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Abstract

The computational problem of Hilbert’s Nullstellensatz (HN), has a well-defined
upper bound of PSPACE, derived from classical effective Nullstellensatz. A signif-
icant refinement by Koiran (1996), assuming the Generalized Riemann Hypothesis
(GRH), places HN for integer-coefficient polynomials within Arthur-Merlin (AM)
complexity class. We investigate the feasibility of extending Koiran’s complexity-
theoretic advancements to the analogous problem over finite fields. Our analysis
attempts to place the positive-dimensional case into AM by establishing the ex-
istence of a ”short” solution. We also discuss why this method fails for the
zero-dimensional case, necessitating alternative approaches for providing a short
certificate of satisfiability.
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1 Background and Effective Nullstellensatz

1.1 Basic Definitions

We briefly recall some basic notions from affine algebraic geometry which will be used throughout
the report.

Definition 1.1 (Affine algebraic variety). Let k be a field. A subset X ⊆ kn is called an affine al-
gebraic variety (or simply an affine variety) if there exist polynomials f1, . . . , fm ∈ k[x1, . . . , xn]
such that

X = V (f1, . . . , fm) := {x ∈ kn : fi(x) = 0 for all i}.

In other words, affine varieties are precisely the common zero sets of finitely many polynomials.

Definition 1.2 (Irreducible variety). A variety X ⊆ kn is said to be irreducible if it cannot be
written as a union X = X1 ∪X2 of two proper subvarieties X1, X2 ⊊ X.

1.2 Dimension and Degree

Definition 1.3 (Dimension). Let X be an irreducible affine variety. The dimension dimX of
X is defined to be the largest integer r for which there exists a strictly increasing chain of
irreducible closed subsets

X0 ⊊ X1 ⊊ · · · ⊊ Xr = X.

For a general (not necessarily irreducible) affine variety X, its dimension is defined as the
maximum of the dimensions of its irreducible components.

Definition 1.4 (Degree). Let X ⊆ An
k be an affine variety over an algebraically closed field k.

Embed X into projective space Pn
k via the standard embedding, and intersect its projective

closure with a general linear subspace L of complementary dimension (i.e., dimL + dimX =
n). The degree degX is defined to be the number of intersection points X ∩ L counted with
multiplicity. Equivalently, degX is the sum of the degrees of the irreducible components of X.

Intuitively, the dimension measures how many independent parameters are needed to de-
scribe a generic point of X, while the degree controls how X behaves under intersections with
hypersurfaces.

1.3 Hilbert’s Nullstellensatz and Effective Bounds

We now recall the classical Nullstellensatz and its effective versions which play a central role in
the complexity analysis.

Theorem 1.1 (Weak Nullstellensatz). Let k be an algebraically closed field and I ⊆ k[x1, . . . , xn]
an ideal. Then

V (I) = ∅ ⇐⇒ I = (1).

Equivalently, if a set of polynomials {f1, . . . , fm} ⊆ k[x1, . . . , xn] has no common zero in kn,
then there exist polynomials g1, . . . , gm ∈ k[x1, . . . , xn] such that

f1g1 + f2g2 + · · ·+ fmgm = 1.

Given polynomials f1, . . . , fm ∈ k[x1, . . . , xn], the Hilbert Nullstellensatz problem (HN) is:

• Question: Do the equations f1 = · · · = fm = 0 have a common solution in Cn?
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Equivalently, does there exist g1, . . . , gm with

f1g1 + · · ·+ fmgm = 1?

Thus, the computational task is to either find such a representation or prove that no solution
exists.

We now recall results from Jelonek (2005) which provide explicit bounds on the degrees of
the gi in the Nullstellensatz identity.

Theorem 1.2 (Generalized Perron Theorem). Let L be a field and letQ1, . . . , Qn+1 ∈ L[x1, . . . , xm]
be non-constant polynomials with degQj = dj . Let X ⊆ Lm be an affine variety of dimension
n and degree D. Assume the map

Q = (Q1, . . . , Qn+1) : X −→ Ln+1

is generically finite onto its image. Then there exists a non-zero polynomial

W (T1, . . . , Tn+1) ∈ L[T1, . . . , Tn+1]

such that

(a) W (Q1, . . . , Qn+1) = 0 identically on X, and

(b) writing T
dj
j for the monomial substitution, one has the degree estimate

deg
(
W (T d1

1 , T d2
2 , . . . , T

dn+1

n+1 )
)

≤ D

n+1∏
j=1

dj .

