have for any uy,uy € U(Fq) chosen uniformly at random,
Poi(X/FqQ, T) = ged (P1(Xu, /Fo, T), Po1 (X, [Fo, T)) ;
with probability > 2/3.

The main ingredients include bounding torsion in the Betti cohomology of Ay, a mod —
¢ big monodromy result and equidistribution of Frobenius in the representation associated
to the sheaf of vanishing cycles modulo £. One has the following algorithmic consequence.

Corollary. There is a polynomial-time reduction for the zeta function computation of
nice varieties (coming from number fields via good reduction) over finite fields to that of
the middle cohomology.

This chapter is based on joint work with Hyuk Jun Kweon | ], generalising the
case for surfaces in | , Theorem 4.6] ', which is joint work with Diptajit Roy and
Nitin Saxena.

laddressing the first cohomology

18
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3.1 Ideas

In the DPhil dissertation of Walker | , 1.2.2], the possibility of using Deligne’s
gcd theorem is discussed in the context of developing algorithms to compute the zeta
function of smooth, projective varieties. By the weak-Lefschetz theorem, cohomology
in degrees other than the middle band of n — 1, n, n + 1 maps isomorphically to the
cohomology of a hyperplane section. Further, in [ , Theorem 1.4], an algorithm
was given to compute Pi(T") for any smooth, projective variety by proving the effective
ged theorem in the surface case (the torsion bounds here are due to | ]), and reducing
to known algorithms for curves. This present work is a generalisation to n dimensions, in
particular, handling both the cases of symplectic and orthogonal monodromy. In the light
of Theorem 6.6, our theorem gives rise to algorithms to compute P»(T") for any smooth,
projective variety as well.

Our proof strategy begins by finding a prime ¢ of reasonable size, for which the
hard-Lefschetz theorem holds with Z/¢Z — coefficients; which reduces to the condition
of the integral f-adic cohomology groups being torsion free. To this regard, we first
obtain torsion bounds in the characteristic zero Betti setting using cylindrical algebraic
decomposition.

Choosing a torsion-free ¢, hard-Lefschetz modulo ¢ implies the irreducibility of the
representation associated to the local system of vanishing cycles modulo £ on U. If the ¢ —
adic monodromy is infinite, this implies that the monodromy image is ‘big’, using a result
of Hall | |. An equidistribution theorem of Katz | | then dictates the likelihood
of two Frobenii having coprime characteristic polynomials, which we make precise by
bounding the error term therein.

3.2 Torsion bounds

The aim of this section is to give explicit upper bounds on the order of the torsion
subgroups of cohomology groups. The bound is singly exponential in the degree of the
defining polynomials and triply exponential in the dimension of the ambient projective
space. To obtain these upper bounds, we will use a regular cellular decomposition of
the variety. The number of cells will then provide an upper bound on the order of the
torsion subgroups. The main tool for finding such a cellular decomposition is cylindrical
algebraic decomposition, introduced by Collins | -
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Theorem 3.1. Let X C RY be a compact real algebraic variety defined by m polynomials
of degree < d. Then there is a reqular cell complex, with number of cells at most

2d)*" " m?.

Proof. Collins’ algorithm computes a cylindrical algebraic decomposition of X with at
most (2d)3" " m?2" cells | , Theorem 12]. Although this may not yield a regular
cellular decomposition [ , Example 2.1], performing a generic linear change of coor-
dinates before running the algorithm ensures that the cylindrical algebraic decomposition
becomes a regular cell complex | , Theorem 2]. O

The theorem above depends on the number m of polynomials defining the variety X.
This is bounded by the number of monomials of degree < d, meaning that

N+d
< .
=)

Lemma 3.2. Let M be an m X n matrix representing a linear transformation
o: 2" = 7"
Suppose that all entries of M are either —1, 0, or 1. Then
#coker(p)ors < min{m!, n!}.

Proof. Let D be the Smith Normal Form of M, with diagonal entries dy,dy,...,d,_1.
Then

coker(@)iors = Z/doZ ® L)\ L B --- D L)d, 17
#coker(p)ors = dody -+ - dp_1.

Moreover, dod; ---d,_q is the greatest common divisor of the determinants of all r x r
minors of M. Since the Leibniz expansion for such a minor consists of r! terms,

dody -+ - dp—y < r! < min{m!, n!}. O
Now, Theorem 3.1 together with Lemma 3.2 gives the following theorem.

Theorem 3.3. Let X C RY be a compact real algebraic variety defined by polynomials
of degree < d. Then

2N
H#HE (X, Z)iors < ((Qd)?’N“ (N ; d) )!.

Remark. We denote Betti cohomology with H and étale cohomology with H'.

The above theorem applies only when X is a real affine variety, and the set of its R-
points is compact. We aim to obtain a similar bound for the case where X is a complex
projective variety. This can be achieved by using the standard embedding CPY — CWV +1)?
and dividing each complex coordinate into two real coordinates.
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Theorem 3.4. Let X C CPY be a complex projective variety defined by homogeneous
polynomials of degree < d. Then

2(N+1)2

HHL (X, Z)ions < | (24207 ((N +1)? +d>

(N +1)2

Proof. Recall that the standard embedding CPY — C+D* is given by

2020 2021 "t 202N
1 21Zg 2121ttt Z1ZN
(20:21:"-:2N)»—>N—2
Zizo |z
ZNZo ZNZ1 - ZNZN

The image is defined by polynomials of degree < 2. A hypersurface in CPY defined by a
homogeneous polynomial f can be expressed by several polynomials of the same degree
in C)* " Since the image of the embedding is a Hermitian matrix, half of the real
coordinates can be reconstructed from the other half. Thus, applying Theorem 3.3 yields
the desired result. [

Corollary 3.5. Let X C CPY be a complex projective variety defined by homogeneous
polynomials of degree < d. Then

#H%(Xa Z’)tors S 2d23N .

Proof. We may assume that d > 2 and N > 4, because projective spaces, hypersurfaces
and curves do not have torsion in their cohomology groups. For simplicity let M = N +1

and
o (M2 4 d\ 2
L= (2d)*" “( ) .
M2
Since M2 d
( MJ2r ) < (2 + )" < (@) = a'”,
we obtain ,
L< @ <dM3>2M < @I
As a result,

logd lOgQ L' S 2 1Ogd L - 4 ° 3M2+1 + M32M2 S 23(M_1)2‘ D

Corollary 3.6. Let X C CPY be a complex projective variety defined by homogeneous
polynomials of degree at most d. Then there exists a prime number

04N?

¢ <d
such that Hig(X, Z) is torsion-free for all i.
Proof. By Corollary 3.5,

N

i 2N N _ oNd
# [ HE(X, Z)ors < (2 =

=0

2
23N



22 CHAPTER 3. EFFECTIVE GCD THEOREM

Therefore, there exists a prime number ¢ among the first
k=N

primes such that [T, Hy (X, Z) is (-torsion-free. Since k > 4, | , Theorem 2] implies
that the k-th prime number is smaller than

2\ 2 2
k(logk + 2loglog k) < k? < (Nd23N ) <d 0

The sum of the Betti numbers of X has an upper bound that is polynomial in d and
singly exponential in N | , Corollary 2].

Theorem 3.7 (Milnor). Let X C CPY be a complex projective variety defined by homo-
geneous polynomials of degree < d. Then

> rankHy(X,Z) < Nd(2d — 1)*V*".

120

This bound is derived by bounding the number of critical points of a Morse function.
Since a Morse cohomology is generated by these critical points, the number of generators
of the torsion subgroups is also bounded by the same value. Thus, if the order of each
generator is not excessively large, we expect to obtain an upper bound on the order of
HY (X, Z)iors that is singly exponential in d and doubly exponential in N. However, de-
termining the boundary map in Morse homology requires solving differential equations
arising from a pseudo-gradient field, and these solutions do not form a semi-algebraic set.
This is the technical reason why it is difficult to derive a bound doubly exponential in N.

Further, as we are in the realm of complex, smooth, projective varieties, one may also
look at other methods towards obtaining such bounds for torsion. Note firstly, using the
Kiinneth formula, that it suffices to bound torsion in cohomology in even degree. Next,
torsion therein can be of two types, algebraic or transcendental. Guaranteed that the
torsion is algebraic, it may be possible to bound it using the connected components of the
Chow variety of X. Examples with transcendental torsion seem to have the order depend
on the degree of the variety in question (see | , Theorem 3] for concrete examples
using Godeaux surfaces). This line of work, involving explicitly constructing transcen-
dental torsion algebraic cycles began with Atiyah and Hirzebruch | |, who thereby
provided counterexamples to the integral Hodge conjecture. One is led to conjecture that
the torsion coming from transcendental cycles can likewise be controlled uniformly by the
degree of the variety.

Over fields of positive characteristic, Gabber’s theorem | | guarantees the torsion-
freeness of the integral ¢ —adic étale cohomology groups for all but finitely many ¢, so one
is tempted to make the analogous conjecture over arbitrary base fields as well.

Conjecture. There exist polynomials 1(z), ¢(z) € Z[x] such that for any smooth, pro-
jective variety X C PV of dimension n and degree D over an algebraically closed field &,
we have

HZ(Xa Zé)tors =0

for 0 <17 < 2n, when
0 > (D)

is any prime number distinct from the characteristic of k.
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3.3 Lefschetz pencils

Let Xo/F, be a smooth, projective, geometrically irreducible variety of dimension n > 1
and degree D > 0. We suppose that it is presented as a subvariety of PV, given by a
homogeneous ideal I generated by m polynomials fi,..., f,, of degree < d for d € Z~,.
Denote by X the base change to the algebraic closure. Let £ be a prime distinct from the
characteristic of the base field. We recall the following.

Definition 3.1. A hyperplane section of X is a codimension 1 subvariety Y C X obtained
by intersecting X with a hyperplane H C PV. A hyperplane H is said to intersect X
transversally at v € X if T,X ¢ H, i.e., H does not contain the tangent space to X at
x. Equivalently, this translates to the condition that X N H is smooth at x. In general,

H intersects X transversally if H N X is a smooth, irreducible subvariety of codimension
1of X.

Denote by (PY)V the dual projective space, parameterising hyperplanes in PY. We
construct the dual variety to X, denoted X C (PV)V as follows. Let

Q={(z,H) e X x (P") |z c H, T,X C H}.

It is a closed subvariety of X x (PV)Y. We define X to be the projection of  onto
its second factor. In particular, X parameterises those hyperplanes that do not intersect
transversally with X. We now state an effective version of Bertini’s theorem, that ensures
the availability of smooth hyperplane sections. The following is | , Theorem 1].

Proposition 3.8 (Effective Bertini). Let W C PN be a smooth, irreducible variety of
dimension n and degree D, defined over F,. Let Fg/F, be an extension such that () >

D(D—1)". Then, there exists a hyperplane H defined over Fq that intersects transversally
with W.

Definition 3.2. Let X/F, be as above. A Lefschetz pencil on X is a collection of
hyperplanes (H;)cpt such that there exists a line L ~ P! c (PY)Y; for e.g., (\, i)
AEF = uG, for linear forms F, G on P, satisfying the following conditions

o the awis, of the pencil, A := (F = 0) N (G = 0) in PV intersects X transversally,
i.,e., X N A is smooth of codimension 2,

« there is a dense open subset U C P! on which the associated intersections (A, u) —
X N (AF = puG) are smooth and geometrically irreducible for (A, i) € U; and have
only an ordinary double point as singularity for the finitely many (A, u) ¢ U.

It is a fundamental theorem that Lefschetz pencils exist on any smooth projective

variety of dimension > 2, over an algebraically closed field (see | ]). Over arbitrary
fields, Lefschetz pencils exist, subject to a degree > 3 Veronese embedding.? We recall
[ , Theorem 3].

Proposition 3.9. There exists a nonempty open subscheme (after possibly passing to a
degree > 3 Veronese embedding) in the Grassmannian of lines Wx C Gr(1, (PN)Y) such
that every L € Wx defines a Lefschetz pencil for X.

2this adds an overhead of only a polynomial in the degree D of X.
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Algorithm 3 Lefschetz pencil on a variety

« Input: A smooth projective variety X,/F, of degree D presented as a system of
homogeneous polynomials of degree < d in the projective space PV.

o Pre-processing: Replace X with the degree 3 Veronese image of X in P :=
Nr+3)_1

IP’( 3
e Output: Hyperplanes F' and G in P such that the line L through them in the dual
(P)Y, is a Lefschetz pencil on X.

1: Take a field extension Fy/F, with degree bounded by a polynomial in D, such that
smooth hyperplane sections exist as in Proposition 3.8.

2: Select two random linear forms F' and GG on P, such that they intersect transversally
with X (this is possible by Proposition 3.8).

3: The line L in (P)" through F and G is a candidate Lefschetz pencil on X.

Lemma 3.10. Algorithm 3 succeeds with probability at least 1 — O(1/Q).

Proof. Indeed for @ > D, the locus of hyperplanes in PV defined over Fg that do not
intersect transversally with X is given by the dual variety X, which by the Lang-Weil
estimates, can be avoided with probability 1 — O(1/Q). Further, for two hyperplanes H;
and H, that intersect transversally with X, the condition that they define a Lefschetz
pencil on X is equivalent to the condition that the line through the corresponding points in
PV does not intersect the singular locus X of X. For two randomly chosen hyperplanes,
this is also ensured with probability greater than 1 — O(1/@Q)), again by a Lang-Weil
argument.

One checks that the output is correct by computing the finite subset Z of ‘bad’
hyperplanes (which is possible in poly-time) and verifying that the associated fibres are
indeed nodal curves. The latter can be done by blowing up at a singular point and
checking that the exceptional divisor intersects the transformed curve at two points,
which has a polynomial-time algorithm. O

3.4 Monodromy of vanishing cycles

In this section, we recall the notion of monodromy in the context of a Lefschetz pencil of
hyperplane sections on a smooth, projective variety. The main objective is to show that
the mod — ¢ monodromy is as large as possible for primes ¢ of a reasonable size.

