
Low Variate Polynomials: Hitting
Set and Bootstrapping

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Sumanta Ghosh

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

September, 2019

DECLARATION

This is to certify that the thesis titled “Low Variate Polynomials: Hitting Set and

Bootstrapping” has been authored by me. It presents the research conducted by me

under the supervision of Prof. Nitin Saxena at the Department of Computer Science and

Engineering, IIT Kanpur. To the best of my knowledge, it is an original work, both in

terms of research content and narrative, and has not been submitted elsewhere, in part or

in full, for a degree. Further, due credit has been attributed to the relevant state-of-the-art

and collaborations (if any) with appropriate citations and acknowledgements, in line with

established norms and practices.

——————————————

Sumanta Ghosh

Program: Doctor of Philosophy

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Kanpur 208016

September, 2019

CERTIFICATE

It is certified that the work contained in the thesis entitled “Low Variate Polynomials:

Hitting Set and Bootstrapping”, by “Sumanta Ghosh”, has been carried out under my

supervision and that this work has not been submitted elsewhere for a degree.

——————————————

Prof. Nitin Saxena

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

September, 2019

Synopsis

In this thesis, we study Polynomial Identity Testing (PIT) problem. It is one of the

central problems in algebraic complexity theory. PIT problem asks whether a multivariate

polynomial is zero, where the input polynomial is given as an algebraic circuit. We have

a polynomial-time randomized algorithm for PIT. However, designing a deterministic

polynomial-time algorithm for PIT is a long-standing open question in algebraic complexity

theory. It has deep connections with both circuit lower bounds and many other algorithmic

problems like perfect matching, multivariate polynomial factorization.

We consider PIT problem in the blackbox setting, where we are not allowed to see the

internal structure of the circuit, but evaluations at points are allowed. For instance, the

randomized algorithm for PIT is a blackbox algorithm. Designing a deterministic blackbox

PIT algorithm for a circuit class is equivalent to finding a set of points such that for every

nonzero circuit, the set contains a point where it evaluates to a nonzero value. Such a set is

called hitting set. So by derandomizing PIT, we mean designing a poly(s)-time computable

hitting set for s-variate size s degree s circuits.

We study the phenomenon of bootstrapping in PIT: converting a hitting set for n(s)-

variate size s degree s circuits to a hitting set for s-variate size s degree s circuits where

n(s) � s. The analog of this phenomenon in boolean settings is well understood due

to a seminal work by Nisan-Wigderson. Their result is optimal for boolean circuits.

So, no further improvement is possible there. However, the situation was less clear in

algebraic settings. We have bridged this gap in knowledge by showing that we can

efficiently perform the bootstrapping when the number of variables n(s) is as small as

log◦c s, where log◦c s is c-times composition of logarithmic function with itself. For example,

vii

viii

log◦2 s = log log s. Furthermore, at the cost of making the final hitting set “slightly”

superpolynomial (sexp ◦ exp(O(log? s))), we show that bootstrapping can be done from even a

constant number of variables!

Our results can also be viewed as a powerful amplification of derandomization: a

sn
δ
-size hitting set for some δ < 1/2, for n-variate size s degree s circuit implies a “slightly”

super-polynomial (sexp ◦ exp(O(log? s))) size hitting set for size s degree s circuits. Trivial

derandomization of the randomized algorithm for PIT gives a (s+ 1)n-size hitting set for

n-variate size s degree s circuits. To completely derandomize PIT, our goal is to design

a poly(s)-size hitting set for s-variate size s degree s circuits. Our result implies that a

“small” improvement over trivial hitting set is sufficient to “almost” completely derandomize

PIT. We prove an additional bootstrapping result for shallow circuits: o(sn/2)-size hitting

set for n-variate size s depth-4 circuits (for some constant n ≥ 3) implies quasi-polynomial

(sO(log s)) time blackbox PIT algorithm for general circuits.

Our result, bootstrapping in PIT, motivates us to study the circuits with “few” variables,

for example, the number of variables is logarithmic with respect to the circuit size. We give

the first poly(s)-time blackbox PIT algorithm for O(log s)-variate size s circuits computing

polynomials with poly(s) dimensional partial derivative space. As depth-3 diagonal circuit

is a prominent circuit class which has polynomially large dimensional partial derivative

space, our result gives the first polynomial-time blackbox PIT algorithm for log-variate

depth-3 diagonal circuits. Moreover, to design blackbox PIT for those models, we show an

efficient blackbox PIT algorithm for polynomials whose support set contains a “low-cone”

monomials. Our result shows that the cone size of monomials is a useful measure in the

log-variate regime. So, it may be useful in studying other log-variate models.