Proof. Replace the map Q by the auxiliary variety

X̃ = {(x,w) ∈ X × Ln+1 : Qj(x) = w
dj
j + wj (j = 1, . . . , n+ 1)},

and consider the projection to the w-coordinates. By Corollary 3.2 and Bezout-type degree
estimates one bounds the degree of the image hypersurface; an irreducible defining polynomial
of that hypersurface provides the required W , and the degree bound follows from the Bézout
estimate deg X̃ ≤ D

∏
j dj .

To state the effective Nullstellensatz one convenient notation is:

N(d1, . . . , dk; n) =



k∏
i=1

di if 1 ≤ k ≤ n,

( n−1∏
i=1

di

)
dk if k > n > 1,

d1 if n = 1.

Theorem 1.3 (Effective Nullstellensatz). Let K be an algebraically closed field and let X ⊂ Km

be an affine variety of dimension n and degree D. Let f1, . . . , fk ∈ K[X] be non-constant
polynomials with deg fi = di, arranged so that d1 ≥ d2 ≥ · · · ≥ dk. Assume the fi have no
common zero on X. Then there exist g1, . . . , gk ∈ K[X] such that

k∑
i=1

figi = 1
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on X, and the products figi satisfy the degree bounds

deg(figi) ≤

DN(d1, . . . , dk; n), if k ≤ n,

2DN(d1, . . . , dk; n)− 1, if k > n.

Since the existence of gi with explicit degree and coefficient bounds is guaranteed, the
problem of deciding whether 1 ∈ (f1, . . . , fm) reduces to solving a linear system over Z whose
size is bounded by poly(dn, logH). Such linear algebra computations can be performed in
PSPACE.

Corollary 1.4. Hilbert’s Nullstellensatz problem (HN) lies in PSPACE.

2 Over characteristic zero fields

Theorem 2.1. There exist constants c1, c2, c3 ∈ N such that if A = dc1ns(⌈log s⌉ + L) and
x0 ≥ Lc22(n log σ)c3 the following two properties hold:

• If the system of equations has no solution in C, then πS(x0) ≤ A.

• If the system of equations is satisfiable in C, then πS(x0) ≥ B = 8A(logA+ 3).

This first theorem establishes a large gap in the number of prime moduli p for which a system of
equations S is satisfiable. If the system has no solution over C, there are very few such primes;
if it does have a solution, there are many. This gap is the key to placing the problem within
the polynomial hierarchy.

Theorem 2.2. Hilbert’s Nullstellensatz for fields of characteristic zero, is in AM under GRH.

2.1 The Arthur–Merlin Class (AM)

The Arthur–Merlin (AM) complexity class is a class of decision problems that can be solved by a
specific type of two-participant protocol called an interactive proof system. The two participants
are:

• Arthur: A verifier with the power of a probabilistic polynomial-time Turing machine
(BPP). He is skeptical and must be convinced.

• Merlin: An all-powerful prover with infinite computational resources. He wants to con-
vince Arthur that a given input string belongs to a certain language.

The protocol for a language L proceeds as follows:

1. Arthur receives an input string x.

2. Arthur generates a random string y of length polynomial in the size of x and sends it to
Merlin. This is Arthur’s “challenge”.

3. Merlin, seeing both x and y, computes a response (a “proof”) z and sends it back to
Arthur.

4. Arthur runs a deterministic polynomial-time algorithm on the triplet (x, y, z) and decides
whether to accept or reject.
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Definition 2.1. A language L is in AM if there exists a probabilistic polynomial-time verifier
(Arthur) such that:

1. Completeness: If x ∈ L, then there exists a proof from Merlin that makes Arthur accept
with high probability.

∀x ∈ L, Pr
y
[∃z : Arthur accepts(x, y, z)] ≥ 2

3

2. Soundness: If x /∈ L, then for any proof Merlin sends, Arthur will reject with high
probability.

∀x /∈ L, Pr
y
[∀z : Arthur rejects(x, y, z)] ≥ 2

3

The probabilities 2/3 and 1/3 can be amplified to be arbitrarily close to 1 and 0 by repeating
the protocol.

2.2 Overview of the Proof Strategy

The central thesis for establishing Hilbert’s Nullstellensatz (HN) in the polynomial hierarchy is
to create a reduction from a problem over the complex numbers C to a counting problem over
finite fields Fp = Z/pZ. This is achieved by demonstrating a large, computationally recognizable
gap in the number of prime moduli p for which a system S is satisfiable.

Let S be the system f1(x) = 0, . . . , fs(x) = 0 with fi ∈ Z[X1, . . . , Xn]. Let RS be the set of
primes p such that S has a solution in Fp, and let πS(x) = |RS ∩ {1, . . . , x}|.

Theorem 1 in the paper establishes this gap:

• Unsatisfiable Case: If S has no solution in C, then πS(x0) is small (bounded by a
polynomial A in the input size).

