
Fast Integer Multiplication
using the Harvey - van der Hoeven algorithm

Bhaskar Goyal
School of Mathematical Sciences, NISER Bhubaneswar

Under the guidance of :

Prof. Nitin Saxena
Department of Computer Science and Engineering, IIT Kanpur

1 Introduction

Integer multiplication is one of the most fundamental problems in computer
algebra. Schönhage and Strassen conjectured in 1971 that the product of two
n-bit integers may be computed in O(n log n) bit operations. The problem
remained open for decades, until the conjecture was proven to be true by Harvey
and van der Hoeven in [2] . In this report, we try to understand the Harvey-van
der Hoeven-Lecerf algorithm and list down the possible open problems.

We will assume that the reader is familiar with the Schönhage-Strassen in-
teger multiplication algorithm using Fast Fourier Transform [4].

2 Brief Overview

In this section, we will try to explain the the idea behind the algorithm with as
few technical details as possible. This is to ensure that the reader has a clear
understanding of what the algorithm is trying to achieve. The technical details
will be covered in sections 4 and 5.

The main motivation behind this algorithm is that certain polynomial rings
inherit highly efficient multiplication algorithms. In particular, rings of the form:

R[x1, x2, ..., xd−1]

(xt1
1 − 1, xt2

2 − 1, ..., x
td−1

d−1 − 1)
, R :=

C[y]
(yr + 1)

(1)

where ti|r for all i, and r is a power if two. We may multiply in this ring
by first evaluating each xi at powers of y2r/ti to compute the Discrete Fourier
Transform, multiplying point-wise in R, and computing the inverse DFT.

The goal is to reduce the problem of integer multiplication to a problem of
multiplication in a ring of the form (1). To do so, let s1, s2, ..., sd be distinct
primes close to (n/ log n)1/d. d >= 2 is a dimension parameter which will be
fixed later. We start by breaking the integer into roughly n/ log n pieces, each
of size roughly log n. Thus, the problem is reduced to that of multiplication in

Z[x]
xs1...sd−1 . We may use Chinese Remainder Theorem to show that Z[x]

xs1...sd−1
∼=

Z[x1,...,xd]

(x
s1
1 −1,...,x

sd−1

d)
with the isomorphism being x goes to x1...xd.

Thus the problem is now reduced to that of computing a multidimensional
DFT of size s1×s2×...×sd. We want to reduce this to the problem of computing
a multidimensional DFT of size t1×t2×...×td. This is done through a technique
called Gaussian Resampling. This is the key innovation of this paper, and
we dedicate the entirety of the next section to this technique.

The idea is as follows: we start with a tuple of size si and think of it as lying
inside the torus R/Z. Suppose the tuple is (j1, j2, ..., jsi). We plot the points
((1/si, j1), (2/si, j2), ..., (si/si, jsi)). We compute the Gaussians around each of
these points (where si/si ∼ 0, since we are working in R/Z), and add them up.
Then we evaluate the resulting function at ti equally spaced points to obtain
a tuple of the required size. This analytic nature of the Gaussian Resampling
technique is the reason that so far no such algorithm for finite fields is known.

1

We will show that this process can be done efficiently. On the application
of this technique, we end up with a ring of the form (1) and can use synthetic
roots of unity to compute the DFT quickly. Now we are ready to dive into the
technical details. In section 4 we describe Gaussian Resampling, and in section
5 we explain the algorithm for fast multiplication in (1). Section 6 deals with
the selection of parameters, including choosing the primes s1, ..., sd.

3 Preliminaries

In this section we give some definitions which we have used throughout the
paper. We define

[x] := ⌈x− 1/2⌉

i.e. the closest integer function and

< x >:= x− [x].

The norm ||.|| is the standard sup norm in the case of vectors, and the operator
norm defined by

||A|| = supv∈V ||Av||

in the case of operators.
We will be working over C and hence we need to define a precision with

which we are working. Our precision will be of p bits i.e. the error will be less
than 2−p. Throughout the report, by a ”good enough approximation” we mean
an approximation ṽ of v such that |v − ṽ| < 2−p in the case of vectors, and an
approximation Ã of A such that ||A − Ã|| < 2−p.