We introduce the concept of cone-closed basis for the polynomials over the vector

space Fk. It is a stronger notion of rank concentration compared to low-support rank

concentration and low-cone concentration. We showed that if a polynomial over Fk is shifted

by its basis isolating weight assignment, then the new polynomial becomes cone-closed. It

is currently the best known rank concentration result for polynomials over vector spaces.

Acknowledgements

I am very fortunate to have Nitin Saxena as my PhD advisor. Being a student of him is a

privilege for me. I owe my progress in research to him. He was always generous with his

time, and we have had so many instructive discussions. I have learned many techniques and

ideas from those countless hours of discussions. His belief in hard work and incremental

developments of students has been a constant source of motivation for me. He has always

provided me enough freedom to do research at my own pace. His strong perseverance

towards solving problems is the biggest lesson I have learnt from him about research.

At IIT Kanpur, I was fortunate to experience the teaching of Somenath Biswas,

Manindra Agrawal, Sumit Ganguly and Surender Baswana. The algorithm courses offered

by Surender Baswana made me realize how beautifully an algorithm can be taught as well

as learnt. Discussing with Manindra Agrawal has always been an inspiring experience

for me. Even though I had few opportunities to discuss with him, his way of thinking,

articulating ideas and teaching have been influential in shaping my own way of thinking

on problems. My sincere thanks to Somenath Biswas for motivating us in research. I am

grateful to Piyush P Kurur for guiding me in M. Tech. From him, I have learned how

to write better technical articles. Thanks to Rajat Mittal and Satyadev Nandakumar for

many discussions on various topics and helpful advice. Above all, I would like to express

my gratitude to all the faculties in the department for providing us a wonderful friendly

environment in the department. Thanks to the technical and administrative staff in the

CSE department for always being helpful. I thank the institute as a whole for providing us

such a conducive environment.

This thesis is based on joint works with Manindra Agrawal, Michael A. Forbes and my

ix

x

advisor. I am thankful to them. This work would not have been possible without them.

During my PhD, I got the opportunity to attend some wonderful workshops, which

had given me an exposition of wide range of topics in my research area. I want to thank

the organizers of the workshops I participated in, WACT 2016 at Tel Aviv University,

Mysore Park workshop in 2016, NMI workshop in arithmetic circuit complexity at IMSc

Chennai in 2017 and WACT 2019 at ICTS Bangalore. Thanks to Google India Pvt. Ltd.

and Research-I foundation of Infosys for funding my travel expenses to the conferences

CCC 2018, STOC 2018 and ICALP 2018. Thanks to Michal Koucky for hosting me during

a research visit at Charles University Prague and giving me opportunity to participate in

the Summer School on Algorithms and Lower Bounds 2018 organized by him.

I would like to thank Amit, Ashish, Anamay, Diptarka, Mahesh, Pranjal, Pranav,

Prateek, Rajendra, Subhayan, Vishwas, Zeyu for countless discussions covering wide range

of topics in computer science. Without them, I would not have learnt as much as I did.

I got opportunities to meet Ramprasad on multiple occasions. His vast knowledge in

computer science, enthusiasm for research and way of explaining ideas is always inspiring.

Life at IIT Kanpur would not be so easy and joyful without the company I had here.

Thanks to all my labmates and friends for the wonderful time we had together. I sincerely

thank Diptarka, Rajendra, Mahesh, Pranjal, Prateek for being so helpful all the time.

Special thanks to Amit for our decade-old friendship spanning from my undergraduate

days and being a constant source of support all the time.

Many thanks to my maternal uncle, Sanat Ghosh, for guiding me and being a source

of inspiration from my childhood. My sincere thanks to my uncle, Dibakar Ghosh, for

teaching me mathematics with great care and affection during my school days. I am

grateful to kakima, Manasi Saha, for her love and care.

Most of all, thanks to my parents, my elder sister and my younger brother. I am

indebted to them for their continual and unconditional love, care and support. Without

their support and love, it would not be possible for me to reach this day. I fondly dedicate

this thesis to them.