• Satisfiable Case: If S has a solution in C, then πS(x0) is large (bounded below by B,
which is super-polynomially larger than A).

The algorithm then consists of counting πS(x0) for a suitably large x0 and checking whether this
count falls below or above a threshold between A and B. This section develops the (conditional)
bounds required to prove this gap exists.

2.3 The Unsatisfiable Case: An Upper Bound on Prime Solutions

The bound for the unsatisfiable case stems from the fact that if 1 is in the ideal ⟨f1, . . . , fs⟩ over
C, it must also be in the ideal over Z up to a multiplicative integer constant.

Theorem 2.3 (Bound for Unsatisfiable Systems). Let S be a system with degrees at most d and
coefficient bit size at most L. If the system S has no solution in C, then RS is finite and

|RS | ≤ dO(n)s(log s+ L).

Proof. By the Effective Nullstellensatz (as cited from Kollár, 1988; Krick and Pardo, 1994), if S
is unsatisfiable, there exists a non-zero integer a ∈ Z and polynomials g1, . . . , gs ∈ Z[X1, . . . , Xn]
such that

a =

s∑
i=1

gifi.

The size of the integer a is bounded by log |a| ≤ dO(n)s(log s+ L).
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Now, consider this identity modulo a prime p. If S has a solution x ∈ Fn
p , then fi(x) ≡ 0

(mod p) for all i. Substituting this into the identity gives:

a ≡
s∑

i=1

gi(x)fi(x) ≡ 0 (mod p).

This implies that S can only have a solution in Fp if p divides a. Since a ̸= 0, the number of such
prime divisors is at most log2 |a|. The theorem follows by applying the bound on log |a|.

2.4 The Satisfiable Case: A Lower Bound on Prime Solutions

The argument for the satisfiable case is more involved. The strategy is to (1) find a ”low-
complexity” algebraic solution, (2) represent this n-variate solution using a single univariate
primitive element r, and (3) use (conditional) number-theoretic results to show that the minimal
polynomial R(X) of this primitive element r must have roots modulo ”many” primes p. Finally,
(4) show that a root of R(X) in Fp ”lifts” to a solution of the full system S in Fp.

Theorem 2.4 (Low-Complexity Algebraic Solution). There are absolute constants c1, c2 such that
if S has a solution over C, there exists a solution x = (x1, . . . , xn) where each xi is an algebraic
number which is a root of a polynomial Ai ∈ Z[X] of degree at most 2(n log σ)c1 with coefficients
of bit size at most L · 2(n log σ)c2 . (Here σ is the total degree).

Proof. This result follows from effective quantifier elimination over C (e.g., Fichtas et al., 1990).
The solution set S ⊂ Cn is projected onto each coordinate axis i to get Si ⊂ C. This projection
Si is definable by a formula derived from S. By quantifier elimination, Si can be defined by a
quantifier-free formula involving polynomials Pij . If Si is finite, the xi must be roots of these
Pij . If Si is infinite (i.e., C minus a finite set), a ”small” integer solution α ∈ Z can be chosen
for xi, and the process is repeated inductively on the remaining n − 1 variables. The bounds
on the degrees and coefficient sizes from the quantifier-elimination theorem are carried through
this induction.

This provides the Ai polynomials which serve as the input for constructing a primitive
element.

Theorem 2.5 (Low-Complexity Primitive Element). Let x1, . . . , xn be algebraic numbers which
are roots of polynomials Ai ∈ Z[X] of degree at most d with coefficients of size at most L. There
exists a primitive element r for x1, . . . , xn (i.e., xi = Qi(r)/ai) which is a root of an irreducible

polynomial B ∈ Z[X] of degree at most dn. The coefficients of B are of size at most L · dnO(1)
.

Moreover, each xi can be represented as xi = Qi(r)/a for a common denominator a ∈ Z, where
Qi ∈ Z[X] and log |a| = L · dnO(1)

.

Proof. The primitive element is constructed from the given Ai in three steps.

1. Make the polynomials Ai square-free by computing Pi = Ai/ gcd(Ai, A
′
i). Standard subre-

sultant gcd algorithms (as cited in Mignotte, 1982) show that the coefficients of Pi remain
polynomially bounded in the size of Ai. The degrees are unchanged or reduced.

2. Apply the inductive primitive element construction (Lemma 1 in the paper, which itself
is built by repeated application of the 2-variable case) to the roots of P1, . . . , Pn. This
construction yields a polynomial R ∈ Z[X] of degree at most

∏
deg(Pi) ≤ dn and a

representation xi = Qi(r)/a where r is a root of R. The bounds on the norms of R and

the size of a and coefficients of Qi are shown in the paper’s Lemma 1 to be N(R) ≤ NdO(n2)
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and log |a| = NdO(n2)
, where N is the norm of the Pi. In our context (using bit size L

instead of norm N), this translates to the L · dnO(1)
bounds.