We make some assumptions while proving the results. We list them below:

• Multiplication of two p-bit integers can be done in O(p1+δ) bit operations,
where δ ∈ (0, 1/8).

• (Real Exponentials) ω := e
−πj
k may be approximated in timeO(max(p, log(j+

1), logk)1+δ

• Some lemmas on efficient approximations of linear maps, bilinear maps
and Tensor products. We will quote them when required.

Refer to section 2 of [2] for proofs of these lemmas. We will give the complete
statements of these lemmas when they are used in sections 4 and 5.

4 Gaussian Resampling

At the heart of the Gaussian Resampling technique is the Resampling Iden-
tity, which states that in some sense, the Resampling Map and the DFT map
commute. Before we prove this identity, let us clearly define the DFT and
resampling maps:

2

Figure 2

Definition 1 (Discrete Fourier Transform) The map Fn := Cn → Cn defined
by:

(Fnu)j :=
1

n
Σn−1

k=0e
−2πijk/nuk, u ∈ Cn, 0 <= j < n

Definition 2 (Resampling Maps) The maps S : Cs → Ct and T : Cs → Ct

defined by:

(Su)k := α−1Σj∈Ze
−πα−2s2(k

t −
j
s)

2

uju ∈ Cs, 0 <= k < t

(T u)k := Σj∈Ze
−πα2t2(k

t −
j
s)

2

uju ∈ Cs, 0 <= k < t

We also need the following permutation maps:
Ps : Cs → Cs and Pt : Ct → Ct defined by:

(Psu)j := utj

(Ptu)k := u−sk

The key idea used in the proof is that the Fourier transform of a Gaussian
is again a Gaussian.

Theorem 1 (Resampling Identity) T PsFs = PtFtS i.e, the following diagram
commutes:

Proof : Given u ∈ Cs, define the function fu : R → C by:

fu :=
∑
m∈Z

umg(x− m

s
), g(x) = e−πα−2s2x2

Its Fourier series expansion is:

fu(x) =
∑
m∈Z

f̂u(r)e
2πirx

3

where the Fourier coefficients are given by:

f̂u(r) =

∫ 1

0

e−2πirxfu(x)dx

=

∫ 1

0

∑
m∈Z

ume−2πirxg
(
x− m

s

)
dx

=

∫ 1

0

s−1∑
j=0

∑
q∈Z

uje
−2πirxg

(
x− q − j

s

)
dx

=

s−1∑
j=0

uj

∫ ∞

−∞
e−2πirxg

(
x− j

s

)
dx

=

s−1∑
j=0

uje
−2πirj/s

∫ ∞

−∞
e−2πirxg(x)dx.

It is known that the Fourier transform of g(x) on R is given by:∫ ∞

−∞
e−2πiyxg(x)dx = αs−1e−πα2s−2y2

, y ∈ R

We obtain:
f̂u(r) = αe−πα2s−2r2 (Fsu)r , r ∈ Z

By definition (Su)ℓ = α−1fu(ℓ/t) for any ℓ ∈ Z, so for any k ∈ {0, . . . , t − 1},
we have

(PtFtSu)k = (FtSu)−sk

= α−1t−1
t−1∑
ℓ=0

e2πiskℓ/tfu(ℓ/t)

= α−1t−1
t−1∑
ℓ=0

e2πiskℓ/t
∑
r∈Z

f̂u(r)e
2πirℓ/t

= α−1
∑

r=−sk mod t

f̂u(r)

=
∑

r=−sk mod t

e−πα2s−2r2 (Fsu)r

=
∑
j∈Z

e−πα2s−2(tj−sk)2 (Fsu)tj−sk

=
∑
j∈Z

e−πα2t2(j
s−

k
t)

2

(PsFsu)j

= (T PsFsu)k

Our goal is to use the resampling identity to compute the s-dimensional
DFT via an FFT algorithm involving t-dimensions. For doing this there are 3
broad steps involved:

4

• Compute v = Su i.e a t-dimensional vector from an s-dimensional vector

• Compute v̂ = FtPtv i.e the DFT of v

• Solve for û in T û = v̂

We will show that all of these steps are efficient.
The second step is the computation of DFT in a ring of the form (1) and

will be dealt with in section 5. We will focus on the third step which will cover
the explanation for the cost of computing of the first step as well.