Let X be a nice variety satisfying our main assumptions. We may fibre X as a
Lefschetz pencil of hyperplane sections 7 : X — P!, where X is the variety obtained
by blowing up X at the axis of the pencil, and the fibres of 7 are the hyperplane sec-
tions. Denote by U C P! the locus of smooth fibres and by Z := P!\ U, the finite
set parameterising the nodal fibres. Let ¢ be coprime to g. Consider the constructible
sheaf F := R"17,Q, on P!. The restriction F|y defines a local system on U, and we can
speak of the monodromy action of the geometric étale fundamental group m (U, u), where
u — U is a geometric point. We know further, that (U, u) is topologically generated
by #Z — many elements o, satisfying the relation [[, 0; = 1. Further, for each z € Z,
one obtains a vanishing cycle 6, € H" (X5, Z/(Z) via the exact sequence
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0 —— H" (X, Z/(Z) — 0" (X5, Z/(Z) — T/(T
with the final arrow being given by v+ (v,d.), where
() H" N X5, Z)0Z) x H' N ( Xy, ZJ0Z) — ZJVZ

is the Poincaré duality pairing. Furthermore, 9, is unqiuely determined upto sign by the
Picard-Lefschetz formulas

where for a uniformising parameter 6, at z, we have O'Z(Q;/ K) = ezﬁi/ ‘. In the limit, we
obtain an integral ¢ — adic vanishing cycle in H" (X3, Z,) which is defined upto torsion,
and becomes unique upto sign upon tensoring with Q,. We call by &; the space generated
by all the vanishing cycles 4,® for z € Z in H* (X5, Q,) and by &, for u € U, the image
of & under the specialisation isomorphism F5; — F,.

By the hard-Lefschetz theorem | , Theorem 4.3.9], we have for u € U,

Fu = H7HX,, Q) 2 HHX, Q) ® &, (3.2)
where &, is the space of vanishing cycles at u. In particular,

H1 (X, Q) = (X, Q)™ ) = €

with respect to the Poincaré duality pairing on H*"*(X,, Q) and &, N & = 0. Further,
the sheaf F|y decomposes as
F |U >~ z e E

where V is the constant sheaf on U associated to H* *(X,Q,) and & is the sheaf of
vanishing cycles. The sheaf £ is locally constant on U of rank, say, r € Zsq. Write %
for the sheaf of integral ¢ — adic vanishing cycles and denote by £° := £%®F, the sheaf
of mod — ¢ vanishing cycles. We begin by showing the following.

Lemma 3.11. Let £ be a prime coprime to q, such that the cohomology groups H (X, Z,)
are all torsion-free for 0 < i < 2n. Let X, be a smooth hyperplane section of X from the
above Lefschetz pencil. Then the cohomology groups H/(X,,Z,) for 0 < j < 2n — 2 are
all torsion-free.

Proof. By the Lefschetz hyperplane theorem 4, we know that the induced map H’(X, Z,) —
H/(X,,Z,) is an isomorphism for j < n—1. Moreover, we also know, by Poincaré duality,

the Gysin map H/(X,,Z,) — H'™?(X,Z,) is an isomorphism for j > n — 1. It remains

to show that H* (X, Z,) is torsion-free. We recall the universal coefficient theorem for

the affine variety X \ X, on cohomology with compact support

HP (X \ X, Z/0Z) = (HPY(X\ X, Z4) © Z/0Z) & Tor™ (HM(X \ X,, Z), Z/(Z) .
(3.3)
By Artin vanishing and Poincaré duality, we know H? (X \ X, Z/¢Z) = 0, so we have
from (3.3) that H?(X \ X, Z,) is torsion-free. Therefore, from the relative long exact
sequence associated to the pair (X, X \ X,),

3abusing notation
4also known as the weak-Lefschetz theorem
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o= (X X, Zy) — H(X, Z) — B (X, Z) — ... (3.4)

we see that

H" Y (X, Zg)/H" (X, Zy)

is torsion-free. We conclude the proof using the torsion-freeness assumption on H* (X Z;).

O

Lemma 3.12. Let { be a prime coprime to q, such that the cohomology groups H (X, Z;)
are all torsion-free for 0 < i < 2n and let X, be a hyperplane section of X from the above
Lefschetz pencil. Then, the hard-Lefschetz theorem holds modulo ¢, i.e., we have

H"Y(X,,Z/IZ) ~ H" (X, Z/IZ) © E". (3.5)
Proof. From the diagram | , (4.3.3.2)], we see that the exact sequence
0— & — H" N (Xy, Ze) — HHX, Zg) — 0

splits as the terms involved are all torsion-free. Next, one notices that the hard-Lefschetz
map
M HN X, Zy) — HY(X, Zy)

obtained by taking cup-product with the class of X, is injective by the hard-Lefschetz
theorem and the fact that H* "' (X, Z,) is torsion-free. The map is also surjective as we
know

H" Y Xy, Zg) /H" (X, Zy)

is torsion-free. Further, we note that H" 1(X,Z,) N EZ C H" Y Xy, Z¢)iors = 0, by
assumption. Therefore, we have

H"Y(X,, Z) ~ H" (X, Zy) @ EX.

Tensoring by Z/¢Z and using torsion-freeness once more gives the result.
]

Lemma 3.13 (Irreducibility). The representation py : m (U, u) — GL(r,Z/{Z) associated
to the local system EY of mod — ¢ vanishing cycles on U is irreducible.

Proof. Let W denote the representation corresponding to the mod — ¢ vanishing cycles
EL and let W' C W be a subspace fixed under the action of 7 (U, u). Let v € W’ be such
that v # 0. We claim firstly that (,d.) # 0 for a vanishing cycle ¢, for some z € Z.
Otherwise, we would have v € W+ N W, which is trivial by Lemma 3.12. In particular,
by the Picard-Lefschetz formula (3.1), we have o,(y) — v = (v,0,) - 0, € W', implying
d, € W’. However, by [ , Theorem 5.2], the vanishing cycles are all conjugate under
the action of 71 (U, u), so we must have W' = W.

]

Theorem 3.14 (Big monodromy). Assume the sheaf 2 has big monodromy, i.e., the
associated representation p : w1 (U,u) — GL(EZY) has Zariski dense image in the corre-
sponding symplectic or orthogonal groups. Then the sheaf £ has big monodromy, i.e., the
mod — { representation p; : m(U,u) — GL(r,Z/lZ) has mazimal image. In particular,
if n is even, then im(p,) = Sp(r,Z/lZ) and if n is odd, im(p,) is one of the following
subgroups of the orthogonal group O(r,Z/lZ)
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(a) the kernel of the spinor norm,
(b) the kernel of the product of the spinor norm and the determinant map,
(c¢) the full orthogonal group.

Proof. We intend to apply | , Theorem 3.1] to W. Assume firstly that n is even. In
this case, the Poincaré duality pairing is alternating and W is even-dimensional. Then,
the elements py(0;) act via the Picard-Lefschetz formulas (4.4) as transvections on W.
Using the irreducibility from Lemma 3.13, we may conclude that the image of p, is the
full symplectic group Sp(r, Fy).

In the case n is odd, the pairing is symmetric, so the monodromy is orthogonal.
Here, the Picard-Lefschetz formulas act by reflections, in particular, even as isotropic
shears. We again appeal to | , Theorem 3.1] to conclude that the geometric mod — ¢
monodromy must be one of the subgroups of the orthogonal group of index at most two
(other than the special orthogonal group), as listed above. ]

Remark. We note that using work of Katz | , Theorem 2.2.4], we may assume that
EZ¢ has big monodromy always (i.e., its image is infinite), at the cost of a Veronese
embedding of constant degree.

3.5 Linear algebraic groups over finite fields

In this section, we provide probability estimates for the likelihood of characteristic poly-
nomials being coprime in symplectic and orthogonal groups, for use in the proof of our
effective gced theorem. Subsequent to the writing of this section, we were informed of re-
cent work of Fulman and Guralnick | ], that also addresses this issue ® using different
methods.

3.5.1 Symplectic monodromy

Let V be a vector space of rank 2r, for r € Z~(, over the finite field F, of characteristic
¢ > 0, equipped with a symplectic (i.e., alternating, nondegenerate, bilinear) pairing (-, -).

Definition 3.3. The group of symplectic similitudes, GSp(2r,F,) is defined as
GSp(2r,Fy) := {A € GL(2r,Fy) | 3 v € F} such that (Av, Aw) =7 - (v,w) Yv,w € V'}.

For A € GSp(2r,F), the associated v € F} is called the multiplicator of A. We denote by
GSp(2r,F,)” the subset of matrices with multiplicator 7. The matrices with multiplicator
v = 1 form a subgroup known as the symplectic group, denoted Sp(2r,[F,). We have the
following exact sequence

mult

1 — Sp(2r,F,) — GSp(2r,F,) — F; — 1.
For any v € F}, collect the ‘relevant’ characteristic polynomials f in the set

MY :={f(T)=14+aT+...+ag \T*" 1+~ T* | a; € Fy, agr—i =" ‘a;, 0 <i <21}
5Theorems 2.5, 2.7 and 2.8 of loc. cit.
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We now give an estimate for the number of matrices with given characteristic poly-
nomial f(7). See | , Theorem 3.5] for a proof.

Lemma 3.15. Fiz f(T) € M. For { > 4, we have
(0—3)%" < #{A e GSp(2r,F,)" | f(T)=det(1—TA} < (£+3)*".

We may identify M with the points of the affine space Ap, with coordinates Y1y Yr)s
by sending a polynomial f(7) =1+ 212;;1 a;T" +~"T* to the tuple (ai,...,a,).

Our goal is to obtain estimates for the proportion of characteristic polynomials that
are not coprime to a given f(7) € M. Let W C Af, parameterise such polynomials. It
is a hypersurface, given by the vanishing of F'(yy,...,y.), described as the resultant of a

formal polynomial of the type

r—1

g(T) = 1+ i T + Z Yy AL AL

=1 =1

with f(7T") w.r.t. T. The polynomial F is of total degree at most 4r in the y;. The number
of its rational points, #W (IF,), gives the count we need. But, by | , pg 45], we have
#W (F,) < 4r¢"~'. Further, recalling the order formula for the symplectic group, we have

CrRe=1)" < #Sp(n ) = [ —1) < e

j=1

Therefore, combining with Lemma 3.15, the proportion of matrices in GSp(2r,F,)? with
characteristic polynomial not coprime to f(7') is at most

A=l (043)2 4 1\’ 3\
5 = |1+ 1+ ;
aE(— 1) ( —1 ‘
which is less than 1/4, for £ > 16e?r?, where e := exp(1). We summarise what we have
shown in the following.

Lemma 3.16 (Common eigenvalue). Let r € Z~o and let £ > 4 be a prime. Let f(T)
be the characteristic polynomial of a matriz in GSp(2r,F,)Y for some v € F;. Denote

by C C GSp(2r,F,) the set of matrices with characteristic polynomial not coprime with
f(T). Then for £ > 119r?,

# (C'NGSp(2r,TFy))
#Sp(2r,F)
The orthogonal case is, as always, slightly trickier to handle given its non-simply-

connected nature (of the special orthogonal group). Our methods for the estimate here
are cruder and more geometric, but could really also be applied to the symplectic case.

< 1/4.

3.5.2 Orthogonal monodromy

We are now concerned with the case when n = dim X is odd. In particular, we have that
the action of Frobenius on H" (X, Z/(Z) is via an orthogonal similitude, i.e., the image
pe(m1(Up,u)) € GO(V), where V is the subspace £ c H""Y(X,,Z/lZ) of dimension s,
regarded as an [F, — vector space. We begin by recalling the well-known bounds for the
size of the orthogonal group.
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Lemma 3.17. We have

20 (0 — 1)" < #0(2r + 1,F) = 207 [[ (¢ — 1) < 20+
=1
and
(00— 1) < #0(2r, Fy) < 20277+

Let N2 now be the space of reciprocal polynomials of degree at most s = 2r, or
s = 2r +1 in one variable, with mulitplier A and coefficients in [F,. Like in the symplectic
case, we have an exact sequence

1 — O(s,Fy) — GO(s,Fy) = F; — 1 (3.6)
We may identify it with the affine space A". For A € [}, consider a map
U : CGO(s, Fp)* — A%é

where a matrix is mapped to its (reversed) characteristic polynomial. The map WV is a
morphism of algebraic varieties. We know that dim O(V') = s(s — 1)/2. Given f(T) that
we know is the characteristic polynomial of a matrix in GO(s,F,), we seek to estimate
the size of U=1(W) N GO(s,F,)*, where W C A" parametrises those polynomials which
have a factor common with f(7). The map WV is clearly surjective over Fy, so applying
the theorem on fibre dimension, we see that generically, for x in an open subset of A",
we have
dim U (z) =s(s —1)/2 —r < 202

We observe the following next.

Lemma 3.18. The fibre dimension of U is constant and minimal on the open subsetY of
A" parametrising those characteristic polynomials with distinct roots. Moreover, writing

V =A"\Y, we have

) <o

where the implied constant is independent of £ and depends linearly on r. Further,

# 1 (V) ()
O(S, F@)

where now, the implied constant is independent of £ and of the form exp(poly(r)).

Proof. For a characteristic polynomial in Y, its fibre consists of those matrices in GO(s, Fy)*
with distinct eigenvalues prescribed by the roots of said polynomial. This imposes r in-
dependent conditions on the fibre, and hence the generic fibre dimension of

s(s—=1)/2—r

is achieved here.
The complement V' of Y is a hypersurface in A" of degree at most 8r, obtained via
the vanishing of the discriminant associated to a formal characteristic polynomial. We

conclude the first estimate using | , pg 45]. For the second estimate, we note that
U~1(V) is now a proper, closed subvariety of GO(s)* of degree exp(poly(r)). The number
of its F, — rational points can be bounded via the Lang-Weil estimates | , Theorem

7.5], and can thus be avoided with high probability.
O
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Proposition 3.19. Let f(T) € Y(F;) C N be the reversed characteristic polynomial of
a matriz in GO(s,F,)*. Denote by A the set of matrices in GO(s,F,)* such that their
reversed characteristic polynomial has a common factor with f(T). Then

_#h
#O(Sa Ff)

where the implied constant is independent of ¢ and of the form exp(poly(r)).