3. The primitive element r is a root of R. The polynomial B is the minimal polynomial of
r, so it must be an irreducible factor of R.

The bounds for polynomial factorization (e.g., Mignotte, 1982) show that the coefficients of B
are polynomially bounded by the size of R. Therefore, the dominant cost comes from step 2, and
the bounds stated in the theorem hold for the minimal polynomial B and the representations.

The following lemma connects the roots of R(X) modulo p to the solutions of S modulo p.

Lemma 2.6 (Modular Solution Lifting). Let x = (x1, . . . , xn) be a vector of algebraic numbers
solution of S. Let r be a primitive element for x1, . . . , xn: there exist polynomials Q1, . . . , Qn ∈
Z[X] and a ∈ Z, a ̸= 0 such that xi = Qi(r)/a. Let R ∈ Z[X] be the irreducible minimal
polynomial of r. If R has a root in Fp and a ̸≡ 0 (mod p), then S is satisfiable in Fp.

Proof. For j ∈ {1, . . . , s}, let dj = deg(fj). Define a new polynomial gj ∈ Z[X] by clearing the
denominator a:

gj(X) = adjfj(Q1(X)/a, . . . , Qn(X)/a). (1)

Since fj has integer coefficients, gj(X) is a polynomial with integer coefficients. We know r is
a root of gj(X), because:

gj(r) = adjfj(Q1(r)/a, . . . , Qn(r)/a) = adjfj(x1, . . . , xn) = adj · 0 = 0.

Since gj(r) = 0 and R(X) is the minimal polynomial of r (and is irreducible), R(X) must
divide gj(X) over the rationals, and by Gauss’s lemma, over the integers. Thus, there exist
polynomials Aj ∈ Z[X] such that

gj(X) = R(X)Aj(X). (2)

Now, consider these identities modulo p. If a ̸≡ 0 (mod p), then a is invertible in Fp, and both
(1) and (2) hold in Fp[X]. Let x0 ∈ Fp be a root of R modulo p. From (2), this means gj(x0) ≡ 0
(mod p) for all j. From (1), this implies:

adjfj(Q1(x0)/a, . . . , Qn(x0)/a) ≡ 0 (mod p).

Since a ̸≡ 0 (mod p), we can multiply by (a−1)dj to conclude:

fj(Q1(x0)/a, . . . , Qn(x0)/a) ≡ 0 (mod p)

for all j = 1, . . . , s. Therefore, the vector y = (Q1(x0)/a, . . . , Qn(x0)/a) is a solution of S in
Fp.

The final step is to show that R(X) has “many” roots mod p. This relies on the (conditional)
effective Chebotarev density theorem.

Theorem 2.7 (Effective Chebotarev Bound). Let f ∈ Z[X] be an irreducible polynomial of
degree m with discriminant ∆. Let W (p) be the number of roots of f in Fp. Let S(x) =∑

p≤x,p∤∆(1−W (p)). Assuming GRH,

|S(x)| = O(x1/2 log(∆xm)).
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Proof Sketch. This result, cited from Adleman and Odlyzko (1983) and Weinberger (1984), is
a consequence of the effective Chebotarev density theorem (Lagarias and Odlyzko, 1977) which
is conditional on the Generalized Riemann Hypothesis (GRH). It states that the number of
roots W (p) is, on average, 1. The theorem provides an effective bound on the error term of this
average.

Corollary 2.8 (Lower Bound on Roots). Assuming GRH, for an irreducible f ∈ Z[X] of degree
m, there exists an absolute constant c such that

πf (x) ≥
1

m

[
π(x)− log∆− c · x1/2 log(∆xm)

]
where πf (x) is the number of primes ≤ x for which f has at least one root in Fp.

Proof. From Theorem 2.7, we have
∑′

p≤x(1 − W (p)) ≤ |S(x)|. This gives
∑′

p≤xW (p) ≥∑′
p≤x 1 − |S(x)|. The number of primes p ≤ x not dividing ∆ is π(x) minus the number

of prime factors of ∆, which is at most log∆. So,
∑′

p≤x 1 ≥ π(x)− log∆. Plugging this in and
using the bound for |S(x)|:

′∑
p≤x

W (p) ≥ π(x)− log∆− c · x1/2 log(∆xm).

The total number of roots W (p) is at most m · rf (p), where rf (p) = 1 if f has a root mod p and
0 otherwise. Thus,

∑
W (p) ≤ m

∑
rf (p) = m · πf (x). Dividing by m gives the result.