4.1 Solving for û in T û = v̂

The difficulty lies in the fact that the matrix for T does not have an inverse. In
fact, it is rectangular. We will start by removing the extra t − s rows to make
it a square system. We do this by defining a map C : Ct → Cs defined by:

(Cu)ℓ := u[tℓ/s]

We write T ′ := CT : Cs → Cs. If we can show that T ′ is invertible, then (T ′)−1C
is the left inverse required to solve the system. After some simplification we can
see:

(T ′u)ℓ = Σh∈Ze
−πα2(th

s +β2
ℓ)uℓ+h

where βℓ :=< tℓ
s > , ℓ ∈ Z. Note that |β| <= 1

2 .

To approximate the inverse of T ′, we will try to write it as a sum of a diagonal
matrix and another matrix with only a small number of relevant terms. To do
this, define D : Cs → Cs as:

(Du)ℓ := eπα
2β2

ℓ

and N ′ := T ′D : Cs → Cs as:

(Nu)ℓ = Σh∈Ze
−πα2((th

s +β2
ℓ)−β2

ℓ+h)uℓ+h

Setting E : = N − I , we get:

(Nu)ℓ = Σh∈Z−{0}e
−πα2((th

s +β2
ℓ)−β2

ℓ+h)uℓ+h

where u ∈ Cs, 0 <= ℓ < s Since the matrices I and E commute, we may write

N−1= I − E + E2−...

and (DN−1C) is the required left inverse for T .

(DN−1C)T = DN−1T ′ = D(T ′D)
−1T ′ = I

Our goal is to show that all these matrices may be computed quickly. This is
done using the earlier assumptions/lemmas. We state them here for clarity: For

5

all these lemmas, let p be the working precision in bits, E(Ã) be the worst case
error in approximation of A by Ã, and C(Ã) be the worst case cost of evaluating
Ã on a single vector.

Lemma 1: (Multiplication in C). Given as input u, v ∈ C̃0, in time O
(
p1+δ

)
we may compute an approximation w̃ ∈ C̃◦ for w := uv ∈ C◦ such that ε(w̃) < 2.

Lemma 2: (Real exponentials, negative case). Let k ⩾ 1 and j ⩾ 0 be inte-
gers, and let w := e−πj/k ∈ C◦. Given j and k as input, we may compute an ap-
proximation w̃ ∈ C̃◦ such that ε(w̃) < 2 in time O

(
max(p, log(j + 1), log k)1+δ

)
.

Lemma 3: (Real exponentials, positive case). Let k ⩾ 1, j ⩾ 0 and σ ⩾ 0
be integers, and assume that eπj/k ⩽ 2σ and σ ⩽ 2p. Let w := 2−σeπj/k ∈ C0.
Given j, k and σ as input, we may compute an approximation w̃ ∈ C̃◦ such that
ε(w̃) < 2 in time O

(
max(p, log k)1+δ

)
.

Lemma 4: (Tensor products). Let R be a coefficient ring of dimension r ⩾ 1.
Let d ⩾ 1, let m1, . . . ,md, n1, . . . , nd ⩾ 2, and put M :=

∏
i max (mi, ni). For

i ∈ {1, . . . , d}, let Ai : R
mi → Rni be an R-linear map with ∥Ai∥ ⩽ 1, and let

Ãi : R̃mi
◦ → R̃ni

◦ be a numerical approximation. Let A := ⊗iAi : ⊗iR
mi →

⊗iR
ni . (Note that automatically ∥A∥ ⩽ 1.)
Then we may construct a numerical approximation Ã : ⊗iR̃

mi
◦ → ⊗iR̃

ni
◦

such that ε(Ã) ⩽
∑

i ε
(
Ãi

)
and

C(Ã) ⩽ M
∑
i

C
(
Ãi

)
max (mi, ni)

+O(Mrp logM)

The first step is to give an algorithm to efficiently approximate D′ = D
22α2−2

.
This algorithm is pretty straightforward, with the analysis being done using the

above lemmas. Each element of the diagonal ofD′ is of the form eπα
2β2

ℓ /22α
2α2−2

.
The rational part of the exponent may be written as α2β2

ℓ = α2 < tl/s >2=
α2kl/s

2 for some integer kl < s2/4. We can now use lemma 3 to say that

eπα
2β2

ℓ /22α
2α2−2

may be approximated in O(p1+δ). Since there are s terms and
using Lemma 1, we can conclude that D′u may be computed in time O(sp1+δ) =
O(tp1+δ).