<0(1/0),

Proof. Given f(T'), let Wy C A" parametrise those polynomials which have a factor
common with f(7"). It is a hypersurface, given by the vanishing of the formal resultant
with f(T') (see | , §3.3]). Then, the set A is just the set of F, — rational points of
U~1(W;) € GO(s), which is a proper, closed subvariety of degree at most 7PV, Then,
we may conclude by the Lang-Weil estimates | , Theorem 7.5] applied to U1 (W;).

We remark finally, that our bounds can be improved using very recent work of Fulman
and Guralnick | , Theorems 2.5-2.8], who show that the probability of a random
matrix in O(s,F,) or Sp(s,F,) having a given characteristic polynomial is at most

poly(log,(s))
¢s/2—-1

This shows that the implied constant in our bounds can be assumed to be at most
polynomial in 7.

O

3.6 The effective gcd theorem

We begin by recalling a version of Deligne’s equidistribution theorem | | due to Katz
[ , Theorem 9.7.13]. Let Uy/F, be a smooth, affine, geometrically irreducible curve.
Let U be the base change to the algebraic closure. Pick a geometric point v — U,
lying over a closed point uy € U(F,) and denote by 7y := m (U, u) the geometric étale
fundamental group. Let m; denote the arithmetic fundamental group m;(Uy, w). For any
closed point v € U(F,), there exists an element F,, € m well-defined upto conjugacy,
called the Frobenius element at v. It is defined as follows. Writing v = Spec(F,) — U,
we obtain an induced map of fundamental groups

Gal(F,/F,) — m(Up,v) >~ m.

The element F,, € m is simply the image in 7; of the Frobenius element in Gal(F,/F,)
under the composition of the above morphisms.

Given a map p : m; — G to a finite group, and a conjugacy-stable subset C' C G, we
seek to understand the proportion of points v € U(F,) such that p(F,uw,) lies in C.

Theorem 3.20 (Katz). Assume there is a commutative diagram

Z

llb—}—'y
r

~
—_

I

G H

Q= A

> T >
\
[4

~
—

~
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where G is a finite group, I' is abelian, p is surjective and tamely ramified. Let C' C G be
stable under conjugation by elements of G. Then

#o € UFp) | plFpen) €C)  #(CNGT) ey
4T (Fye) i | = MO,y

where G7" = = (y*) and x(U) = S.1_y(=1)* dim H (U, Q,) is the (-adic Euler-Poincaré

characteristic of U.
Proof. See | , Theorem 4.1]. O

With the above in mind, we can now prove our effective gcd theorem. We recall our
assumptions. Let X C PV be a smooth, projective geometrically irreducible variety of
dimension n and degree D, over a number field K. Let p be a prime of good reduction,
write F, := Og/p and denote the variety X /F, upon reduction. Let (X})icpr be a
Lefschetz pencil of hyperplane sections on X. Denote by Z C P! the finite set of nodal
fibres and by U = P!\ Z, the subscheme parameterising the smooth fibres.

Theorem 3.21. There exists a polynomial ®(x) € Z[x] independent of D and q, such
that for any extension Fg/F, with

[Fq = Fg] > ®(D),
we have for any uy,uy € U(Fg) chosen uniformly at random,
Po1(X/Fo,T) = ged (Po1(Xu, [Fo, T), Pt (X, /FQ, T)) ;
with probability > 2/3.

Proof. Let ¢ be a large enough prime such that the groups HY(X,Z,) are all torsion-

free. We can choose ¢ to be Q(D24N2) by the proof of Corollary 3.6. Consider now
the locally constant sheaf R'm,Z|y on U. It has as subsheaf £% the sheaf of vanish-
ing cycles. Write £ = £% ® F, for the locally constant sheaf of mod — ¢ vanishing
cycles. Let p; @ m(Up,u) — GL(s,Fy) be the associated representation, and denote by
7o = pe|m1 (U, u) the restriction to the geometric fundamental group. We begin by as-
suming that the sheaf £% has big monodromy. Indeed by the results of | , 4.4], we
know that the monodromy is either big or finite, with the latter only happening in the
orthogonal case.

We begin with the case of symplectic monodromy;, i.e., n is even, and by Theorem 3.14,
the image of p, is Sp(s,F,). We seek to apply Theorem 3.20 to this setup with G =
Sp(s,Fy). Let Fg/F, be an extension where () := ¢* and choose u; € U(Fg) randomly.
We estimate the number of v € U(Fg) such that P(E,/Fg,T) is coprime to f(T') :=
P(E,,/Fq,T). Write f(T) := f(T) mod /.

Denote by C' C GSp(2r,F,) the subset of matrices with characteristic polynomial not
coprime to f(T). It is stable under conjugation by elements from GSp(2r,F,). Applying
Theorem 3.20 to C', we get

#{v € U(Fq) | pr(Fa.) €C} _ #(C N GSp(2r Fy)™)

#GSp(2r, Fe) Vg
#U(Fq) - #5p(2r, Fe) '

)




32 CHAPTER 3. EFFECTIVE GCD THEOREM

By Lemma 3.16 (since ¢ > 119r?), the first summand on the RHS is < 1/4. From the
calculation® of the étale cohomology of U (the projective line with #2Z punctures), we
deduce that |x(U)| < #Z < DN*L. Further, we see that s, which is the dimension of
the space of vanishing cycles, is bounded above by the sum of the Betti numbers of the
hyperplane section of X, which by Theorem 3.7, is at most ND(2D — 1)2V*1. Therefore,
for ¢¥ > 2DN*1 we have

|X(U)|#GSP(57FE)\/QW < DN+t st vqu - < DN+ 2tV AN2D2(2D)8N vqw.
#U(Fq) qv — DN+t q“/2

In particular, if

Q=q">Q (D28N2'N2'D4N> :

we have
#{v € UFq) | p(Fon) & C}
#U(Fq)

which completes the proof for the symplectic case.

> 2/3,

Now, we deal with the big orthogonal case, i.e., n is odd and the image of p, is one
of the subgroups G of O(s,F,) of index at most two in Theorem 3.14. 7 Denote by G
its extension by an appropriate subgroup of F; via (3.6). Let C" C GO(V,F,) be the
subset of matrices with characteristic polynomial having distinct roots. Then, applying
Theorem 3.20, we see

#{v € U(Fq) | pe(Fon) €C'} _ #(C"NGT) (U] #GV/q"
#U(F,) - #G #U(Fq)

By Lemma 3.18, the first term of the RHS can be maximised with growing ¢, and the
error term is minimised similar to the symplectic case. Now, for another trial v' € U(Fq)
chosen uniformly at random, we maximise the probability of the associated character-
istic polynomial being coprime to that of the earlier trial via a similar estimate using
Proposition 3.19. ]

bsee | , Tag 03RR]
"We may assume the orthogonal monodromy is big by the remark after Theorem 3.14.


https://stacks.math.columbia.edu/tag/03RR

Part 11

Surfaces

33



34
Synopsis

In this part, a randomised polynomial-time algorithm to compute the local zeta func-
tion of a surface at large primes of good reduction is developed. This is based on joint
work with Nitin Saxena | ].

Our algorithm studies the étale cohomology of a surface by using the formalism of
monodromy of vanishing cycles arising from a Lefschetz pencil. More specifically, we fibre
the given surface X’ as a Lefschetz pencil of hyperplane sections, and then blow it up at
the axis, yielding a morphism to P!. The cohomology of the blowup X, is understood
using the sequence (4.5) coming from the Galois cohomology of the tame fundamental
group of the line with the critical locus (i.e., the finite set Z = P!\ U where the fibres are
nodal) removed. In particular, one needs to be able to compute the monodromy action
on the cohomology of the generic fibre.

Our solution is to first compute the ¢ — division polynomial system (the zero dimen-
sional ideal whose roots are the distinct ¢ — torsion points) for the torsion in the Jacobian
of the generic fibre, and view the choice of a cospecialisation morphism at a singular point
z as picking a Puiseux series expansion around z. Working in characteristic zero, we com-
pute the local monodromy using this Puiseux expansion. Additionally, we identify the
vanishing cycle 9, at z using an auxiliary smooth point u, within the radii of convergence
of the Puiseux expansions around z combined with numerical /diophantine approxima-
tion methods in a technique we call ‘re-centering’ Specifically, we also compute each
vanishing cycle as an element in the cohomology 5 of the generic fibre.

Following this, we move to the étale open cover ¥V — U trivialising the locally constant
sheaf F = Rlm,u, on U. The normalisation of P! in the function field of V yields
a morphism of smooth projective curves V — P! ramified exactly at Z. Calling the
representation p, : m (U, 7)) — Aut(F5), we write G := im(py), and note that the cover
V — U has Galois group G. The group G acts naturally on YV via automorphisms, which

extends to an action on H'(V, ) =~ Jac(V)[¢].

Further, to compute the part of H3(X, u1y) corresponding to H' (U, F), it suffices to
compute the invariant subspace of Hl(f}, the) @z/0z, F, under the diagonal action of G.
This is done by choosing an auxiliary prime 3 with characteristic distinct from ¢ and
of size O(f), of good reduction and isolating the subspace spanned by the images of
all G- equivariant homomorphisms from F to Jac(Vyp)[¢] (which we call the mod-
Edixhoven subspace) in the cohomology of the reduced curve. We then P — adically lift
the concerned subspace to the char zero Edixhoven subspace E, using work of Mascot
[ ] on Hensel-lifting torsion points. With this, the arithmetic Galois action follows,

along with zeta function and point counts, for large primes of good reduction.
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Chapter 4

Cohomological preliminaries

In this background chapter, we collect results on the cohomology of surfaces and algorith-
mic results on computing with the cohomology of the smooth, nodal, and generic fibres
of a Lefschetz pencil on a surface.

4.1 Cohomology of a surface

In this section, we briefly recall cohomology computations for surfaces. A standard
reference is | , V.3]. Let k be a separably closed field and let X be a smooth,
projective geometrically irreducible surface over it. Following | , Algorithm 3], one
may fibre X as a Lefschetz pencil 7 : X — P! of hyperplane sections over the projective
line, where X is the surface obtained by blowing up X at the axis T of the pencil. Denote
Z C P! the finite critical locus, whose corresponding fibres have exactly one node (with
#7 =r) and let U = P\ Z be the locus of smooth fibres. Let ¢ be a prime distinct from
the characteristic of k and write F := R'm, pu, for the constructible derived push-forward
sheaf on P!. We note that the restriction F| is a locally constant sheaf (or local system)
on U. Let 7 — P! be a geometric generic point and let g denote the genus of the generic
fibre X5, viewed as a curve over the function field of the projective line. Firstly, one
recalls [ , Lemma 33.2]

H(X, Qu), i # 2;

| (1)
H?(X, Q) @ HY(T N X, Q) (—1), i =2

H'(X, Q) ~ {
so it suffices to compute the zeta function of X (see Section 8.1). In Algorithm 4, we
detail a method to compute equations for the blowup.

Henceforth, without loss of generality, we may assume X may be fibred as 7 : X — P!
as a Lefschetz pencil of hyperplane sections. From the Léray spectral sequence

Hi(Plv Rjﬂ'*ﬂé) = HH_J(X? Mﬁ)a

one has
e, @ =05
HO(PY, F),i =1,
i HY(P, F) ® (ve) © (yr), i = 2;
H (X, ) ~ (P F), i =3 (4.2)
M% =4
0,2>14
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Algorithm 4 Blowup of a surface at a point

o Input: A nice surface X C PV presented as homogeneous forms fi,..., fm and a
point P € X. Assume without loss, P =1[0:0:...:1].

« Output: A surface X that is the blowup of X at P and a morphism 7: X — X

1: Consider the projection ¢p : PN\ P — PN~ from P.

2: The blowup X of X at P is given by the closure in X x PV=1 of the graph of Yp
restricted to X \ P.

3: Use the Segre embedding to obtain equations for X.

4: The morphism 7 : X — X is obtained by projection to the first factor.

Here vg and ~p are certain cycle classes on X (viewed in H? via the cycle class map) cor-
responding to the class of a section of m and the class of a smooth fibre of 7 respectively.
One needs to work more to make the above groups explicit.

Recall the theory of vanishing cycles on a surface | , 3.1, 3.2]. For each z € Z,
one obtains a mod — ¢ vanishing cycle 4, at z as the generator of the kernel of the map

Pic’(X.)[{] — Pic’(X.)[¢] induced by the normalisation X, — X.. Using a cospecialisa-
tion map!

gsz : .sz — fﬁ (43)

for each z; € Z, one obtains the subspace generated by all the vanishing cycles 4., in F7.
The geometric étale fundamental group m (U,7) acts on F5, factoring through the tame
quotient 7} (U, 7), via the Picard-Lefschetz formulas. In particular, 7} (U, 7) is generated
topologically by #Z = r elements o; satisfying the relation Hj o; = 1. We have for
v E Fy

O—J'(ﬂy) =7 6" <77 52]‘) ’ 62]‘7 (44)
where (-, -) denotes the Weil pairing on Pic’(X7)[f] and for a uniformising parameter 6,
at zj, one has crj(@jl-/ K) =€ - 9;/ ‘. Further, o; is understood as the canonical topological
generator for the tame inertia I;], at z; (after having made consistent choices for primitive
roots of unity).

One sees immediately that the monodromy ? is symplectic, i.e., the representation
p:mi(U7) — GL(29,Fy)

has image in Sp(2g, Fy), the group of symplectic transformations of the vector space Fzg,
as it has to preserve the Weil pairing on F.

Next, one recalls the following complex, | , Theorem 3.23] coming from the Galois
cohomology of 7} (U, 7)

7Sz S F, (4.5)
with, for any v € F5
O‘(’y) = ((77 521)? SRR <77 527">)

!which depends on the choice of an embedding of the strict henselisation @]p17z — k(7), see Section 5.2
2action of the étale fundamental group on Fq
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and for any r — tuple (ay,...,a,) € (Z/{Z)"

r—1
ﬂ(&b s >ar) =az - 5,21 + ag - 01(6Z2) +.o.oota (ng) <5Z7‘)'
j=1

The cohomology groups of the above complex are related to the cohomology of X, i.e.,

ker(«), i = 1;
H'(X,Z/VZ) ~ { (ker(B)/im(a))® < vg > ® < yp >, i = 2; (4.6)
coker(8), 1 = 3.