Theorem 2.9 (Bound for Satisfiable Systems). If S is satisfiable, then (assuming GRH) for
x ≥ Lc22(n log σ)c3 (from Theorem 1):

πS(x) ≥
π(x)

L · 2(n log σ)O(1)
− L · 2(n log σ)O(1)

x1/2.

Proof. 1. Apply Theorem 2.4 to get a low-complexity solution x.

2. Apply Theorem 2.5 to get its minimal polynomial R(X) and denominator a. Let deg(R) =
m and its discriminant be ∆. The bounds are:

• m ≤ Dn = (2(n log σ)c1 )n = 2n(n log σ)c1 ;

• log∆ is polynomial in m and the coefficient size of R;

• log |a| = L · dnO(1)
.

All these quantities are bounded by L · 2(n log σ)O(1)
.

3. Apply Lemma 2.6: πS(x) ≥ πR(x)− (primes dividing a).

4. The number of primes dividing a is at most log |a|.

5. Apply Corollary 2.8 to R(X):

πR(x) ≥
1

m

[
π(x)− log∆− c · x1/2 log(∆xm)

]
.

6. Combine these:

πS(x) ≥
π(x)

m
− log∆

m
− cx1/2 log(∆xm)

m
− log |a|.
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7. For x large enough (as specified in Theorem 1), the π(x)/m term dominates. The error
terms involving log∆, log |a|, and x1/2 are all absorbed into the negative term. Plugging
in the bounds for m, log∆, and log |a| gives the final expression.

Remark 2.1. The full argument for Theorem 1 in the paper combines these two bounds.

1. If S is unsatisfiable in C: By Theorem 2.3, πS(x) ≤ A for A = dO(n)s(log s+ L). This
bound holds for any x.

2. If S is satisfiable in C: By Theorem 2.9, for a sufficiently large x0, πS(x0) ≥ B.

The crucial point is that B (which is roughly π(x0)/D
n) is super-polynomially larger than A,

creating the decidable gap.

3 Over Finite Fields

We now turn to Nullstellensatz-type questions over finite fields and analyse the complexity in
the positive-dimensional and zero-dimensional cases separately.

3.1 Problem Setup over Fq

Let Fq be a finite field with q elements and let Fq denote its algebraic closure. Consider a system
of polynomial equations

S = {f1 = 0, . . . , fm = 0}, fi ∈ Fq[x1, . . . , xn],

with degrees deg(fi) ≤ d. We define the affine variety

V (S) = {x ∈ Fn
q : fi(x) = 0 for all i}.

We are especially interested in the case where V (S) has an irreducible component of positive
dimension.

Definition 3.1 (Positive- and zero-dimensional cases). Let S ⊆ Fq[x1, . . . , xn] be as above and let
V (S) be its zero set in Fn

q .

• We say that the positive-dimensional case occurs if V (S) has an irreducible component
X of dimension r > 0 defined over Fq.

• We say that we are in the zero-dimensional case if every irreducible component of V (S)
has dimension 0, i.e., V (S) is a finite set (over Fq).

A central question is whether one can bound the “size” of a solution in terms of the input
parameters. Over finite fields, size is conveniently measured by the degree of the finite extension
Fqt that contains the coordinates of a solution.

3.2 Deligne’s Theorem and Point Counting

Our analysis in the positive-dimensional case ultimately rests on Deligne’s proof of the Weil
conjectures, which we state here in a very special form.

Theorem 3.1 (Deligne’s Riemann Hypothesis, special case). Let X be a smooth projective variety
of dimension r over Fq. For each k ≥ 0, the eigenvalues of the geometric Frobenius on the ℓ-adic
cohomology Hk

c (X,Qℓ) have absolute value qk/2.
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This deep theorem admits standard consequences for point counting on varieties over finite
fields. In particular we will use the following quantitative estimate.

Corollary 3.2 (Point-counting estimate). Let X be a geometrically irreducible variety of dimen-
sion r defined over Fq, with degree bounded by D. Then there exists a constant CX > 0,
depending polynomially on D and the ambient dimension, such that for all integers t ≥ 1 one
has ∣∣#X(Fqt)− qrt

∣∣ ≤ CX q(r−1/2)t.

In particular, if t is large enough so that qt/2 > CX , then X(Fqt) ̸= ∅.

Proof. Step 1: reduction to the projective case. Choose an embedding X ↪→ PN
Fq

for some

N , and let X ⊂ PN
Fq

be the projective closure. Then X is geometrically irreducible of dimension

r and degX = degX ≤ D. Let Z := X \X be the boundary; then dimZ ≤ r − 1.
The desired estimate for X will follow once we know it for X and for each irreducible

component of Z (with r replaced by dimZ ≤ r − 1), because

#X(Fqt) = #X(Fqt)−#Z(Fqt)

and hence ∣∣#X(Fqt)− qrt
∣∣ ≤ ∣∣#X(Fqt)− qrt

∣∣+#Z(Fqt).

