
Deterministic Polynomial Factorisation Over a Finite Field

Kundan Kumar
Under the mentorship of Dr. Nitin Saxena

November 14, 2014

1 Abstract

The problem of univariate polynomial factorization is known to have a number of polyno-
mial time randomized algorithms such as Berlekamp, Rabin, Cantor & Zassenhaus, von zur
Gathen & Shoup, Kaltofen, etc. But, till date, there is no known polynomial time deter-
ministic algorithm for factoring a general uni-variate polynomial over a finite field. In this
project, we present a deterministic algorithm to find a factor of a univariate polynomial
over a finite field.The algorithm has been implemented on MuPAD (MATLAB mathemat-
ics tool) and tested for thousands of primes. We present various data to support that this
algorithm factors polynomial in deterministic time.

2 Introduction

The problem can be formally defined in the following manner. Here, Fq represents finite
field of size q.

Definition 1 (Formal definition of the problem). Given a monic univariate polynomial
f ∈ Fq[x], find the complete factorization f = fe11 f

e2
2f

ek
k where fi’s are distinct monic

polynomials ∈ Fq and ei’s are postive integers.

3 Pre-Requisites

Lemma 1. There exist efficient algorithms for square-free factorisation(SFF) and distinct
degree factorisation(DDF) which reduces the problem into factorisation of polynomial which
only has square-free equi-degree irreducible factors. [3]

Lemma 2. Factorisation over Fq can be reduced efficiently to Fp using Berlecamp’s algo-
rithm [1] where q = pm, p is prime and m is a positive integer.

Lemma 3. It’s enough to have an algorithm for factoring square-free equi-degree polyno-
mials over Fp to factor a general polynomials over Fq.

1

Proof. This follows from lemma 1 and 2.

Lemma 4. Probability that a randomly chosen non-zero element in Fp is quadratic residue
(or a quadratic non-residue) is nearly 1

2 . Along with this, all quadratic residues are root of
the equation

x
p−1
2 − 1 ≡ 0 (1)

while all non-residues are root of the equation.

x
p−1
2 + 1 ≡ 0 (2)

Proof. Since Fq∗ is a cyclic group, with generator (let’s say) g, then all odd powers of g
are squares and others are non-squares. Hence, half of the elements are square and half are
not. Thus, probability of finding a quadratic residue is nearly half (if we include 0).

All elements of Fq∗ are root of the equation

xq−1 − 1 ≡ 0 (3)

Also, the following equations hold in Fq

xq−1 − 1 = (x
q−1
2 + 1) ∗ (x

q−1
2 − 1) (4)

(g2i)
q−1
2 = 1 (5)

(g2i+1)
q−1
2 = −1 (6)

Hence, the lemma follows.

Lemma 5. If h is an irreducible of degree d over Fp, then h divides xp
d − x.

Proof. If h is irreducible, then Fp/ < h > is a field isomorphic to Fpd . Hence, the following
equation holds

xp
d − x ≡ 0 (mod h) (7)

Thus, h divides xp
d − x over Fp

3.1 Cantor & Zassenhaus randomized algorithm(CZ algorithm) [2]

Cantor & Zassenhaus presented a polynomial time randomized algorithm for factoring poly-
nomial over a finite field. They shift the formal variable in a polynomial by random value
(say α) in Fp enabling roots to behave randomly with respect to their quadratic residuosity.
Using lemma 4, we can use following equations to seperate factors containing quadratic
residues and non-residues.

f i1 = gcd(f, x
pi−1

2 − 1)f i2 = gcd(f, x
pi−1

2 + 1) (8)

2

where f i1 will be product of ith degree factors of f corresponding to quadratic residues and
f i2 is corresponding polynomial for quadratic non-residues. Using lemma 5, we can know
the degree of factors (which are equal from our assumption). Then, suppose that degree is
i. Then chance of failure of this algorithm is nearly 1

2 using lemma ??. Therefore, using
this algorithm repeatedly choosing α randomly each time reduces the chances of failure to
negligible value.

4 Basic Approach

We’ll modify Cantor & Zassenhaus randomized algorithm to make it deterministic. The
polynomial used as a test case in this project is f(x) = x2 − a where a ∈ F 2

p .

Claim 1. If we have a CZ like algorithm for factoring p, then that can be extended easily
to factor general univariates over Fp.

Proof. This follows from the observation that the only difference in applying CZ like algo-
rithm for higher degree case is that we take use

gcd(f, x
pi−1

2 − 1) (9)

instead of
gcd(f, x

p−1
2 − 1) (10)

Using the above claim, we can say that it suffices to give an algorithm for factoring f
over Fp to have an algorithm for factoring general polynomials over Fq.

Conjecture 1. The distribution of roots of unity over Fq and distribution of quadratic
residues are independent i.e. roots of unity behaves as nearly random elements for qudratic
residues.

Lemma 6. If ordr(p) = r− 1, then h = yr−1
y−1 is irreducible i.e. Fp/ < h > is a field of size

pr−1.

Conjecture 2. Using the conjecture 1, we give an algorithm to factor f over Fp.Shift the
polynomial by a root of unity and hope that this shift would change the quadratic residuosity
of the roots of newly obtained polynomial i.e. we now look at factoring p(x−y). We do this
shifting by doing all the computation in ring R ≡ polynomial ring over Fp[y]/ < yr − 1 >.