In particular, we have that H!(P!, F) ~ ker(8)/im(«). If the situation is over a finite
field, it is sufficient to compute the action of the Frobenius F on HY(P, F) as it acts
as ‘multiplication by ¢’ on < 75 > and < yr >. More generally, the Galois action on
< g > and < yp > is via the cyclotomic character.

4.2 Cohomology of a smooth fibre

Let X, be a smooth fibre of the Lefschetz pencil 7 : X — P! at a point u € U. The
objective of this section is to state how to compute and efficiently represent the ¢ —
torsion in the Jacobian of X,, i.e., the group Pic’(X,)[(] ~ (Z/¢Z)*. Algorithms for
this procedure are known, see e.g., | | and | ]. The two are markedly different,
in that the former works with the Jacobian by means of divisor arithmetic whereas the
latter requires an explicit embedding of the Jacobian including equations and addition
law. We use both for different applications.

Remark. Over a finite field, knowing the zeta function of X, an algorithm of Couveignes
[ , Theorem 1] also computes Pic’(X,,)[¢], but any (known) algorithm that computes
Z(Xyu/Fg,T) in time poly(log @)) also computes the ¢ — torsion in the Jacobian for small
primes ¢ first as a subroutine.

Theorem 4.1 (Arithmetic on Jacobians via divisors). Given a curve C' of genus g over
an effective field k, and a divisor E on C' of degree d, there exists an algorithm that
computes a basis for the Riemann-Roch space L(E) in time

poly(g - d).
Moreover, arithmetic on Pic’(C) can be performed in polynomial time.

Proof. Apply | ]or| | for computing Riemann-Roch spaces. Divisor arithmetic
on the Jacobian can be done using | : ]. O

Theorem 4.2 (Huang-lerardi). Let C C PN be a smooth, projective curve of genus g
over an effective field k and let ¢ be a prime distinct from the characteristic of k. There
exists an algorithm to compute Pic’(C)[{] via divisor representatives in time poly(£). If
k =1, is a finite field, the complexity is polynomial in logq as well.

Proof. See | , §5]. O
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Theorem 4.3 (Pila). Let C C PY be a smooth, projective curve of genus g over an
effective field k and let ¢ be a prime distinct from the characteristic of k. Assume
Pic’(C) = Jac(C) is provided as an abelian variety via homogeneous polynomial equations
in PM along with addition law. Then, there exists an algorithm to compute the points
representing Pic’(C)[(] in PM in time polynomial in €. If k = F, is a finite field, the
complexity is polynomial in logq as well.

Proof. See | , §2, §3]. O

4.3 Cohomology of a nodal fibre

Let X, be a nodal curve, obtained as a critical fibre of the Lefschetz pencil in the previous
section. The objective of this section is to state how we may represent and compute
the cohomology H'(X, uy) ~ Pic®(X,)[f] ~ (Z/¢Z)?>9~" concisely. Let X, — X, be the
normalisation of this nodal curve. Let P, € X, denote its singularity and let D, = Q.+ R.
denote the exceptional divisor on X, where Q., R. € X.. It is possible to describe
Pic’(X.) in terms of Pic’(X,) and D,. First, write

Divp, (X.) = Div(X. \ {Q:, R.})
and let k(X.) denote the function field of X.. For f € k(X.)*, we say

f=1mod D, if v (1—f)>1 and vg (1—f)>1.

Define
Pic), (X.) := Div,_(X.)/({div(f) | f=1 mod D.}). (4.7)
Then, it is possible to show | , Chapter V]? that Pic(X,) ~ Pic%z ()?Z) In particular,
we have
Pic®(X.)[(] ~ Pic}, (X.)[(]. (4.8)

The upshot is that we may also represent the elements (and group law) of the LHS in
the isomorphism 4.8, using effective Riemann-Roch algorithms on the normalisation. In
particular, one can isolate the subspace generated by the vanishing cycle at z, namely
(6.) C Pic’(X.)[f], as the kernel of the natural induced map

Pich, (X.)[] — Pic®(X.)[€].

Remark. We may compute the elements of Pic’(X,)[¢] via specialisation to z of the ideal
(Z)Iﬁ computing the ¢ — torsion in the generic fibre using Algorithm 5. By a result of Igusa
[ , Theorem 3], we know that the k — roots of this specialisation contain the (29~}
torsion elements of the generalised Jacobian Pic’(X,)[¢]. The other roots correspond to
singularities of the completion of the generalised Jacobian Pic’(X,) by Theorem 8.6.

It requires more work to completely identify the vanishing cycle 6, (upto sign), this
is done in Section 5 using the Picard-Lefschetz formulas (4.4).

3see also [ , Lemma 2.3.8]
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4.4 Cohomology of the generic fibre

As a result of the Lefschetz fibration 7 : X — P!, we may think of the surface X as
defining a relative curve over k(t), the function field of the projective line. We refer to
this curve as the ‘generic fibre’ of the pencil, X5. Scheme-theoretically, this corresponds
to the fibre of 7 over a geometric generic point 7 — P. The stalk F,; ~ Pic’(X5)[/] is
the ¢ — torsion in the Jacobian of this relative curve of genus g. *

The main objective of this section is to describe a zero-dimensional radical ideal (E)Iﬁ

over k(t)°, whose k(t) — roots correspond exactly to elements of F;. First, we bound the
degree of this system. We know that F,; ~ (Z/{Z)? as an abelian group, so the system
has (29 — many W — roots. It remains to bound the degree of the system in ¢, i.e., the
degree of the polynomials in ¢ occurring as coefficients of the above system. First, we

note by | , §4.2]

#7 <DNT' and ¢g< D?*-2D+1. (4.9)

Next, denote by x the minimal Galois extension of k(¢) that all the elements of J can
be defined over. We know that the extension x/k(t) has its Galois group as a subgroup
of Sp(2g,F,), so in particular, its degree is bounded above by (49" Further, we see that
the curve V obtained by normalising the function field of U in k gives an étale cover
V' — U which trivialises the locally constant sheaf F|; to a constant sheaf G on V. More
specifically, V is a cover of P! of degree bounded by ¢4, tamely ramified at Z. Therefore,
the product
47 - 5492 < DN+1€4(D+1)4

which is polynomial in ¢, serves as an upper bound for the genus gy of V°; and hence,
also for the complexity of the system (E)Iﬁ in the variable t.

Remark. Mascot | , Algorithm 2.2] also proposes an algorithm to compute ¢ — divi-
sion polynomials for the Jacobian of a curve over Q(t), based on (p/,t) — adically lifting
torsion points for a small, auxiliary prime p’. It is however mentioned | , Remark

4.3] that parts of his algorithm are not rigorous.

Algorithm 5 Computing the ¢ — division ideal of PiCO(Xﬁ)
o Input: A Lefschetz pencil 7 : X — P

« Output: A radical ideal YT over k(t) whose k(t) — roots correspond to the £ —
torsion points of Pic’(X5).

1: Compute equations for Pic’(X;) = Jac(Xy) using Theorem 8.9, realising it as a
subvariety of PM.

2: Compute the multiplication by ¢ — map as a morphism on Pic’(X;) by Theorem 8.9.

3: Compute the equations for the pre-image of the identity element of the Jacobian.

4: Return the ideal (Z)Iﬁ so obtained.

Remark. Algorithm 5 also provides an algorithm to compute the ¢ — division ideal corre-
sponding to Pic’(X,,) for a smooth u € U by simply specialising (E)Iﬁ to u.

4The genus of any smooth fibre over u € U will also be g.
%i.e., one-dimensional over k
by the Riemann-Hurwitz formula



Chapter 5

Explicit Picard-Lefschetz theory

In this chapter, we compute and explicitly present the monodromy representation of
the étale fundamental group associated to the sheaf of vanishing cycles. Specifically, we
recall pairing algorithms and Puiseux series to construct the cospecialisation maps at
singular points, and specialisation to smooth points with the final motive of computing
the monodromy action on the cohomology of the generic fibre. As a by product, we also
explcitly compute local monodromy, and the vanishing cycle at each singular point.

5.1 The Weil pairing

Now, we define the Weil pairing on the ¢ — torsion points on the Jacobian of a curve and
delineate an efficient algorithm to compute it.

Definition 5.1. Let C be a smooth projective curve over an algebraically closed field k,
let J be its Jacobian and let ¢ be a prime number. The mod — ¢ Weil pairing on J is a
map

[0 % J/] — e

given by
(D1> DQ) —> <D1, D2>

Let £- Dy = div(f) and £ - Dy = div(g) for f,g € k(C)*. Then, (Dy, Dy) = £22),

9(D1)

Theorem 5.1. There exists an algorithm, that, on input a smooth, projective curve C
over By, a prime number { coprime to q, two { — torsion divisors Dy, Dy € Pic®(O)[(],
computes the Weil pairing (D, Da) in time

poly(logg - £).

Proof. See | , §16.1] or | , Lemma 10]. O

Remark. While the algorithm from | ] runs with stated complexity over a finite field,
it works over a number field as well, with similar dependence on ¢. We note that for a
curve C over a number field K, the ¢ — torsion is defined over an extension K’ of K of
degree a polynomial in ¢ as Gal(K'/K) C GL(2g,F,), where g is the genus of C. The
height of the ¢ — torsion elements is bounded, by Theorem 8.2. Additionally, we note
that there are also pairing algorithms running in time polynomial in ¢ that work directly
with an embedding of the Jacobian of the curve. See | , ).

41
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Algorithm 6 Computing the Weil pairing

« Input: A smooth projective curve C over F, and two divisors Dy, Dy € Pic’(C)[/].

« Output: The value (Dy, Dy) € py(F,).

1: Find f,g € k(C)* such that div(f) = ¢ - D; and div(g) = ¢ - D, using an effective
Riemann-Roch algorithm from Theorem 4.1.
2: Evaluate 22 ysing | , Lemma 10].

g(D1)
3. Return the value of £22)
9(D1)

5.2 Cospecialisation at a singular fibre

In this section, we make the cospecialisation maps (4.3) from the cohomology of a special
fibre to that of the generic fibre, explicit.

Let 7 : X — P! be a Lefschetz pencil of hyperplane sections on a nice surface over a
number field K. We fix an embedding K < C at the outset. Denote by Z C P! the finite
subset parametrising the critical (nodal) fibres and write Y = P'\ Z. Denote by F :=
R'7, e, the first derived pushforward sheaf on P' and let 7 — P! be a geometric generic
point. Let z € Z. Consider the strictly Henselian ring Op: ,. By | , Proposition
4.10], it can be understood as the elements of

K[t = 2] n K(2),

i.e., those power series in ¢ — z which are algebraic over K (t). Let K. denote a separable
closure of the field of fractions of Op1 ,. After | , §20], we know that the choice of

an embedding K, <— K (t) determines the cospecialisation morphism

In particular, this choice is the étale analogue of a path or ‘chemin’. We begin with the
following.

Definition 5.2 (Puiseux series). Let K be a field. A formal Puiseuz series f(t) over K
in the variable ¢ is an expression of the form

f(t) = i a;t!"
=M

for some M € Z, n € Z+y and a; € K. The field of formal Puiseux series is denoted
K((t)). In particular, we have

K((t) = |J K((t'"™),

where K((t)) is the field of formal Laurent series in ¢ with coefficients in K. It is a classical
result that if K is algebraically closed of characteristic zero, then K((t)) is the algebraic
closure of K((¢)).
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We notice that the field K ({t — z)) of Puiseux series in ¢ — z, contains both K, and a
copy of K (t), so we seek to fix the stated embedding therein. We are only concerned with
the finite field extension K of K(¢) that all the points of Pic’(&;)[¢] are defined over. It
is the splitting field of the ¢ — division ideal T of Pic®(A;;) computed in Section 4.4. We
observe

K : K(t)] < #GL(2g,F,), (5.1)

where g is the genus of A7. Therefore, we may write K = K (t) (), where 7 is a primitive
element for K/K(t). By (5.1), we may assume 7 has a minimal polynomial p(z) with
coefficients in K (t), of degree bounded by a polynomial in £. The height of the coefficients
can also be assumed to be bounded by a polynomial in ¢ by Section 8.2. In order to fix an
embedding K < K ({t — 2)), we simply pick a Puiseux series expansion A, of T in t — 2,
as a root of p(z). This is made possible using the following classical theorem-algorithm
due to Newton and Puiseux.

Theorem 5.2 (Newton-Puiseux). Let u(z,t) = 0 be a curve in C*. Let d, be the degree
of v in the variable x. Then, around any u € C, there exist d, many Puiseux expansions

$z(t) = Z Qg (t - u)j/N

jzM

satisfying p(x;,t) = 0. Each x;(t) converges for values of t in an open neighbourhood of
u. Moreover, given a positive integer m, there exists an algorithm that outputs the first
m coefficients of all the expansions of x; in time

pob’(dac ' m) :

Proof. For the existence, see | , Theorem 2.1]. The algorithm with stated complexity
is from | , Theorem 1]. O

Remark. We see that if A(1) = >, a;t//M is an algebraic Puiseux series as a solution of
p(x,t) = 0, so are its conjugates ) _; a; ¢t for ¢y a primitive M™ — root of unity
and 0 <17 < M. We note that there is no ambiguity in the function defined by a Puiseux
series, as the function t'/M refers locally to a unique branch of the M™ — root function,
and the other branches are given as conjugates by (%,. Specifically, for w a nonzero
complex number written as w = (r,) in polar form, where r € R.g and 0 < ¢ < 27, we
have w/M = (r'/M 4/ M), corresponding to the principal branch.

So, for each z € Z, we use Theorem 5.2 to write 7 as a Puiseux series in ¢ — z, after
making a choice of the series expansion to use. Essentially, this identifies 7 with a root
of p(z) over K{{t — z)).

As stated earlier, this choice of embedding K «— K ({t — 2)) determines completely
the cospecialisation map ¢, : F, — F5. Following work of Igusa (Theorem 8.8) we know
that the elements of F, can be identified as those solutions of the ¢ — torsion ideal (E)Iﬁ of
Pic’(X;) as a zero-dimensional ideal over K (t), which are in fact rational over K ((t— z2)).
The other elements of F3 can be represented using rational function expressions in T,
which has, in turn, been identified with the Puiseux series A, using our embedding. We
sum up our efforts in Algorithm 7.
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Algorithm 7 Computing a cospecialisation map at a singular point
o Input: A singular fibre X, of the Lefschetz pencil 7 : X — P! for a fixed z € Z.