The contribution of Z can be absorbed into the same type of bound because every irreducible
component of Z has dimension at most r−1, so its point count is ≪ q(r−1)t, which is ≪ q(r−1/2)t

after enlarging the constant. Thus it is enough to prove the corollary when X itself is projective.
So assume from now on that X ⊂ PN

Fq
is projective, geometrically irreducible of dimension

r and degree d ≤ D.

Step 2: Lang–Weil inequality in the form of Ghorpade–Lachaud. Let k be a finite
field and write πr(k) := #Pr(k) = 1+ |k|+ · · ·+ |k|r. Ghorpade and Lachaud prove the following
version of the classical Lang–Weil inequality; see (Ghorpade and Lachaud, 2002, Thm. 11.1).
It is stated there with k = Fq:

Let X be a projective algebraic subvariety of PN
k of dimension r and degree d. Then∣∣#X(k)− πr(k)

∣∣ ≤ (d− 1)(d− 2) |k|r−1/2 + C+(X) |k|r−1,

where C+(X) ≥ 0 depends only on X and admits an explicit bound in terms of the
ambient dimension N and the degrees of defining equations of X, cf. the inequality
following (Ghorpade and Lachaud, 2002, Thm. 11.1)

Now fix t ≥ 1. ConsiderX as a variety over the larger finite field Fqt . The ℓ–adic cohomology
groups H i

c(XFq
,Qℓ) and the Frobenius action on them do not change when we extend scalars

from Fq to Fqt ; only the base field (and thus the cardinality |k|) changes. Thus the same theorem
applied with k = Fqt gives∣∣#X(Fqt)− πr(Fqt)

∣∣ ≤ (d− 1)(d− 2) q(r−1/2)t + C+(X) q(r−1)t (3)

for all t ≥ 1, with the same constant C+(X), independent of t.

Step 3: replacing πr(Fqt) by qrt. We have

πr(Fqt) = 1 + qt + · · ·+ qrt = qrt +
(
1 + qt + · · ·+ q(r−1)t

)
.
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Therefore ∣∣πr(Fqt)− qrt
∣∣ = 1 + qt + · · ·+ q(r−1)t ≤ r q(r−1)t.

Combining this with (3) and the triangle inequality gives∣∣#X(Fqt)− qrt
∣∣ ≤ ∣∣#X(Fqt)− πr(Fqt)

∣∣+ ∣∣πr(Fqt)− qrt
∣∣

≤ (d− 1)(d− 2) q(r−1/2)t + C+(X) q(r−1)t + r q(r−1)t.

Since t ≥ 1 and q ≥ 2, we have q(r−1)t ≤ q(r−1/2)t, so we can absorb the q(r−1)t terms into the
q(r−1/2)t term by enlarging the constant. Precisely, set

CX := (d− 1)(d− 2) + C+(X) + r.

Then for all t ≥ 1, ∣∣#X(Fqt)− qrt
∣∣ ≤ CX q(r−1/2)t.

Step 4: dependence of CX on D and N . By construction, d = degX ≤ D, so (d −
1)(d− 2) ≤ D2 is polynomial in D. The constant r = dimX is at most N .

The remaining ingredient is C+(X). In the proof of (Ghorpade and Lachaud, 2002, Prop. 11.2),
C+(X) is defined in terms of the ℓ–adic Betti numbers bi,ℓ(X) and H2r−1

c (XFq
,Qℓ):

C+(X) = dimH2r−1
+

(
XFq

,Qℓ

)
+

2r−2∑
i=0

bi,ℓ(X) + εr,

where H2r−1
+ denotes the subspace corresponding to Frobenius eigenvalues of weight < 2r − 1

and εr ∈ {0, 1} is explicit. Hence C+(X) is bounded above by a constant multiple of the sum
of ℓ–adic Betti numbers of X.

Now X ⊂ PN can be defined by finitely many homogeneous polynomials of degree at most
some d0 with d0 bounded in terms of degX ≤ D and N (this is a standard fact from projective
geometry, and one can make it quantitative using bounds of Bombieri, Heintz, Jelonek, etc.).
If r equations of degree ≤ d0 cut out X, Katz’s theorem on sums of Betti numbers gives an
explicit bound ∑

i

dimH i
(
XFq

,Qℓ

)
≤ B(N, r, d0),

where B(N, r, d0) is an explicit function polynomial in d0 (for fixed N and r); see Katz, Sums
of Betti numbers in arbitrary characteristic, Theorem 3 and the following corollary. Since d0
itself can be taken ≪ D (with constants depending only on N), this shows that C+(X), hence
CX , is bounded by a polynomial in D with coefficients depending on N .