Contents

List of Publications xv

List of Figures xvii

1 Introduction 1

1.1 Polynomial Identity Testing Problem . 2

1.2 Contribution of this thesis . 7

1.2.1 Bootstrapping in PIT . 7

1.2.2 Blackbox PIT for certain log-variate models 10

1.2.3 Cone closed bases: A stronger notion of rank concentration 12

1.3 Follow up works . 14

1.4 Organization of the thesis . 14

2 Preliminaries 17

2.1 Notations and Definitions . 17

2.2 Models of Computation . 22

2.3 Some known results . 24

2.3.1 Randomized PIT algorithm . 24

2.3.2 Polynomial factorization . 26

2.3.3 PIT vs Lower bound . 26

2.3.4 Lifting hardness from depth-4 circuits to general circuits 31

2.3.5 Reduction from depth-4 circuits to depth-3 circuits 33

2.3.6 Reducing the degree of a circuit . 35

xi

xii

2.3.7 Miscellaneous results . 36

3 Perfect Bootstrapping 43

3.1 Motivation and our result . 43

3.2 Proof of our result . 46

3.3 Bootstrapping of sub-exponential size hitting set 52

3.4 Discussion . 56

4 Constant Bootstrapping 59

4.1 Our results and proof ideas . 59

4.2 Preliminaries . 61

4.3 Proofs of our results . 65

4.4 Discussion . 72

5 Shallow Bootstrapping 75

5.1 Our results and proof ideas . 75

5.2 Proofs of our results . 78

5.3 Discussion . 83

6 Blackbox PIT for certain Log-variate Models 85

6.1 Our results and proof ideas . 85

6.2 Proofs of our results . 89

6.3 Discussion . 94

7 Cone-closed Bases: A stronger notion of rank concentration 95

7.1 Motivation and our result . 95

7.2 Proof of our result . 98

7.2.1 Models with a cone-closed basis . 107

7.3 Discussion . 108

8 Conclusion 109

xiii

Bibliography 113

Index 121

List of Publications

[AGS18] Bootstrapping variables in algebraic circuits

with Manindra Agrawal and Nitin Saxena

50th ACM Symposium on Theory of Computing (STOC), 2018

Article in Proceedings of the National Academy of Sciences of the USA,

PNAS, 2019

[FGS18] Towards Blackbox Identity Testing of Log-Variate Circuits

Michael A. Forbes and Nitin Saxena

45th International Colloquium on Automata, Languages, and Programming

(ICALP), 2018

Chapters 3, 4 and 5 are based on [AGS18]. Chapters 6 and 7 are based on [FGS18].

xv

List of Figures

1.1 Algebraic circuit (default edge label is 1) . 3

1.2 Circuit computing exponentially many monomials 4

3.1 Structure of a single step of Perfect Bootstrapping 47

4.1 Proof structure of Lemma 4.3.1 . 70

xvii

Chapter 1

Introduction

Our motivation for studying complexity theory is to classify the computational problems

based on the computational resources needed to solve them. We mainly focus on three

computational resources time, space and random bits. Computational complexity theory

consists of studying various complexity classes and their relations. Among various com-

plexity classes, P and BPP are two major classes that contain the computational problems

which are efficiently solvable. The class P is the set of problems which can be solved in

deterministic polynomial time and the class BPP is the set of problems which can be solved

in randomized polynomial time. In many scenarios, the use of randomness gives us simpler

and more efficient solutions compared to the known deterministic ones. Besides giving

faster algorithms, randomness is also essential for the security of cryptosystems, distributed

computing, and in other areas. However, in practice, random bits are hard to generate.

Therefore, one can ask whether randomness is essential in efficiently solving computational

problems. In complexity theoretic terms, we are interested to know whether P=BPP and

it is believed to be true.

Another well-studied class in complexity theory is NP. The class NP is the set of

problems which can be solved in non-deterministic polynomial time. Informally, the

solution to every problem in NP is efficiently certifiable, but it may not be easy to find

that certificate. For example, consider the problem SAT of deciding whether a given

boolean formula has a satisfying assignment. If the given boolean formula has a satisfying

1

2

assignment, someone can give such an assignment as a certificate and also easily verify

that assignment by putting the values on the formula. However, it is believed that finding

such an assignment is not efficient. One nice property of NP is that it contains a subset

of problems, called NP-complete problems, such that if one can find a polynomial-time

solution to any one of these problems, all problems in NP will be polynomial-time solvable.

The notion of NP-completeness reduces the study of whole NP class to some concrete

and well-structured problems. Like the P vs BPP question, people are also interested in

studying whether P is equal to NP, and it is widely believed that these two classes are

different.

Unlike NP, we do not know any complete problem for BPP. Hence, we try to find “good”

problems which have efficient randomized solutions and try to derandomize them. This

gives us the hope that the newly developed tools for derandomizing that good problem

may help to derandomize BPP class completely. In this thesis, we study one such problem

called polynomial identity testing, in short, we call PIT.