« Output: The elements of Pic’(X;)[(] represented as K(t) — rational points in a
projective space PM using convergent Puiseux series around z.

1: Compute the ¢ — division ideal YZ; of Pic’(X;) using Algorithm 5.

2: Represent the (29 solutions of (Z)Iﬁ over K(t) using a primitive element 7 and a
zero-dimensional system solving algorithm such as | ]. In particular, an element
v of Pic’(X;)[¢] is represented as a point in P with its coordinates being rational
functions in 7 with coefficients from a poly(¢) — degree extension of K.

3: Expand 7 as a Puiseux series A, around z using the algorithm from Theorem 5.2,
upto poly(¢) precision. Similarly rational functions in 7 also have convergent Puiseux
series representations. This identifies each + uniquely by Lemma 5.3.

4: Return a representation of each v as a tuple

XD xP),

where XZ.(V) (t) are Puiseux series in ¢ — z.

Remark. By Theorem 5.2, all the Puiseux expansions Xi(y) (t) converge for all t in a
neighbourhood of z. In other words, they all converge for |t — z| < e, where £, € Ry is
the minimum of the radii of convergence of all the Xim (t).

Lemma 5.3. [t suffices to specify
poly ()

coefficients of the Puiseuz expansion of each v € F5 around z € Z, in order to identify
it uniquely. Further, the Weil height of each coefficient is bounded by a polynomial in €.

Proof. The first statement follows from | , pg 3].( See also | , Theorem 4.5)).
The bound for the height of the coefficients is provided by | , Theorem 1].
O

Remark. We ‘store’ an algebraic number «, by a pair consisting of its minimal polynomial
and a floating-point approximation, to distinguish « from its conjugates.

We next note the following.
Lemma 5.4 (Radius of convergence). There exists a polynomial V(x) € Zx], with

coefficients and degree independent of ¢, such that the common radius of convergence ¢,
satisfies

1

=7 exp (U(0)

Proof. Denote by

(Xz'm)(t))

the system of Puiseux expansions one obtains for the elements of /5 around z. In par-
ticular, they are Laurent series in t = (t — 2)*™ for some M bounded by a polynomial

’76]“5
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in /. Write ‘
X7 =3 allv.
J

It converges on a disc |t| < e, where

o 1
— = limsup \a%)\j :
€z Jj—o0 ’

Applying | , Corollary 4.6] !, we see that
)] < exp (W(0) - j).

where W(x) is a polynomial with coefficients and degree independent of j and ¢. Taking

the limit gives the result.
]

5.3 Specialisation to a smooth fibre

Consider the setup of Section 5.2. Let z € Z. In this section, we indicate how we may
specialise elements of F3 realised as Puiseux expansions around z using Algorithm 7, to
elements of Pic’(X,.)[{] for a ‘nearby’ smooth fibre &, . We recall the following.

Lemma 5.5. Let u € U. Then, any cospecialisation map
¢u . Fu — fﬁ

is an isomorphism. Its inverse ¢, associates a divisor in Fy to the intersection with X,
of its closure in X .

Proof. The first statement follows from the fact that F| is a locally constant sheaf on
U. See | | for more details. O

~ Now, consider again the splitting field K of (E)Iﬁ. Under the natural embedding
K(t) = K((t—u)), we know that the elements of Pic’(X;;)[(] are rational over K ((t—u))
as the ¢ — torsion of the generic fibre is unramified at u. We show the following next.

Lemma 5.6. The specialisation ¢,* preserves the Weil pairing, i.e., for any y1,7 € F,
we have

<71772> = <¢;1(71)a ¢;1(72)>7
where the pairing on the left is the Weil pairing on Pic’(X;)[¢] and the one on the right
is the Weil pairing on Pic®(&,)[(].

Proof. Clear from the definition of specialisation. ]

Lemma 5.7. Let v € F, and assume we have computed
7= X 0]

as a tuple of Puiseuz series around z € Z (truncated upto poly({) coefficients so that
any two v, # 2 in Fy can be distinguished), with respect to the cospecialisation ¢..
Then, for any u, € U with |z — u,| < &,/2, the tuple representing v converges at u, to a
specialisation ¢, (v) € Pic®(X,,)[¢] of v at u..

1

see also Theorem 2.3 of loc. cit.
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Proof. 1t follows from the convergence properties of the associated Puiseux series (see

, 2.2] for more details) that at wu,, v converges to a root of the zero-dimensional
ideal (¥Z,_, or in other words, an (-torsion point 7,. € Pic’(X,.)[{]. Now, as u, is a
smooth specialisation for the ideal (Z)Iﬁ, we may, uniquely Hensel-lift this point v, to a
set of expansions

Pu.(Yu) = [Yo(£) : .. Yo (t)]

where Y;(t) € K((t —u.)) converge in neighbourhood W of u.. The uniqueness of the lift

of 7, implies that the tuples [Xim (t)] and [Y;(t)] represent the same analytic germs ? on
Wn{ueC||z—u|l <e,/2}. This proves the claim. O

Remark. Having fixed a cospecialisation ¢, at z, one automatically determines cospecial-
isation morphsisms ¢, for all u in a neighbourhood of z via the above lemma. We call
these analytically compatible cospecialisations.

We intend to use the above lemma to make the specialisation explicit. It remains
to prove poly(£) — bounds to separate roots of (",  and derive the level of precision to
determine which root it is that the associated expansions of 7 converge to. We deal with
the first item initially, using a classical result from diophantine approximation.

Lemma 5.8. Let vy and vy be algebraic numbers occurring as roots of a polynomial
f(z) € K[x] of degree d and height h. Then

V3

(d+ 1)Cd+1)/2 . pd-1

”Ul — U2| > F(d, h) =

Proof. See | , Corollary A.2]. O

In our context, h and d are both bounded by polynomials in ¢. This is because for
a smooth u € U of bounded height, the ¢ — division system (¥Z, associated to Pic’(X,)
has degree polynomial in ¢, and the algebraic numbers occurring as coefficients also have
height bounded by a polynomial in ¢ (by Theorem 8.2). Hence, we may write

0(f) = m <T(d,h)

where ®(z) € Z|[x] is a polynomial with coefficients and degree independent of /.

Lemma 5.9 (Convergence-testing). Let Ai(t) = 3_; a;t?/* be an algebraic Puiseur series
in t occurring in a tuple representing v € F5 in the context of Lemma 5.7, around z =0
wlog. Write No(t) = >, Clat!t for its conjugate and let u be an algebraic number of
height bounded by a polynomial in ¢, with

ul1/
R N (1)

such that both Ay(t) and Ay(t) converge at u to distinct, conjugate algebraic numbers
vy and vy respectively. Then, it requires at most poly(¢) precision to distinguish vy from
vy, i.e., to determine which series converges to which number.

2being solutions of (Z)Iﬁ, which are all distinct and ¢29 in number
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Proof. Write t := t'/* so we regard A and A’ as power series in t. We show firstly,
that with poly(¢) terms, we can approximate A and A’ at u to within I'(¢)/4 of v; and
vg respectively. Denote by Ag’”) (t) and )\gm) (t) the m™ partial sums of A;(t) and Ay(t)
respectively. Then, applying Lemma 5.4

[As () = A )] =D oyl (Jul /) <D (exp(W(6)) - u) < o
j>m j>m ji>m
which can clearly be made less than I'(¢) /4 for a value of m polynomial in ¢. So, we have

oy =A™ ()| < T(0)/4 and |vs — AT (w)| < T(¢) /4

for m € Z~( bounded by a polynomial in ¢. By Lemma 5.8, these truncations specify v;
and vy uniquely and unambiguously as |v; — v > I'(¢).
[

Combining Lemmas 5.7, 5.8 and 5.9, we have shown the following.

Theorem 5.10 (Approximation). Let v € F5 and let z € Z. Assume we have computed

v as a tuple [Xéw D X](\}) (t)] of Puiseux expansions truncated upto poly(¢) coefficients,
with respect to the cospecialisation ¢,. Then, for u, of height bounded by poly({) such
that |z — u,| < e,/2, it is possible to determine with

poly(?) space, time and precision complezity,

the unique analytically compatible specialisation 7y, = ¢, () as the tuple [xo : ... : xp]
that [Xéw (t):...: X](\})(t)] converges to at u,.
O

The next task is to make the specialisation map explicit. Let z € Z. In Algorithm 7,
we obtained a representation of F5 as Puiseux series around z, with the common minimal
radius of convergence ¢,. In Algorithm 8, we indicate how to compute, for v € F;
obtained via Puiseux series expansions around z; the specialisation ¢ '(v) € Pic’(X,,.)[(]
for u, € U such that |z —u,| < e,.

Algorithm 8 Re-centering

« Input: An element v € F;; represented by a tuple [X(¢) : ... : X](\;[’) ()] of Puiseux
series around z as a K — rational point in PM (via Algorithm 7), and a smooth
point u € U with |u — z| < e,.

« Output: The specialisation ¢, '(v) € Pic’(X,,)[(].

1: Specialise the ideal (¥Z; at u, to obtain the ¢ — division ideal T, for Pic’(X,) by
Section 8.3.
2: Compute the ¢%9 distinct ¢ — torsion elements Pic’(X,.)[] via a zero-dimensional

system solving algorithm (] 1) applied to VT, .
3: The input tuple [X[SV) () :...: X](\})(t)] actually converges at u, to a point [z :

- : ] € Pic’(&,.). Determine the point as a tuple of algebraic numbers by using
Theorem 5.10 and matching with the points computed in Step 2.
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5.4 Computing vanishing cycles and monodromy

The goal of this section is to compute the monodromy action on F5. Additionally, we also
compute the local monodromy at each singular point, explicitly computing each vanishing
cycle in the process. This algebraic computation of monodromy can be understood as
an algebraic, finite coefficient analogue of the work [ | extended to the case of a
Lefschetz pencil on an arbitrary smooth projective surface (as opposed to a hypersurface).

Remark. The vanishing cycle 0, depends on the chosen cospecialisation ¢, : F, — F5.
Hence, it would be more accurate to write ¢,(0,) € F5 for the vanishing cycle, but we
abuse notation by referring to it as just ¢,. This is because the cospecialisations ¢, have
already been chosen or determined, as will be seen below.

As stated in Section 5.2, for z € Z, the vanishing cycle 4, € F5 is determined
uniquely upto sign by the Picard-Lefschetz formulas after picking a K(t) — embedding
K — K({t — z)). Firstly, write Z = {z1,...,2,} as an ordered set of distinct points
for r € Z~y. We make certain preliminary simplifications following the discussion before
[ , Theorem 3.23].

Choose (, := exp(2mi/s) as a generator of u,(K) for each s so that ¢, = (5. Let
I;]_ denote the tame inertia group at z; and let o; be its generator. We need to choose

embeddings I}, — Gal(K(t) /K (t)) in such a way that the o; together generate the tame
fundamental group m1(U,7) and H;Zl o; = 1. This implies that we are freely permitted
to choose the embeddings for 1 < 57 < r — 1 but the embedding for 7 = r is decided by

the others, so that
r—1

o, = Ha;_lj e m (U, 7).

J=1

Further, for all 1 < 7 <, the canonical generator o; of the inertia I ;j acts as
1 1
o5 (t—2)"" = ¢ (t—2)"*.

What this means for us, is that the cospecialisation maps ¢, : F., < J are determined
by arbitrary embeddings for 1 < j < r — 1, but once these choices have been made, the
last cospecialisation ¢, : F. < JF5 is completely determined by the previously made
choices. With these simplifications, the Picard-Lefschetz formula (4.4) becomes

a;(7) =7 — (7,0z,)0, (5.2)

fory € Frand 1 < j <r. Wenow give a method, such that given z; € Zfor1 < j <r—1,
and u; € U with |z; — u;| < e,;, we compute ¢, (J.,) as an element of Pic’(X,,)[4].

Theorem 5.11. Algorithm 9 uniquely determines the vanishing cycle at each z € Z\{z,},
upto sign.

Proof. Let v € F5 \ ¢.(F.). By Section 5.2, we know that after a choice of embedding,
we may write

v =X X )]

as a tuple of Puiseux series around z, representing a K (t) — rational point of Pic’ ().
By Theorem 8.8, we know that the image ¢.(F,) is all rational over K((t — z)), so in
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Algorithm 9 Computing vanishing cycles

o Input: A singular point z € Z\ {2, } and a smooth point u, such that |z —u,| < ¢,.

e Output: An element §, € F5 unique upto sign, that is the vanishing cycle at z
with respect to the cospecialisation ¢, of Algorithm 7.

Obtain a representation of F5 as Puiseux series around z using Algorithm 7.
Choose v = [X(()W) (t):...: XJ(\Z) (t)] € F5 \ ¢-(F.). This reduces to choosing a 7 for
which at least one of the Puiseux series X ](7) (t) is ramified at z, i.e., is a true Puiseux
series and not in fact a Laurent series.

Writing
X(W Z o ]/Z
evaluate
0.(7) = X)L XG0 )]
where

=2 age- "

Compute the element ¢,'(0.(7)) € Pic’(X,,)[¢] using the specialisation of Algo-
rithm 8.

5: Compute ¢, '(v) using Algorithm 8.
6: Compute

10:

§:= ¢, (0:(7)) — ¢, (7)

using the explicit group law on Pic’(X,.) (using Theorem 8.9).

Use the inverse of the abstract Abel map of Section 8.4 (Algorithm 13) to represent
the ¢ — torsion points ¢, ' () and ¢ as divisors on X, .

Use the divisorial representation in Step 7 to compute the Weil pairing

a:=(4,(7),0) € Z/IZ

on Pic’(X,.)[{] using Algorithm 6.
Applying ( .3), compute

. (0:) = £(V—a~1) -0 € Pic"(X,)[(]

via the explicit addition law (Theorem 8.9), and make an arbitrary choice of sign.
With knowledge of ¢, (d.), identify it with the correct tuple of Puiseux expansions
around z and return 6, as a rational function in the primitive element 7.
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order to choose v from outside F,, it suffices to ensure one associated Puiseux expansion
ramifies at z.