3.3 Positive-Dimensional Case: Existence of a Small Root

We now show that in the positive-dimensional case there is always a solution whose coordinates
lie in a finite extension Fqt of polynomially bounded degree.

Lemma 3.3 (Degree bound for a component). Let S = {f1, . . . , fm} ⊆ Fq[x1, . . . , xn] with
deg(fi) ≤ d, and let X be an irreducible component of V (S) of dimension r. Then there is
a constant C (independent of q) such that

degX ≤ dCn.

12



Proof. This is a standard consequence of Bézout-type degree bounds and elimination theory.
For example, one may take successive intersections of the hypersurfaces {fi = 0} and use the
fact that the degree of an intersection is at most the product of the degrees of the hypersurfaces,
together with primary decomposition in the coordinate ring. A detailed argument may be found,
for instance, in Jelonek (2005). The upshot is that the degree of any irreducible component of
V (S) is bounded by a fixed power of d depending only on n.

We can now state and prove the small-root theorem.

Theorem 3.4 (Small root for a positive-dimensional component). Let S = {f1, . . . , fm} ⊆ Fq[x1, . . . , xn]
with deg fi ≤ d, and suppose that V (S) has an irreducible component X of dimension r > 0
defined over Fq. Then there exists an integer

1 ≤ t ≤ poly(n, log d, log q)

such that S has a solution in Fn
qt .

Proof. By Lemma 3.3 there exists a constant C0 such that degX ≤ dC0n. Let D = degX.
Applying Corollary 3.2 to X, we obtain a constant CX bounded polynomially in D and n such
that ∣∣#X(Fqt)− qrt

∣∣ ≤ CXq(r−1/2)t for all t ≥ 1.

In particular,
#X(Fqt) ≥ qrt − CXq(r−1/2)t = q(r−1/2)t(qt/2 − CX).

Thus X(Fqt) is non-empty as soon as qt/2 > CX (since we have r − 1
2 > 0). Let t0 be the least

integer such that qt0/2 > CX . Then X(Fqt0 ) ̸= ∅, so there exists a point x ∈ X(Fqt0 ) with
coordinates in Fqt0 . Since X ⊆ V (S), this point is in fact a solution of S in Fn

qt0
.

It remains to bound t0 in terms of the input parameters. By polynomial dependence of CX

on D and n, there exists a constant C1 such that

CX ≤ dC1n.

Taking binary logarithms we get

log2CX ≤ C1n log2 d.

Since q ≥ 2, we have logq CX = (log2CX)/(log2 q), and hence

logq CX ≤ C1n log2 d

log2 q
= poly(n, log d, log q).

By the definition of t0 we may take, for example,

t0 = 2
(
⌊logq CX⌋+ 1

)
,

which clearly satisfies qt0/2 > CX . Consequently t0 is bounded by a polynomial in n, log d and
log q, as required. Setting t = t0 completes the proof.
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3.4 AM Protocol in the Positive-Dimensional Case

We now explain how Theorem 3.4 yields a proof that, under the positive-dimensional promise,
the associated Nullstellensatz problem over Fq lies in the class AM (in fact, already in NP).

Theorem 3.5 (Positive-dimensional Nullstellensatz over Fq). Consider the decision problem:

Input: A system S = {f1, . . . , fm} ⊆ Fq[x1, . . . , xn] with deg fi ≤ d, together with
the promise that V (S) has an irreducible component X of dimension r > 0 defined
over Fq.

Question: Does S have a common root in Fn
q ?

Then this promise problem lies in AM (indeed, in NP).

Proof. By Theorem 3.4, if S is satisfiable then there exists a solution x = (x1, . . . , xn) with
coordinates in Fqt for some t ≤ T , where T is bounded by a polynomial in n, log d and log q.
We fix a canonical representation of the extension field Fqt as Fq[X]/(P (X)), where P is a monic
irreducible polynomial of degree t over Fq. An element of Fqt is then represented by a residue
class of a polynomial of degree < t, which in turn can be encoded by t coefficients in Fq, i.e.,
t log q bits.

A certificate for the satisfiability of S consists of the following data:

• a description of the extension field Fqt , given by an irreducible polynomial P ∈ Fq[X] of
degree t;

• the coordinates x1, . . . , xn ∈ Fqt , each written in the chosen basis of Fqt over Fq.

The total length of this certificate is O(t log q · n) bits, which is polynomial in the input size by
the bound on t.

Given such a certificate, a polynomial-time verifier (Arthur) proceeds as follows:

1. First check that P is irreducible over Fq; this can be done in randomized or deterministic
polynomial time using standard algorithms for irreducibility testing of polynomials over
finite fields.