The next step is to show that S ′u = S
2 u may be approximated efficiently.

By definition:

(S ′u)k =

(
1

2
Su

)
k

=
∑
j∈Z

1

2
α−1e−πα−2(j− sk

t)
2

uj .

Let m :=
⌈
p1/2

⌉
α, and consider the truncated sum

Tk :=
∑

|j− sk
t |<m

1

2
α−1e−πα−2(j− sk

t)
2

uj .

We can actually show that Tk is a good enough approximation for (S ′u)k, es-
sentially implying that there are only about 2m relevant terms in the series

6

corresponding to each of the s elements in the vector (S ′u). Hence proceeding
as in the case of D′, we get that S ′ may be approximated in O(sp1+δm) =
O(tp3/2+δα) operations.

We will now show that E may be approximated efficiently. This is very
similar to the previous case.

(Eu)ℓ =
∑

h∈Z\{0}

e
−πα2

(
(th

s +βℓ)
2−β2

ℓ+h

)
uℓ+h

Let m :=
⌈(
p/4α2

)1/2⌉
=

⌈
p1/2/2α

⌉
⩾ 1, and consider the truncated sum

Tℓ :=
∑

h∈Z\{0}
|h|⩽m

e
−πα2

(
(th

s +βℓ)
2−β2

ℓ+h

)
uℓ+h

Again it is possible to show that Tℓ is a good enough approximation for (Eu)ℓ.
Hence there are only about 2m relevant terms in the series corresponding to
each of the s elements in the vector (Eu). Proceeding as before we get that E ′

may be approximated in O(sp1+δm) = O(tp3/2+δα−1) operations.
The final step is to approximate J ′ = N−1/2 . To do this, define v = u

2 .
Then

J ′u = (
N−1

2
u) = N−1v = v − Ev + E2v−...

Let n := ⌈p/(α2θ)⌉ where θ := t/s − 1 It can be shown that only about n
terms of the above series are required for a good enough approximation of J ′u
. So we need only about n invocations of the previous algorithm approximat-
ing E . Assuming θ >= p/α4 , we get n <= α2 + 1. So the total cost is
O(tnp3/2+δα−1) = O(tp3/2+δα).

Theorem 2 (Gaussian Resampling in one dimension) Let s and t be integers
such that 2 ⩽ s < t < 2p and gcd(s, t) = 1. Let α be an integer in the interval
2 ⩽ α < p1/2. Let θ := t/s − 1 > 0, and assume that θ ⩾ p/α4. Then (i)
There exist linear maps A : Cs → Ct and B : Ct → Cs with ∥A∥, ∥B∥ ⩽ 1

such that Fs = 22α
2BFtA. (ii) We may construct numerical approximations

Ã : C̃s
o → C̃t

◦ and B̃ : C̃t
◦ → C̃s

◦ such that ε(Ã), ε(B̃) < p2 and C(Ã),C(B̃) −
O
(
tp3/2+δα+ tp log t

)
.

Simply takeA = S ′, which is approximated inO(tp3/2+δα) For B, take B = P−1
s D′J ′CPt

Time taken for approximating B is O(tp log t) + C(D′) + C(J ′).

We can now use Lemma 4 to show the main theorem of this section:

Theorem 3 (Gaussian resampling). Let d ⩾ 1, let s1, . . . , sd and t1, . . . , td be
integers such that 2 ⩽ si < ti < 2p and gcd (si, ti) = 1, and let T := t1 · · · td.

7

Let α be an integer in the interval 2 ⩽ α < p1/2. For each i, let θi := ti/si − 1,
and assume that θi ⩾ p/α4.