Having chosen compatible generators (, for u,(K), we may identify the inertia I' at
z as

Our choice of topological generator o, sends (t — )¢ to ((t — 2)'/¢, and acts termwise
on the Puiseux expansions associated to . In this way, the action of o, is realised
as an automorphism of F3, that precisely fixes ¢,(F,). In particular, since v & ¢.(F.),
we have 0,(y) # . Therefore, by the Picard-Lefschetz formula (5.2), we know (v, d,) # 0.

For a w, such that |z — u,| < e,, we know that the Puiseux series Xﬁ) (t) all con-
verge at t = u,. Further, by Section 5.3, Algorithm 8 computes the unique (and distinct)
specialisations ¢, ' (0.(v)) and ¢, '(7) of 4 to the £ — torsion of Pic(X,,). Set

8= ¢, (0:(7)) — 1 (7) = ¢, (0-(7) — ),

and a := (¢;1(7),d). Note that a priori, a € u(K), but we have then taken its discrete

Uz
logarithm with respect to the generator (,. It remains to show the following.

Lemma 5.12. The vanishing cycle 6, at z can be computed as
5. =+ (( o) - 5) (5.3)
Proof. First, we see that a # 0 as an element of Z/¢Z. Indeed,

a= (0,1 (7),0) = (6,) (1), ¢} (0:(7) = 7)) = (v, 0:(7) =) = (7,0:(7)) #0.

Further, we know by the Picard-Lefschetz formulas, or Section 8.3, Theorem 8.7 that
Gu.(0) = 0.(7) —y € <9I, > C Fy. Therefore, writing

c- bu,(0) =0,

for some ¢ € (Z/(Z)*, we see

02(7) -7 = _<77 5z>5z = —C (</77 C- ¢uz (5)>) ’ ¢uz (5) = _62 : (<77 gbuZ (5)>) ’ gbuZ (5) = ¢uz (5)

Equating coefficients, we have

a = {6:1,8) = (3, 6. (0)) = — .

Therefore, we see

c==+vV—-al
[]
Thus, the specialised vanishing cycle ¢;1(6,) € Pic’(X,,)[¢] is computed. This com-

pletes the proof of Theorem 5.11.
O



5.4. COMPUTING VANISHING CYCLES AND MONODROMY 51

Remark. We check that —a is indeed a square in Z/{Z as

—a = _<77¢UZ(5)> = _<’770-z(/7)> = _</7> _(<775z>) ’ 6z> = ((7752»2

We emphasise again that the cospecialisations ¢., : F., — F5 have only been made
explicit for 1 < j < r — 1, as arbitrary choices were allowed for the associated embed-
dings I;, — Gal (W/F(t)) However, the final embedding I} — Gal <m/f(t)>
is completely determined by the previous ones, via the relation H;:1 o; =1 in 7{(U,7).
Hence, an explicit representation of the last vanishing cycle 6., can be computed by just
using the knowledge of the action of the other inertia generators. We sum up, with an
algorithm computing the action of the generators o; for 1 < j < r, of the geometric
monodromy.

Algorithm 10 Computing the monodromy

« Input: Anelement v € F5 presented as a tuple of rational functions in the primitive
element 7.

« Output: For each z; € Z\ {2,}, the element o;(), again presented as a tuple of
rational functions in 7.

1. For z € Z\ {2}, expand ~ as a Puiseux series around z and compute o,(y) as in
Step 3 of Algorithm 9.

2: Express 0,(7), which is now represented as a tuple of Puiseux expansions around z,
as a tuple of rational functions in 7, using the Puiseux expansion A, for 7 and linear
algebra.

3: Return the tuple of rational functions in 7.

We conclude with a table drawing a parallel with monodromy computations in the
complex analytic setting, such as | ].

Analytic side Etale side
m (U, ) 7é(U, )
Generator o Topological generator o;

Loop based at u going around a puncture z | Embedding I, — Gal(K(t)/K(t)), together

geometric generic point 77 = Spec(K (1)).

with isomorphism of fiber fuctors at u and

Table 5.1: Analytic-étale comparison



Chapter 6

Algorithms for cohomology

6.1 The Edixhoven subspace

In this section, we describe how to compute the Galois action on the second étale coho-
mology. We begin with a high-level description of the strategy.

o Having computed the monodromy, compute the normalisation of P! in the function
field of the étale cover V — U trivialising the locally constant sheaf Rz, ui,.

e Let V — P! now be the smooth curve so obtained, ramified at Z. Then, the Galois
action on H! (P, F) C H?(X, g) can be computed from the action of Galois on the
subspace of Hl(f/, o) ®r, F5, given by those tensors invariant under the diagonal
action of G.

« The action of G on V extends naturally to an action on H'(V, z1¢). One then isolates
the Edizhoven subspace E C Hl(f}, fe), i.e., the subspace spanned by all copies of
M inside it, by working over a finite field, modulo an auxiliary prime 3 of good
reduction, distinct from £.

o Calling f)qg the curve obtained upon reduction, we obtain its zeta function by count-
ing points, and isolate the Edixhoven subspace Eg (which is defined over a poly-
bounded extension) with knowledge of the monodromy action.

« The subspace Eg is then lifted B - adically, using Hensel’s lemma, to the charac-
teristic zero subspace E following Mascot | ], from which the Galois action is
subsequently computed.

6.1.1 The trivialising cover

The étale cover V — U that trivialises the locally constant sheaf is obtained by normal-
ising the function field of P! in the Galois closure of the field K (Jac(X;)[¢]) that the
relative ¢ — torsion Jac(A5)[¢] of the Jacobian of the generic fibre is defined over. Passage
to the Galois closure of a field is efficiently possible, simply by computing a primitive
element, and going to its splitting field.

As seen earlier, this extension is of degree bounded by a polynomial in ¢, and a
birational planar model of the curve representing this extension can be computed via
a primitive element. Call V the curve so obtained, and denote its normalisation by
V. A representation for the latter is computed via resolution of singularities, for which

52
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there is a polynomial-time (in the genus g of the curve) algorithm | ]. Further,
the associated map j : V — U can be computed in polynomial-time. The map on the
smooth compactifications ] .V — P! is ramified only at Z, and its degree is bounded by
a polynomial in /.

Theorem 6.1. We have the following isomorphism of Gal(K /K) — modules
H(P!, F) = (H(V, ) ®M)G (6.1)
where M = F.
Proof. First, consider the Hochschild-Serre spectral sequence | , Theorem 14.9]
HY(G,H(V, Fly)) = H (U, F)
associated to the Galois cover V — U. One has the five-term long exact sequence
0 — HYG, M) = H' U, F) — H(V, F]y)¢ — H(G, M) — H*(U, F).

Now, for large enough ¢ (i.e., so that the integral ¢ - adic cohomology groups are torsion-
free) we know by | , Theorem 13}, that G = Sp(&;), where €& C F|y is the locally
constant subsheaf of vanishing cycles. In particular, by mod-¢ hard Lefschetz, we may
write M ~ M’ & M", where M' = & and M” ~ HY(X,p,) is a trivial G - module.
Thus, for such ¢, we have that H(G, M) = 0 for 1 <14 < 2, as after splitting, the centre
has order 2 and acts non-trivially on M’ (for ¢ > 2, which we assume anyway). The
passage to V follows from a purity argument by moving to positive characteristic, thanks
to Deligne’s main theorem | , Théoréme 2.

]

6.1.2 Geometric Galois action

In this subsection, we describe how to compute the G-action on points of V.
« Consider the primitive element 7 for the field extension K (V)/K (P').

e The extension has Galois group G, the geometric monodromy group. For each
generator py(o;) € G for 1 < j < r, express 0;(T) as a rational function of 7, akin
to Algorithm 10.

 As each o; gives rise to a birational automorphism of the smooth projective curve
V), it hence extends to an isomorphism, which can be given in terms of polynomials.

« Hence simply evaluate the corresponding isomorphism on the input point, this gives
the G — action on the points of V.

« This extends to an action on Jac(V), via divisors.
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Algorithm 11 Computing the Edixhoven subspace modulo ‘P

« Input: The curve V and a prime 0.

« Output: The mod-P Edixhoven subspace Eg C Jac(Vy)[/].

1: Compute the zeta function Z (f)qg /Fqy,T) by counting points on V over extensions of
Fy, using a P - adic algorithm such as Harvey’s | ].
2: Compute a basis of each space

S = Jac(Vy)[](Fo)

as sums of ]}qg — points.

3: Compute the G — action on each subspace S;. In particular, for each generator p,(o;),
compute its action on S; for each i upto a bound J = poly(¥), using 6.1.2 and | ,
Theorem 1].

4: Compute each element ¢ € Homg (Mg, S;) as a matrix, and a basis of the sum of the

images. Write
EY = > im(g).

5: Compute the invariant space (Eg) ®r, My)® and its dimension. If it equals (8 — 2,

(4)
return ]Eq3 .

6.1.3 Arithmetic Galois action

We first give a method to isolate the Edixhoven subspace E C Hl(f/, ie) that is relevant
for the Galois contribution on the second étale cohomology of the input surface. For this,
we make use of an auxiliary prime P of good reduction, distinct from ¢, and work with
the positive-characteristic curve f/qg.

Remark. We abuse notation by using G to also refer to the monodromy of the mod-3
Lefschetz pencil. Provided P is large enough compared to the data of the surface, there
is an equality between the number of singular fibres in char zero and in positive char.
Further, let v € U and u € Uy such that v = u mod P. Let £ = spec(Fy(t)) be the
geometric generic point. Then, we can consistently transport the G-action on Fy to Fg
via the diagram

but
Fi —— Fu

|

-1
Fe —— F,

where ¢, is a choice of cospecialisation at u, ¢, is the corresponding positive characteristic
choice (obtained via coefficient-wise reduction of Laurent series), and g, is the char-zero
to positive-char comparison isomorphism coming from reduction mod 3. Thus, we have
an unambiguous G - action on My = F.

Lemma 6.2. The quantity J in Step 3 of Algorithm 11 can be assumed to be bounded by
a polynomial in €.
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Proof. We need to show that the Edixhoven subspace Eq C Jac(Vy)[¢] is defined over a
field extension of Fy of degree at most bounded by a polynomial in £. We notice that via
its action on the positive characteristic surface X, we have a Galois representation

Gal(Fm/Frp) — GL (H2(qu, ,lu)) .

The general linear group is of rank [ (the second Betti number of X') over the field
Fy, hence has size bounded by a polynomial in ¢. Further, this restricts to an action on
H!(P!, F). Therefore, by Theorem 6.1, it is sufficient to show that Ey has dimension
independent of /. Using the tensor-hom duality, we see that Eq can be identified with
the sum of the images of each ¢ € Homg (MY, H'(Vy, 11)). The hom space has dimension
bounded by (,, and the dimension of M is independent of ¢, so this gives the result. [J

Remark. See also | , Lemma 5.6] for an alternate proof.

Theorem 6.3. Algorithm 11 outputs the subspace Eg C Hl(f)qg, L)

Proof. We note that Eg is the sum of all subspaces of Jac(V)[¢] isomorphic to My as G-
modules. Further, by Lemma 6.2, it can be found within a poly-bounded extension. The
algorithm only stops when the invariant subspace has the correct dimension, indicating
that we have found the Edixhoven subspace. O

We now indicate how to Hensel- lift torsion points P — adically, following work of
Mascot | |. We recall the following.

Theorem 6.4 (Mascot). Let C' be a model for a nice algebraic curve of genus g’ over
a number field L given via equations, and let p be a mod-¢ Gal(L/L) representation
contained in a subspace S C Jac(C)[f] of dimension s. Let P C Of be a prime of good
reduction for C' distinct from £, and assume we are given Py(Cy/Fy,T). Further, assume
we can isolate the subspace Sy C Jac(Cy)[l]. Then, given an accuracy parameter e,
there exists an algorithm to B-adically lift the torsion subspace Sy to S and compute the
associated Gal(L/L) representation in time

O(poly(g' - log(#Fx) - € - £°)).
Proof. This is the main result of | l. O

We now give a brief, informal sketch of Mascot’s algorithm for completeness, based
on the outline | , §1.2]. For simplicity, assume the base number field is Q, and we
have a rational prime p.

« Compute a basis of S, C Jac(Cy)[(](Fy), where F,/F, is an extension over which
the subspace S, becomes rational.

 Given the accuracy parameter e, Hensel-lift the basis points to approximation O(p®)
in Jac(C)(Qy), i.e., points of Jac(C)(Z,/p°).

o Compute all the possible [F, — linear combinations of this basis. This is a model of
S over Z4/p, consisting of ¢° points.

o Write a rational map « : Jac(C') --» A! defined over the field @, and evaluate at
the £¢ points constructed in the above step. Make sure the values are distinct, else
use another rational map.

o Form the monic polynomial whose roots are these values and output it.
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6.1.4 Height of divisors in the Edixhoven subspace

In this subsection, we bound the height of the divisors we are interested in, coming from
the Edixhoven subspace. The main estimate is the following.

Theorem 6.5. For each x € E C Jac(V)[{], we have
h(D,) < poly(¢), (6.2)

where D, is a representation of the degree zero divisor in Jac(V)[(] corresponding to x,
as a sum of points in V.

Proof. We have to show that for x € E C Jac(V)[{], each point in the support of the
divisor representing it, in the framework of Khuri-Makdisi’s algorithms | , ]
(as used by Mascot), has (logarithmic) Weil height bounded by a polynomial in ¢. The
strategy is to make use of | , Theorem 9.1.3] applied to the curve itV — Pl We
first note that Theorems 9.1.3, 9.2.1, and 9.2.5 of | | are directly applicable to our
setting, as they are concerned with a general algebraic curve or Riemann surface defined
over a number field. We address each term in the inequality of | , Theorem 9.1.3]
separately, showing polynomial bounds.

1. Faltings height of the curve V.
As a first step, we invoke Theorem 8.3, applied to the curve V, which is the normalisation
of P! in the function field of the cover j : ¥V — U. Noting that the ramification locus
Z =P\ U has cardinality and height depending only on the surface X and independent
of £, we see that the theorem directly gives that the Faltings height b F(f)) of the Jacobian
of V is bounded above by

deg ()",
where the quantity a is independent of ¢. Noting that deg(j) is bounded by a polynomial
in ¢ gives the result.