2. Using the representation Fqt = Fq[X]/(P ), implement field addition and multiplication in
time polynomial in t and log q.

3. For each i, evaluate fi(x) in Fqt by repeated field operations, and check whether the result
is zero.

If all evaluations vanish, the verifier accepts; otherwise, it rejects.
If S is satisfiable, then by Theorem 3.4 there exists a solution in some Fqt with t ≤ T ,

so Merlin can send a correct certificate which causes Arthur to accept. Conversely, if S is
unsatisfiable, then there is no tuple x in any extension field which satisfies all equations, so
no purported certificate can make Arthur accept. Thus the problem lies in NP and hence in
AM.

3.5 Zero-Dimensional Case and Large Roots

We now explain why the simple strategy of using a root as a certificate can fail in the zero-
dimensional case: even when V (S) is finite, the solutions may live in very large field extensions.

14



Definition 3.2 (Zero-dimensional systems). A system S = {f1 = 0, . . . , fm = 0} ⊆ K[x1, . . . , xn]
over a field K is said to be zero-dimensional if its zero set V (S) in an algebraic closure K
is finite. Equivalently, the coordinate ring K[x1, . . . , xn]/⟨f1, . . . , fm⟩ is a finite-dimensional
K-vector space.

The following example (adapted from Koiran’s work) shows that in characteristic 3 there
exist zero-dimensional systems whose solutions require field extensions of exponentially large
degree.

Proposition 3.6 (Exponential extension degree in the zero-dimensional case). Let K be a field of
characteristic 3 and, for n ≥ 1, consider the system Sn in variables x1, . . . , xn given by

x1 = 2, x2k+1 = xk (1 ≤ k < n).

Then Sn is zero-dimensional and for any solution (x1, . . . , xn) ∈ K
n
one has

[K(xn) : K] ≥ 2n−1.

Proof. Each equation x2k+1 = xk is quadratic in xk+1, so for fixed xk there are at most two
possibilities for xk+1. Hence Sn has only finitely many solutions and is zero-dimensional.

Fix a solution and set K1 = K and Kk+1 = Kk(xk+1) for 1 ≤ k < n. For each k, xk+1

satisfies the monic quadratic
hk(X) := X2 − xk ∈ Kk[X].

Thus [Kk+1 : Kk] is either 1 or 2. One checks inductively that hk is irreducible over Kk for
every k (equivalently, xk is not a square in Kk), so [Kk+1 : Kk] = 2 at each step. Consequently

[K(xn) : K] ≥ [Kn : K] =
n−1∏
k=1

[Kk+1 : Kk] = 2n−1,

as claimed.

Remark 3.1. Proposition 3.6 shows that, unlike in the positive-dimensional case treated in
Theorem 3.4, one cannot hope for a general polynomial bound on the extension degree needed
to realize a solution of a zero-dimensional system over a field of positive characteristic. From the
viewpoint of complexity theory, this explains why the simple AM protocol of Theorem 3.5 does
not extend verbatim to the zero-dimensional case: a single root may require an exponentially
long description.

4 Conclusion and Future Directions

In this report we investigated the computational complexity of Hilbert’s Nullstellensatz over
both characteristic zero fields and finite fields, combining tools from effective algebraic geometry
and analytic number theory. Over characteristic zero, effective Nullstellensatz bounds (Theo-
rem 1.3) yield an explicit representation of 1 in the ideal ⟨f1, . . . , fm⟩ with controlled degrees
and coefficient sizes. This leads to a PSPACE decision procedure for the Hilbert Nullstellen-
satz problem via linear algebra over the integers. Under the Generalized Riemann Hypothesis,
Koiran’s argument then upgrades this to an AM protocol by relating satisfiability over C to a
gap in the number of prime moduli for which the system has a solution.

Over finite fields, Deligne’s proof of the Weil conjectures provides strong point-counting
estimates which, together with degree bounds on components, guarantee the existence of “small”
roots in the positive-dimensional case (Theorem 3.4). This yields short certificates and places
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the corresponding promise problem in NP (hence AM) (Theorem 3.5). In contrast, the zero-
dimensional case admits systems whose solutions require exponentially large extension degrees
(Proposition 3.6), showing that naive root-based certificates are inherently too large in general.

Several directions remain open for future work:

• The AM upper bound over characteristic zero currently depends on GRH via effective
Chebotarev estimates. An unconditional analogue with weaker, but still meaningful,
complexity bounds would be highly desirable. or special group actions).

• For zero-dimensional varieties, it is natural to seek alternative certificate notions that
might place the corresponding decision problems in lower complexity classes.
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