Then there exist linear maps A : ⊗iCsi → ⊗iCti and B : ⊗iCti → ⊗iCsi ,
with ∥A∥, ∥B∥ ⩽ 1, such that

Fs1,...,sd = 2γBF t1,...,tdA, γ := 2dα2.

Moreover, we may construct numerical approximations Ã : ⊗iC̃si
◦ → ⊗iC̃ti

◦
and B̃ : ⊗iC̃ti

0 → ⊗iC̃si
0 such that ε(Ã), ε(B̃) < dp2 and

C(Ã),C(B̃) = O
(
dTp3/2+δα+ Tp log T

)
(2)

5 Multidimensional DFTs of powers of two sizes

The goal of Gaussian Resampling was to reduce the problem of computing
multidimensional DFT of s1 × s2 × ...× sd to a problem of computing a multi-
dimensional DFT of size t1 × t2 × ...× td, i.e. a multiplication problem in a ring
of the form (1). In this section we will give an algorithm for fast computation
of this DFT. We have:

u ∈ C[x1, x2, ..., xd−1, y]

(xt1
1 − 1, xt2

2 − 1, ..., x
td−1

d−1 − 1, yr + 1)

where ti|r for all i. Note that in this ring y2r/ti is a tith root of unity, and we
may use this to compute a DFT of size ti by evaluating xi at the powers of
y2r/ti . Doing this for all i ∈ {1, 2, ..., d−1}, we get t1t2...td−1 many polynomials

ui1,...,id−1
:= u(y2ri1/t1 , ..., y2rid−1/td−1) ∈ C[y]

(yr + 1)

for all ik ∈ {1, 2, ..., td−1}. Hence this problem is reduced to a one dimensional
DFT of size r which we may compute using Bluestein’s FFT algorithm [1] in
time

O(r log r) = O(td log td)

. Since multiplication with y is simply a bit shift with a cyclic wraparound after
2r terms, computing all the polynomials takes time O(pt1t2...td−1). So the total
time taken is:

O((t1t2...td−1)(td log td)) +O(pt1t2...td−1) = O(Tp log td)

Since td was chosen of (O(T)1/d), we get the time complexity of the multidi-
mensional DFT as O(1dpT log T).

Now we will use this DFT algorithm to compute the product in ring (1).
The forward and inverse DFT take time O(1dpT log T). Now we need to com-

pute the pointwise product, which takes time 4T
r M(rp) where M(.) denotes

the time complexity of integer multiplication. (This is true as each pointwise

8

product is between elements from the ring C[y]
(yr+1) , with there being T/r such

multiplications. Hence we get the time complexity of multiplication in 1 as:

4T

r
M(rp) +O(

1

d
pT log T) (3)

6 Parameters and Complexity Analysis

Let
b := ⌈log2 n⌉ ⩾ d12 ⩾ 4096

be the ”chunk size”, and let the working precision be

p := 6b = 6 ⌈log2 n⌉ ⩾ 6d12 ⩾ 24576 > 100.

Define
α :=

⌈(
12d2b

)1/4⌉
.

Clearly α ⩾ 2, and as d ⩽ b1/12 and b ⩾ 4096, we also have

α ⩽
⌈
121/4b7/24

⌉
⩽ 1.87 · b7/24 + 1 < 2b7/24 < p1/2.

Let T be the unique power of 2 in the interval:

4n/b ⩽ T < 8n/b

then T < n ⩽ 2b < 2p. We may compute a factorisation T = t1t2...td in time
(log n)O(1) (as T is a power of 2).

We also need primes s1, s2, ..., sd. This can be done through Eratosthenes’
sieve. The existence of such primes is guarantied by the following lemma (refer
to section 5 of [2] for proof):

Lemma 5: Let η ∈
(
0, 1

4

)
and let x ⩾ e2/η. Then there are at least 1

2ηx/ log x
primes q in the interval (1− 2η)x < q ⩽ (1− η)x.