1.1 Polynomial Identity Testing Problem

Polynomial identity testing (PIT) problem is to decide whether a given multivariate

polynomial is identically zero, i.e., the coefficient of every monomial is zero. For example,

(x + y)(x − y) − x2 + y2 is a identically zero polynomial. The hardness of PIT depends

on how we represent the input polynomial. If the input polynomial is given as a list of

monomials and their coefficients, we can easily solve PIT just by checking the coefficients.

However, such an explicit representation always may not be available. In this work, we

consider a very compact representation of polynomials called an algebraic circuit.

An algebraic circuit over a field F is an acyclic directed graph with one sink node called

output node, source nodes are called input nodes and are labeled by variables from the set

x = {x1, . . . , xn} or constants from F, non-input nodes are labeled by × (multiplication

gate) or + (addition gate). Every edge is labeled by a constant. The computation is defined

in a natural way: Every edge collects the polynomial computed at its tail node, scale by

3

x1 x2 x1 x2

× × × ×

+ +

−1

×

(x4
1 − x4

2)

Size: 14
Depth: 3

Degree: 4

Figure 1.1: Algebraic circuit (default edge label is 1)

the constant labeled on it and sends to its head node. Each addition gate computes the

sum of all polynomials coming to it by the incoming edges. Similarly, each multiplication

gate computes the product of all the polynomials coming to it by the incoming edges. The

polynomial computed at the output node is called the polynomial computed by the circuit.

The fan-in of a node is defined as its in-degree and the fan-out is defined as its out-degree.

The complexity parameters of a circuit are: 1) size- the number of edges which is equal

to the number of additions and multiplications we perform to compute the polynomial

computed by the circuit, 2) depth- the length of a longest path in the circuit, and 3) degree-

the maximum degree among all polynomials computed at each node. For example, see

Figure 1.1. Note that the degree of a polynomial can be smaller than the degree of a circuit

computing it. With a polynomial blow-up in size, any circuit can be converted to a circuit

where the + and × gates appear in alternate layers, and the edges appear only between

the consecutive layers. Hence, we can assume the given circuit has this structure. By Σ we

denote a layer of + gates, and by Π we denote a × layer. If each multiplication gate of a

Π-layer computes power of some polynomial, we denote that Π-layer by ∧.

Polynomial identity testing problem can be defined as follows: Given a circuit C, decide

whether C computes zero polynomial. The polynomial computed by a circuit may have, in

4

1 x1 x2 xn· · ·

+ + +· · ·

×

(1 + x1) . . . (1 + xn)

Circuit Size: O(n)

Number of monomials: 2n

Figure 1.2: Circuit computing exponentially many monomials

the worst-case, an exponential number of monomials compared to its size. For example,

see Figure 1.2. Therefore, by computing the explicit polynomial from the input circuit,

we cannot solve PIT problem in polynomial time. However, evaluation of a circuit at a

point can be done efficiently by assigning the values at the input nodes. This helps us

to get a polynomial-time randomized algorithm for PIT by evaluating the circuit at a

random point [DL78, Zip79, Sch80]. However, designing a deterministic polynomial-time

algorithm for PIT is a long-standing open question in algebraic complexity theory. For

solving PIT, we can assume the output gate (also called top gate) of the input circuit is a

+ gate. Otherwise, the given circuit C computes a polynomial of the form C1 · · ·Ck, where

each Ci is a circuit of smaller size with + as the top gate, and testing nonzeroness of C

reduces to testing nonzeroness of Ci’s.

PIT algorithms are of two kinds: 1) whitebox - allowed to use the internal structure

of the circuit, and 2) blackbox - not allowed to see the internal structure of the circuit,

only evaluation of the circuit is allowed at points from F (or a ‘small’ extension of F).

Blackbox PIT algorithms are stronger compared to whitebox PIT algorithms. Designing a

deterministic blackbox PIT algorithm for a set of n-variate polynomials P is equivalent to

finding an H ⊆ Fn, called hitting set, such that for every nonzero polynomial P ∈ P, the

set H contains a point at which P evaluates to a nonzero value. Sometimes a functional

representation of hitting set would be more convenient. We can see the hitting set H in

5

terms of a tuple of univariates f(y) = (f1(y), . . . , fn(y)), whose set of evaluations contain

H. Such an f(y) can be efficiently obtained from a given H via interpolation. Clearly, if H

is a hitting-set for P then P (f(y)) 6= 0, for any nonzero P ∈ P . This tuple of univariates is

called hitting-set generator (or HSG, in short) and its degree is maxi∈[n] deg(fi), which is

≤ |H|. In this thesis, we focus only on blackbox PIT algorithms.