4.1 Algorithm

Input : f and p

Output : Factors of f

3

Step 1 : r = 2;
Step 2 : h = yr−1

y−1 ; R = Fp[y]/ < h >;

Step 3 : Apply CZ algorithm with modification that we shift by y (done implicitly by

doing all computation in R) instead of α
Step 4 : If we get factors, shift them back by y and return them.

Step 5 : If step 3 fails, then r = r + 1. Go to step 2 and repeat.

Conjecture 3. The above algorithms returns factors in O(log(p)) iterations.

5 Observations

Observation 1. We observed that due to flipping of residuosity of roots over different
component of the ring R[x], we were not getting absolute factors i.e. we got factors of the
kind

x− q(y) (11)

where q is a polynomial in y and y is a non-trivial root of the equation

yr − 1 ≡ 0 (12)

. Since we don’t know factors of yr − 1, we can’t get absolute factors from the factors of
the kind x− q(y). When we implement our algorithm, to keep the intermediate polynomials
monic(while gcd computation) we need to perform divisions modulo h. If we are not suc-
cessful in divisions, then we get some factor of h and recursively compute factors of f(x)
modulo the factors of h.

Observation 2. To avoid this flipping, we felt that it may be interesting to look at the cases
where there is exactly 1 component of R (as defined in the algorithm). Using lemma 6, we
can found out such good r. Using density of prime numbers, we can say that they are quite
abundant.

6 Results

6.1 Checking conjecture 3

When we chose such good r(as defined in Observation 2) we found out that we quite often
get absolute factors of f(x). We randomly generated primes and tested the algorithm.
Table 6.1 gives the minimum value of r (lets say this value is r*) for which we got absolute
factors for given f and p (here we are factoring f = x2 − a over Fp).

4

Table 1: Minimum value of r i.e. r* for which we get absolute factors given p and a. p and
a have been generated randomly

p a r*

107897 83458 7

108293 61596 5

114781 35551 7

110477 90762 7

192173221 32342986 2

182158409 29617101 9

195248057 44040277 3

180133673 175430357 3

188698553 185209056 5

188139541 94225242 7

186947689 72493289 3

185269297 52453857 5

191022809 157277712 2

189122881 14325146 2

196584257 112679783 5

187856969 30238769 2

192093637 119286441 15

193800713 32913580 3

181495709 50957795 3

196084033 49493777 9

192296861 85819729 2

2222105477 326069981 3

2059175449 534600332 2

2143375301 1973524134 2

2132716609 652247966 5

2190848129 1719748497 2

2141699801 969983963 2

2114656769 969074251 2

2199143101 1027256781 7

2100078521 1050192805 7

2199429613 1926325142 13

2166553861 1513615265 5

2162781889 509762812 2

2129227549 1830209562 5

2095037801 1610267164 2

2054970677 1380913385 5

2158401793 22589838 5

2230740097 550996218 9

5

Table 2: Distribution of |Fp ∗ |/|C| w.r.t p and r

p r |Fp ∗ | |Fp ∗ |/|C| Is C subset of F 2
p ∗ ?

7 2 6 1 No

11 2 10 2 Yes

11 3 120 2 Yes

13 2 12 1 No

17 2 16 2 Yes

17 3 288 3 No

19 2 18 2 Yes

23 2 22 1 No

23 3 528 4 Yes

29 2 28 1 No

29 3 840 5 No

31 2 30 3 No

37 2 36 1 No

37 5 1874160 137 No

41 2 40 2 Yes

41 3 1680 35 No

43 2 42 6 Yes

43 5 3418800 185 No

47 2 46 1 No

47 3 2208 8 Yes

47 5 4879680 663 No

6.2 Proving the conjecture 3

We tried to prove the time bound by looking at the cardinality of the set S ≡ {y − 1, y2 −
1, y3 − 1, ..., yr−1 − 1} when we work mod irreducible h(y) = yr−1

y−1 . C is the subgroup
generated by S.

Claim 2. If cardinality of the set C > cardinality of the set of quadratic residues, then the
shifted root will be a non-quadratic residue in at least one of the attempts of r from 1 to
nearly log(p) and our algorithm will factor the polynomial.

The index of this set S in F 2
p i.e. F 2

p /S is given in the table 6.2.

7 Conclusions

Factoring of polynomials over Fp is indeed very efficient when we do all computation in
R ≡ polynomial ring over Fp[y]/ < f(y) > where f(y) = yr−1

y−1 , in particular, when f is
irreducible.

6

All codes and raw data can be found at this github repository. Documentation will be
available soon.

References

[1] Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics of
Computation, 24(111):713–735, 1970.

[2] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, pages 587–592, 1981.

[3] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite fields:
A survey. Journal of Symbolic Computation, 31(12):3 – 17, 2001.

7

https://github.com/kundan2510/polynomial_factorisation

	Abstract
	Introduction
	Pre-Requisites
	Cantor & Zassenhaus randomized algorithm(CZ algorithm)cantor1981new

	Basic Approach
	Algorithm

	Observations
	Results
	Checking conjecture 3
	Proving the conjecture 3

	Conclusions