The overall complexity of the Algorithm is:

4T

r
M(rp) +O(

1

d
pT log T) +O

(
dTp3/2+δα+ Tp log T

)
+O(Tp1+δ)

which we get from (2) and (3). The O(Tp1+δ) factor is due to the cost of scaling.
Note that:

dp3/2+δα = O
(
p1/12p3/2p1/8p7/24

)
= O

(
p2
)

and T = O(n/ log n), p = O(log n)which gives us the final complexity of integer
multiplication:

M(n) <
4T

r
M(rp) +O(n log n)

Define T (n) = M(n)/(n log n), then dividing the previous equation by (n log n)
gives:

T (n) =
4Tp

n
.
log(rp)

log n
.T (rp) +O(1)

9

Then 4Tp/n = 24Tb/n < 1728. Also r < 2n1/d, so

log(rp)

n
=

log r/2 + log(12b)

log n
< 1/d+

log 12b

b− 1

Since b ⩾ 4096 and d ⩽ b1/12,

log 12b

b− 1
<

1

2d2

Then
1

d
+

1

2d2
=

1

d
(1− 1

2d
)−1 =

1

d− 1/2

and hence

T (n) <
1728

d− 1/2
T (rp) +O(1)

Now we are in a position to prove the main theorem of this paper:

Theorem 4 There is an integer multiplication algorithm achieving

M(n) = O(n log n)

Proof : According to the previous equation, there exists a constant A > 0 such
that

T (n) <
1728

d− 1/2
T (rp) +A

for all n ⩾ n0, where n0 := 2d
12

. We now take d:= 1729, then for all n ⩾ n0 we
have

T (n) < 0.9998T (rp) +A.

Define:
B := max

2⩽n<n0

T (n), C := max(B, 5000A)

(for n < n0, we use a base case multiplication algorithm which defines M(n)
and hence T (n)) .

We will use induction on n to show that T (n) ⩽ C for all n ⩾ 2. The choice
of B ensures that the theorem holds for n < n0. For n ⩾ no we have

rp < 12T 1/db = 12n1/1729⌈log2 n⌉ < n

By induction we have
T (n) < 0.9998C +A ⩽ C.

Hence, T (n) = O(1) and M(n) = O(n log n).

10

7 Polynomial Multiplication over Finite Fields

The algorithm we presented in the report is an unconditional O(n log n) algo-
rithm for integer multiplication. In [3], Harvey and van der Hoeven describe
another algorithm for integer multiplication in time O(n log n), but it is con-
ditional on some open conjectures in number theory. The advantage with this
algorithm is that it may be adapted to get O(n log n) algorithm for polynomial
multiplication over finite fields Fq[x]. The unconditional bound for this remains
at O(n log n4log ∗n).

8 Conclusion and Open Problems

The algorithm is able to achieve an unconditional upper bound of O(n log n)
on the cost of integer multiplication. However, the Gaussian Resampling tech-
nique is highly complicated and due to its analytic nature, so far it has not been
adapted for fast polynomial multiplication in Fq[x]. This is the most fundamen-
tal open problem related to the paper.

Another interesting problem lies in Gaussian Resampling, particularly in
solving for û in T û = v̂. We have approximated N−1 efficiently by making
the assumption θ ⩾ p/α4. On the other hand, we need to have θ as close
to 0 as possible to keep the size of the DFT small. An alternative method is
LU factorisation of N which may be more efficient, allowing us to remove the
assumption that θ ⩾ p/α4. However, the error analysis becomes much more
complicated in this case.

References

[1] L. Bluestein. A linear filtering approach to the computation of dis-
crete fourier transform. IEEE Transactions on Audio and Electroacoustics,
18(4):451–455, 1970.

[2] David Harvey and Joris van der Hoeven. Integer multiplication in time
O(nlog n). Annals of Mathematics, 193(2):563 – 617, 2021.

[3] David Harvey and Joris van der Hoeven. Polynomial multiplication over
finite fields in time O(n log n). Journal of the ACM (JACM), April 2022.

[4] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Com-
puting, 7(3):281–292, 1971.

11

	Introduction
	Brief Overview
	Preliminaries
	Gaussian Resampling
	Solving for in T =

	Multidimensional DFTs of powers of two sizes
	Parameters and Complexity Analysis
	Polynomial Multiplication over Finite Fields
	Conclusion and Open Problems