2. Sup norm bounds for the Arakelov-Green’s functions The sup-norm of the
Arakelov-Green’s functions g is bounded above in terms of Faltings’ delta invariant dz(-),

by [ , Corollary 4.6.2]. The quantity dz()) is in turn bounded in Javanpeykar’s
result | , Theorem 6.0.4], by a polynomial in /.

3. Bounds for the theta function For the norm of the theta function ||9|| on Pic®~*(V),
we have by | , Lemma 2.4.2]

10g ||| < glog max(1, hr(V)) + (4g° + 5g + 1) log 2,

which is clearly bounded by a polynomial in ¢, as both the genus g of V and its Faltings

height (V) are.
4. An integral bound Consider the integral
ﬂlog(lJrﬁIQ)uv,
v

where f; is the Arakelov 1-1 form associated to V, regarded as a Riemann surface. By
pushing forward to P!, one may conclude a polynomial upper bound for the integral as
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the degree, the number of poles and (logarithmic) height of the polynomials defining the
function j are bounded by a polynomial in ¢. Further, the ramification locus is bounded
independently of ¢ as well.

5. Bounds for intersection numbers For an ¢ - torsion divisor D, corresponding to

x € E, one can bound the intersection numbers due to work of Wilms [ , Propositions
1, 2] (see also | , Proposition 2.6.1], and more generally, the discussion in §2.6 of loc.
cit.).

With bounds for the above quantities, it follows that for each point P, in the support
of D, the absolute Weil height h(j(P,)) is bounded by a polynomial in £, by a similar
argument as in | , Proposition 11.7.1]. This implies, the same for h(FP,) as the map
j itself has height and degree bounded by a polynomial in £. ]

Remark. We note that in the proofs of each of the above components, we require YV to be
semistable over K. This is possible after an extension, but the degree of the extension
can be exponential in the genus g and hence ¢. This does not affect the bounds as the
inequalities (in particular, for the intersection number as well) are normalised by the
degree [K : Q], asin | , Theorem 9.1.1], ultimately giving polynomial height bounds.

Remark. As an aside, we mention that the result of Javanpeykar, Theorem 8.3, provides
a heruistic towards Theorem 6.5 in the following sense. An {-torsion point in Jac(V)[(] is
understood as a divisor D, corresponding to an étale u,-torsor i : W — V. The composite
map

on':W—>IF’1

is ramified exactly at Z, and is of degree bounded by a polynomial in ¢. Further, the
curve WV also has genus bounded by a polynomial in ¢ thanks to the Riemann-Hurwitz
formula, hence has Faltings height bounded by a polynomial in ¢ by Theorem 8.3. This
suggests that the (logarithmic) Weil height of the algebraic numbers that appear in a
“minimal” expression for the divisor D should also likewise be bounded by a polynomial
in /.

We conclude with the below table, drawing a rough comparison with the leitmotif of
the work | ].

Couveignes-Edixhoven This work

Modular curve X;(5¢) The curve V

The Ramanujan subspace V C J;(5¢)[/] The Edixhoven subspace E C Jac(V)[(]
Hecke action to compute V Monodromy action to compute [E.

Table 6.1: Comparison to Couveignes-Edixhoven

6.2 Main theorem

In this section, we state and prove our main result.



58 CHAPTER 6. ALGORITHMS FOR COHOMOLOGY

Theorem 6.6. Let X' be a fized, nice surface of degree D defined over a number field K .
Then, there exists a randomised algorithm that

(i) on input a prime number C, outputs the étale cohomology groups HY(X, pe) for
0 <i <4 along with the Gal(K/K) action in time

poly(¢),

(it) on input a prime p C Ok of good reduction with Ok /p = F,, outputs the zeta
function of the reduction Z(X /F,,T), and the point-count #X (F,) in time

poly(log q).

Proof. The computation of the cohomology groups H(X, ) for i = 1,2 is in Algo-
rithm 12. The computation for ¢ = 3 follows from that of ¢ = 1 using Poincaré duality,
while the cases ¢ = 0, 4 are via suitable twists of the cyclotomic character. The complexity
is proved in Lemma 7.7.

Part (ii) follows in a manner similar to that mentioned in [ , Remark 1.2]. One
uses an efficient algorithm to compute the image of the Frobenius element at large primes,
upto conjugacy, such as | ], combined with Section 8.1 to recover the zeta function
and point count. O
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Algorithm 12 Computing the cohomology groups H'(X, 1)

o Input: A smooth projective surface X C PV of degree D over a number field
K presented as a system of homogeneous polynomials of degree < d and a prime
number /.

o Pre-processing: Fibre X as a Lefschetz pencil 7 : X — P! Let Z C P!
parametrise the singular fibres and & = P!\ Z the smooth ones. Embed the
Jacobian of the generic fibre &, into PM obtaining the ¢ — torsion Pic’(&;)[¢] as
the K (t) — roots of the ideal (VZ; using Algorithm 5.

« Output: The cohomology groups HY(X, pug) for 1 <i < 2 presented as F, — vector
spaces with bases and Gal(K /K) — action.

1: Choose a point u € U(K) of bounded height and degree, to serve as base point.

2: Compute a cospecialisation ¢, : F, — F5, by making a choice of expansion for the
primitive element 7 around u, hence obtaining each v € F3; as Laurent series around
u.

3: Compute the image of the monodromy fixed subspace, i.e., those elements v € F5
fixed by each o; for 1 < j < r, with the monodromy action as computed in Algo-
rithm 10.

4: Compute the Galois action on the monodromy fixed subspace F¢ := ¢,'(F)

element-wise, using the cospecialisation ¢,. This gives H' (X, y) with Gal(K/K)
action.

5: Now, for the second cohomology work with the curve V. Choose an auxiliary prime
of good reduction P of size O(¢), distinct from ¢, and compute the subspace Ey C
H'(Viy, j1¢) using Algorithm 11.

6: Lift the subspace Eq to the characteristic zero subspace E C Hl(f/, fie) using Theo-
rem 6.4.

7: Compute the space of invariant tensors

(E® F,)¢

with knowledge of the GG - action.

8: Compute the diagonal Gal(K /K) action as a matrix on the subspace of tensors which
has been isolated in the above step, element-wise. This gives the space H' (P!, F) with
Gal(K/K) - action. To obtain the full H?(X, ), we just add the space < vg > @ <
~vr >, on which Galois acts via the cyclotomic character on each component.




Chapter 7

Complexity analyses

In this chapter, we provide the upper bounds for the complexities stated of the subroutines
used in the earlier sections. We do not deduce the exact complexities beyond showing
that they are bounded by polynomial functions of ¢ and logq. We also keep track of the
heights of the algebraic numbers involved in the computations.

7.1 Algorithms of Chapter 4

Noting that the complexity of Algorithm 4 is independent of ¢, we begin with the follow-
ing.

Lemma 7.1. Algorithm 5 runs in time poly({).

Proof. Pila | , §2] shows that the data representing the multiplication by ¢ map is
bounded by a polynomial in ¢. Further, the coefficients occurring in the ideal YZ;; have
height bounded by a polynomial in ¢ due to Theorem 8.2 and the fact that the Faltings
height of the (normalisation of the) curve )¢ over K given by (E)Iﬁ is bounded by a

polynomial in ¢ | , Theorem 6.0.6].
O

7.2 Algorithms of Chapter 5

Lemma 7.2. Algorithm 7 runs in time poly({).
Proof.
o Step 1: The complexity of Algorithm 5 has been shown to be polynomial in £.

o Step 2: Zero-dimensional system solving can be done using a primitive element in
time polynomial in the degree of the system by [ .

 Step 3: Computing the first m coefficients of a branch can be done in poly(m) time
by Theorem 5.2. It suffices to compute the first poly(¢) coefficients to uniquely
specify a branch by Lemma 5.3.

« Step 4: Once a choice of Puiseux series for 7 is made, simple arithmetic (addition,
squaring) can be performed using it in polynomial time.

60
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Lemma 7.3. Algorithm 8 runs in time poly({).

Proof.

Step 1: Specialisation of the ideal (K)Iﬁ to u mearly involves making the substitution
t=u.

Step 2: The specialised ideal (7, is now zero-dimensional over K and its roots can
be found by a system solver | |. The Weil height of the ¢ — torsion points is
bounded by a polynomial in ¢ by Theorem 8.2.

Step 3: Convergence to an algebraic number with poly(¢) precision is guaranteed
by Theorem 5.10.

O

Lemma 7.4. Algorithm 9 runs in time poly({).

Proof.

Step 1: Follows from the complexity of Algorithm 7.

Step 2: An element v € F5 \ ¢.(F,) can be chosen by ensuring that at least one
of the tuple of Puiseux expansions associated to v is ramified at z, i.e., is in fact
belongs to K ((t — z)) \ K((t — 2)).

Step 3: As each Puiseux expansion is specified only upto the first poly(¢) coefficients
by Lemma 5.3, one has to simply multiply each (non-constant) coefficient by a power

of Cg.
Steps 4 & 5: The complexity follows from that of Algorithm 8.
Step 6: The addition of the group law can be performed efficiently by Theorem 8.9.

Step 7: The complexity of computing the abstract Abel map and its inverse (Algo-
rithm 13) is given by Theorem 8.9.

Step 8: Pairings can be computed in polynomial time using a divisorial description
by Algorithm 6.

Step 9: Square root over Z/(Z can be found in randomised polynomial time.

Step 10: The rational functions in 7 corresponding to Puiseux expansions around
z, can be found in polynomial time via linear algebra combined with poly(¢) trun-
cations.

]

Lemma 7.5. Algorithm 10 runs in time poly({).

Proof.

Step 1: Follows from the complexity of Algorithm 9.
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e Steps 2 and 3 : This boils down to the problem of expressing elements in the
splitting field of the ¢ — torsion of the Jacobian of the generic fibre, as rational
functions in a primitive element for the field extension. This can be solved on the
level of Puiseux series as well, with poly(¢) truncation, by Lemma 5.3.

O
7.3 Algorithms of Chapter 6
Lemma 7.6. Algorithm 11 runs in time poly({ - char(Fy) - log(#Fy)).
Proof.
e Step 1: One can use a % — adic algorithm such as Harvey’s | ] to count points

on Vy to output its zeta function with the stated complexity. It is sufficient to
count points upto an extension of degree bounded by the genus g, which in this
case is bounded by a polynomial in /.

o Step 2: A basis for the space S; can be computed in polynomial time using random
sampling on the curve, following | .

e Step 3: The G - action is computed on the points of the curve 1}%3 following 6.1.2 in
polynomial time. The number J is bounded by a polynomial in ¢ by Lemma 6.2.

o Step 4: Firstly, the dual MY can be identified with M for the G — action via
the self-duality given by the symplectic Weil pairing. Next, the dimension of the
space Homg(MY,S;) is bounded independently of ¢, and each G — equivariant
homomorphism can be computed as a matrix via linear algebra. In other words,
there are only poly(¢) homs, and a basis for the sum of their images can be found
using | ].

e Step 5: One can list all the invariant tensors with knowledge of the G — action.
Further, zero-testing is efficient and can be done in polynomial time, so it simply
remains to count the number of invariant tensors in each space, which is always
bounded by a polynomial in /. Finally the Betti number 8 can be computed as
H#Z + 20, + 2 — 4g, where g is the genus of the generic fibre of the pencil.

O
Lemma 7.7. Algorithm 12 runs in time poly({).
Proof.
e Step 1: This can be done in polynomial time.

o Step 2: The complexity is the same as that of computing a Puiseux series expansion,
except we are now working around a smooth point. The poly(¢) truncation bounds
remain, and the total complexity is the same as that of Algorithm 7.

o Step 3: Follows from the complexity of Algorithm 10.
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« Step 4: The arithmetic Gal(K/K) action on F¢ factors via a finite extension
K'/K that the subspace is rational over. This extension has degree bounded by
a polynomial in ¢, as its Galois group is a subgroup of GL(FY), whose rank is
independent of /.

o Step 5: Follows from the complexity of Algorithm 11.

« Step 6: Follows from | |, i.e., the complextiy of Theorem 6.4. The preceision
e required depends on the complexity of the algebraic numbers occurring in an
explicit description of the Edixhoven subspace. We know by Theorem 6.5 that the
heights are bounded by a polynomial in ¢. Further, the points occurring in the
support of the divisors concerned, each also have degree bounded by a polynomial
in £, as the Edixhoven subspace becomes rational over such an extension.

o Step 7: The G- action on the space of tensors can be computed element by element,
as its dimension is independent of /.

« Step 8: Again the Gal(K/K) action factors through a finite extension K”/K, with
degree bounded by a polynomial in ¢. Its action on E is obtained via points on V),
and the action on F, can be computed akin to Step 4.

]



Chapter 8

Ancillaries

This supplementary chapter serves the purpose of an appendix, including material on
recovering the zeta function, background on height theory, a recap of certain results of
Igusa, and a known algorithm for computing equations of Jacobians due to Anderson.

8.1 Recovering zeta

The objective of this section is to show how to recover the zeta function of a smooth,
projective surface from the action of Frobenius on its étale cohomology groups. As usual,
let X C PV be a nice surface of degree D obtained via good reduction from a nice surface
X over a number field K, at a prime p C Ok. Assume we have computed the action of
the Frobenius endomorphism F; on the cohomology groups H* (X, Z/(Z) for 0 < i < 4.
We show how to recover the zeta function Z(X/F,, T') and the point-count #X (F,) as
follows. Firstly, denote P5(T) := det (1 — TF* | H(X,Z/(Z)) € F,[T]. Consider the
following exact sequence of étale sheaves on X following |

0 — 2y — Zy — ZJ{Z — 0.

As a result, we obtain the following from the associated long-exact-sequence on cohomol-
ogy

0 —s H(X, Z) /(0 - H(X, Z)) — H(X,Z/0Z) — U (X, Z)[] — 0. (8.1)

Writing

P/(T) :=det (1 —TF; | H(X,Z)[(]) and P;(T) := det (1 —TF; | H'(X,Q)) mod ¢,

7

we see from (8.1) that 3 B
F{(T) = Pi(T) - P{(T) - P, (T).

(2

In particular, if we write Z(X /F,,T) = P(T)/Q(T) for P(T),Q(T) € Z[T], we see that

T) + e
o~ L

=

y

Ql

where P(T) := P(T) mod ¢ and Q(T) := Q(T) mod ¢. This implies that the zeta

function can be recovered as an application of the Chinese remainder theorem using the

64
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polynomials PZ(T) for finitely many primes ¢. We now give bounds for the number and
size for the primes required. Write

B; = dim H (X, Qy) = deg Pi(X /F,,T)

for the i*® ¢ — adic Betti number of X. By | , §4.2], we know (3, = 33 < 2D?
and 3 < 2DVT!. As a result of Deligne’s proof | | of the Weil-Riemann hypothesis
for X, we know that the reciprocal roots of P;(X/F,,T') have absolute value ¢"/?. This
implies that the coefficients of each polynomial P;(T") are bounded above by

pyn+1 )4

In particular, it suffices to compute P;(7) mod ¢ for all primes ¢ < Alogq where
A =9. DN+l 3 Further, observe that

Q(T)P(T) — P(T)Q(T)
P(T)Q(T) ’

d o .
d_TlOgZ(X/FmT) - ;#X(qu)T] b=

so #X (F,) can be read off as the constant term of the power-series expansion associated
to the logarithmic derivative of Z(X /F,,T).

Remark. We note that we may need to work over field extensions Fq/F, (e.g., to ensure
the existence of a smooth fibre of 7) and compute the Fy — zeta function. The base zeta
function can be recovered from any two such, via a recipe due to Kedlaya [ , §8J.

8.2 Hohentheorie

In this section, we recall the theory of heights and state certain height bounds to com-
plement our algorithms.

Let K/Q be a number field. Denote by Mg the set of places of the ring of integers
Ok and denote by v, for p € My the associated p — adic valuation. Let K, denote the
completion of K and set n,, = [K, : Q,].

Definition 8.1. Let P = [zg : ... : zny] € PY(K) be a point. The Weil height h(P) is
defined as

h(P) = [Kl: 5 - <log(m§1Xijva)> |

Definition 8.2.ALet C be a curve over K and let J denote its Jacobian. The Néron-Tate
height, denoted h for a point P € J is defined as follows

h(P) := lim h2P)

jooo  4d

(8.2)

It is clear that the Néron-Tate height vanishes on torsion points. We next recall the
following, that relates the two height functions introduced above, on an abelian variety.
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Theorem 8.1 (Zarhin-Manin). Let A be a polarised abelian variety over a number field
K, together with an ample, symmetric line bundle ©. Then, there exist constants ¢; and

o, depending on A and g such that for any P € A(K),

~

h(P) —¢; < h(P) < h(P) + ¢ (8.3)

with

2291 1
0= ( 3 + 1) -h@(A)+(2292 + %) -g-log2 and ¢y = (229—1)-h@(A)+(229+1—§)~g-log 2,

where hg(A) is the height of the neutral element 04 of A.
Proof. Apply | , 3.2] to the divisor 4 - ©. O

Theorem 8.2 (Height of torsion point). Let C C PN be a smooth, projective curve of
genus g and degree D over a number field K, and denote by J ils Jacobian. Let { be a
prime number, and let P € J[{] be an { — torsion point. Consider the embedding of J
into PM given by Theorem 8.9. Then, we have

[h(P)] < C,

where C' is a constant that depends only on N, g, D, the height of the coefficients of the
equations defining C, the extension degree, and the logarithm of the discriminant of the
number field K/Q. The dependence is polynomial in the last three items. In particular,
the height of an € — torsion point is bounded by a quantity independent of £.

Proof. As P is assumed to be torsion, we know iAz(P) = 0. We note firstly, that by
Theorem 8.10, the height of the Jacobian constructed in Theorem 8.9 is bounded above by
the height associated to the 4-© — embedding. The result then follows from Theorem 8.1,
combined with the results of | . §2] and | . §1]. O

Remark. Theorem 8.2 holds with the base field K replaced by a function field F,(¢) or a
function field over a number field K (t). We merely change the notion of height; in the
former case, one uses a geometric height function, and in the latter case, a height function
that captures both the geometric and arithmetic data, such as Moriwaki’s height function
[ |. The general underlying principle is that the naive height only differs from the
canonical height by a bounded amount (see | , §4]).

We now recall a result of Javanpeykar, which resolves a conjecture of Edixhoven-de
Jong-Schepers | , Conjecture 5.1], that bounds the Faltings height of the Jacobian
of a ramified covering of the projective line.

Theorem 8.3 (Javanpeykar). Let U C P}, be a nonempty open subscheme. There exist
integers a,b € Z~q such that for any prime £, and any connected finite étale cover

v:V - Uz[l/g],

the Faltings height of the Jacobian of the normalisation of P! in the function field of V
is bounded by
(deg ¥)*
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where a is a constant that depends only on the height of Z = ]Pﬂb \ Ug and the action of
Gal(Q/Q) — on Z. In particular,

a =6+ log (13 S 109A - (4AB)45A32A*2A’>

where A is the number of elements in the orbit of Z under the action of Gal(Q/Q) and
B is a bound for the height of the elements of Z.

Proof. See | , Theorem 6.0.6]. O

8.3 Results of Igusa

In this section, we recall certain results of Igusa related to fibre systems of Jacobian
varieties, their embeddings, and specialisation. This is then applied to the context of a
Lefschetz pencil on a surface and the specialisation of the ¢ — torsion in the Jacobian of
the generic fibre. The treatment is based on the works | , , ]-

Let X C PV be a nice surface over a number field K and let 7 : X — P! be a Lefschetz
pencil of hyperplane sections. Denote by Z C P! the finite subset parametrising the nodal
fibres and let U = P!\ Z. Let 7 — P! be a geometric generic point and let the genus
of the generic fibre X; (as a curve over the field K(t)) be g. Write F := Rlm,u, for
the derived pushforward. Consider an embedding of the Jacobian [J; = Pic’(X;) into a
projective space PM 1,

Theorem 8.4. For z € Z, let jz be the specialisation of J; to z, over the specialisation
X; — X,. Then, J, is the completion of the generalised Jacobian * T, of X,.

Proof. See | , Theorem 3]. O

Theorem 8.5. The singular locus of J. is J. \ J.. Further, if w is a K(t) — rational
point of Jy, then the specialisation w, of w to z is a smooth point of J..

Proof. See | , pg 746, Theorem 1]. O

~ Now, under the natural inclusion K(t) — K((t — z)), fix an embedding K(t) —
K{(t — z)). As we saw in Section 5.2, this completely determines a cospecialisation map
¢, + F. — Fi. We have the following.

Theorem 8.6. Write ¢ for the 0 — cycle on Jz comprising of its { — torsion Jz{¢]. Then
the specialisation of ¢ to z is the 0 — cycle on jz written § + < where S consists of the
¢ — torsion of the generalised Jacobian J,[¢] and T is a positive cycle, each of which
is a multiple point of jz arising from the singularities of the curve V€ C PM over K
corresponding to the £ — division ideal (K)Iﬁ of J5.

Proof. See | , Theorem 2]. O

Theorem 8.7. Let v € F5 \ ¢.(F.). Then o,(7y) and 7 specialise to the same point in

J.. Further, o,(y) — v lies in the space generated by the vanishing cycle at z.

Lusing e.g., Chow’s method (| ]or [ , Appendix]) or Anderson’s method ([ ]) sketched
in Section 8.4, both of which involve the © — divisor
2also called Rosenlicht variety
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Proof. See the proof of | , Theorem 3]. O

Theorem 8.8. Now, consider Jy as being defined over K((t—2)). Then, all the points
of ¢.(F.) are rational over K((t — z)) and the splitting field K of F7 over K((t — z))
satisfies

K R((t-2) =1,
i.e., K is the field obtained by adjoining K ((t — z)) with an (" — root of t — z.

Proof. See | , Theorem 2]. O

8.4 Abstract Abel map and embeddings of Jacobians

This section aims to provide equations for the Jacobian of smooth projective curves and
the generalised Jacobian of a nodal curve. A construction of the Jacobian of a smooth
curve was described by Chow | ]; however, our treatment follows Anderson | ],
who provides an ‘elementary’ algebraic construction of the Abel map | . In| ],
it is shown that the construction matches with an ‘edited’” 4 - © — embedding associated
to the © — divisor on the Jacobian of a curve.

We explain briefly Anderson’s construction of the ‘abstract Abel map’. Let C' c PV
be a smooth, projective curve of genus g over a field K. Let £ be a line bundle of degree
w > 2g+1 and let D be a line bundle of degree zero. Let u be a basis for H*(C, D! ® €)

with numbering remembered, and for a section f of a line bundle on C, denote by f®
the pullback by the i*" projection. Then the abstract Abel map sends D to the w x w
matrix with entries

— —_—

v : : u®)
S | | e | ]
abel(D);: = | — || — o | 8.4
D v : : ul® (8.4)
I )

for 1 < 4,7 < w, where the leftmost term in the product denotes the determinant of
the w x w matrix obtained by stacking the v® as row vectors numbered 0 to w + 1
and removing the rows numbered 0 and 7. In particular, the construction maps classes
of degree zero line bundles to w x w matrices with the entry from the i*" row and j**
column being from the space

w s)) ®4
HO C{O ..... w+1} ®s:+01 (5( ))
T (£0)¥2 (1)) (7)) ®? (wt1))®2 |7
(€07 @ (EW) T @ (EV) " @ (&)

In summary, the abstract Abel map gives a way to realise any degree zero divisor on C'
as a point on its Jacobian, embedded into projective space.

We now sketch below how to obtain the equations for the Jacobian, i.e., the ideal of
polynomials vanishing on the image of the abstract Abel map.

(1) Fix an effective divisor £ of C' with deg(E) > 2g + 1.
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(2) Set w =dim L(F) = deg(E) — g + 1.

(3) Write S =supp(E), A =H°(S,O¢) and L = L(2F).

Then, the Jacobian of C'is given by the projective algebraic variety J of K — proportion-

ality classes of Jacobi matrices of type (K, w, A, L). A proof is given in | , Theorem
4.4.6]. From | , 3.7.3], we see that the complexity of the construction is at worst
exp(poly(g)).

In the case K = k(t) is the function field of the projective line, and C'is a curve over K, we
want to choose an effective divisor £ on C for the embedding so that upon specialisation
to a smooth value t = u, the corresponding embedding of the Jacobian of C,, is given by
E,,. This is achieved as follows.

e Choose an effective divisor £ of C of degree > 2¢g + 1 via taking all the zeros of a
rational function A on C', with k(t) — coefficients. We may assume div(A) = A —A_,
with Ay and A_ effective of degree > 2¢ + 1, and no redundancies between them.
Also assume that the divisor £ specialised to any v € P! contains no singular point
of X, in its support.

« For a smooth point u, the associated divisor E, is obtained by specialising A, to u.

o The Jacobian of the curve C, corresponds to the specialisation of the Jacobian of
C at t = u, via the divisor F,,.

Remark. The only dependence on £ in Algorithm 13 is the input divisor D € Pic®(X;)[¢].
By Theorem 4.2, we know that D can be efficiently represented poly(¢) time and the
bases for the Riemann-Roch spaces H(X;, E £+ D) are computed using Theorem 4.1.

By [ , Theorem 3] (see also | |), we know that the specialisation of the
Jacobian of the generic fibre X; of a Lefschetz pencil 7 : X — P! on a surface X to a
singular z € Z is the completion of the generalised Jacobian of X,. In summary, we have
the following.

Theorem 8.9. Let X C PV be a nice surface of degree D over a number field K and
let m: X — P! be a Lefschetz pencil of hyperplane sections on X. Let U C P! be the
subscheme parametrising the smooth fibres and let Z = P\ U parametrise the singular
nodal fibres. Then, there exists an algorithm that computes

(i) the Jacobian Jg of Xy in a projective space PM as a system of homogeneous poly-
nomial equations,

(1t) an explicitisation of the Abel map Xz — Tz,

(1i1) an explicit addition law on the Jacobian Jz with atlases, in the sense of Pila [ /.
This provides a translation between the language of divisor arithmetic on X5 and
points on Jm. Moreover, for any specialisation to u € P, the group law on J;
specialises to that on J,.

Proof. See | , §4]. O
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Algorithm 13 Abstract Abel map and its inverse on { — torsion

« Input: The generic fibre &X; of a Lefschetz pencil 7 : X — P! on a smooth pro-
jective surface X' over a number field K, and a degree zero divisor D € Pic’(X;)[/]
represented using Theorem 4.2.

« Output: The image abel(D) of the map in (8.4) as a point in projective space PM
lying on the Jacobian [J, satisfying the conditions of the paragraph above.

Choose an effective divisor £ of A% of degree w > 2g + 1 via taking all the zeros of a
rational function A, with K(¢) — coefficients on A7. We may assume div(A) = Ay —A_,
with Ay and A_ effective of degree > 2g+1, and no redundancies between them. Also
assume that the divisor E specialised to any u € P! contains no singular point of X,
in its support.

: Compute bases v for H*(X5, E + D) and u for H°(X;, E — D) using an effective

Riemann-Roch algorithm via Theorem 4.1.

Maintaining w + 2 sets of variables, compute the pullbacks u” and v") for each
i,7 € {0,...,w + 1}. These are merely the same rational functions associated to a
specific set of variables.

4: Compute the map (8.4) using these pullbacks.

For any u € P', the embedding of the Jacobian Pic’(X,) < PM is given by the
divisor E,. If we specialise the input divisor D to u, we get D, € Pic’(X,)[(].

To invert the Abel map on Pic’(X,)[/], given a point in P” corresponding to an
element of Pic(X,)[¢], we simply go through all the £?9 divisorial representatives of
¢ — torsion as a result of the algorithm from Theorem 4.2 and check which of them
map to our given point via the divisor F, and the map (8.4). There will be a unique
pre-image as the Abel map is injective.
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Theorem 8.10. The embedding described in Theorem 8.9 factors through (and corre-
sponds exactly to, upto linear hull) an ‘edited’ 4 - © — embedding, i.e., the complete linear
system associated to the divisor 4-© on the Jacobian, consisting of those theta-functions
which vanish at the origin with order < 1.

Proof. See | , §3]. O
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