The randomized PIT algorithm due to [DL78, Zip79, Sch80] is a blackbox algorithm

for PIT. If we try to derandomize that trivially, we get an exponential size hitting set

which is also computable in same time complexity (see Section 2.3.1). To completely

derandomize PIT, we want a polynomial-time computable hitting set. First, [HS80] showed

the existence of a poly(s)-size hitting set for polynomials computed by size s degree s

circuits. Moreover, they showed that any random subset of poly(s)-size is a hitting set

for the same class of polynomials. Their proof was non-constructive. Hence, their hitting

set is not explicit. Using [HS80], Mulmuley in [Mul17] gave a PSPACE construction of

a polynomial-size explicit hitting set. This is currently the best known deterministic

construction of polynomial-size hitting set for PIT.

PIT has applications both in proving circuit lower bounds and in designing various

algorithms. Kabanets and Impagliazzo [KI04] proved that a sub-exponential whitebox PIT

algorithm implies a separation between two algebraic classes (VP6=VNP) or two boolean

classes (NEXP*P/poly). [HS80, Agr05] showed that a polynomial-time blackbox PIT

algorithm implies an exponential algebraic circuit lower bound (see Section 2.3.3). The

polynomial-time primality testing by Agrawal, Kayal and Saxena can be seen as a special

instance of PIT problem [AKS04]. Kopparty, Saraf and Shpilka showed the equivalence

between polynomial identity testing and deterministic multivariate polynomial factorization

[KSS14]. The perfect matching problem reduces to PIT question for a special class of

polynomials [Tut47, Lov79, MVV87, FGT16, ST17]. PIT has applications to many other

problems [DdOS14, GT17, GTV18, Sha90].

The overall development of PIT can be divided into two categories: 1) conditional PIT

algorithms, where we design PIT algorithms under some assumptions like the existence

of an explicit hard polynomial family and 2) unconditional PIT algorithms, where we

6

design PIT algorithms without any assumptions. Currently, efficient unconditional PIT

algorithms are known only for very restricted circuit models. However, several conditional

PIT algorithms are known for general circuit classes.

First, [KI04] gave a quasi-polynomial time blackbox algorithm from an exponentially

hard mutilinear polynomial family (see Lemma 2.3.8). Later, [DSY09, CKS18] showed

that lower bound for bounded depth (e.g., assume ∆ depth) circuits implies efficient

blackbox PIT algorithms for bounded depth (i.e., ∆−O(1) depth) circuits. Surprisingly,

[AV08] showed that polynomial time blackbox PIT algorithm for depth-4 circuits gives

quasi-polynomial time blackbox PIT algorithm for general circuits. A similar result was

also shown in [GKKS16] by assuming polynomial time blackbox PIT algorithm for depth-3

circuits. However, the result in [GKKS16] works only over characteristic zero fields.

Now we describe the unconditional PIT algorithms known for various special classes of

circuits. Depth-2 (ΣΠ) circuits are the simplest circuit model. They compute polynomials

as a small sum of monomials. It is easy to give an efficient whitebox test for them just by

checking the coefficients of the monomials. A polynomial time blackbox PIT algorithm

is also known for depth-2 circuits [BT88, KS01]. Our next model of interest is depth-3

circuits. In the previous paragraph, we have seen that designing polynomial time blackbox

PIT algorithm for depth-3 (ΣΠΣ) circuits is almost as hard as designing PIT algorithm

for general circuits. Hence, understanding the depth-3 circuits is crucial to completely

derandomize PIT for general circuits. After a long line of work [DS07, KS07, KS09, KS11,

SS11, SS12, SS13], we have a poly(n) · dk-time blackbox PIT algorithm for n-variate

degree d depth-3 circuits with top fan-in bounded by k. PIT for various special cases of

depth-3 circuits are also extensively studied. One such model is depth-3 diagonal (Σ ∧ Σ)

circuits, which compute sum of power of linear polynomials. [Sax08] introduced this model

and gave a polynomial time whitebox algorithm. Later, blackbox PIT algorithm is also

obtained for this model [ASS13, FS13b, FSS14]. Currently, the best known blackbox test

for this model runs in time sO(log log s), where s is the circuit size [FSS14]. PIT for many

other special cases of depth-3 circuits are also studied [SSS13, ASS13, AGKS15, dOSV15].

Like depth-3 circuits, PIT for various special cases of depth-4 circuits are also known

7

[BMS11, SV11, ASSS12, For15, KS17, PSS18].

Besides circuits, PIT of read-once oblivious algebraic branching programs and its variants

(for definition, see Section 2.2) are also well-studied. First, [RS05] gave a polynomial time

whitebox PIT algorithm for this model. A long line of work has been done on designing

blackbox PIT algorithms for ROABPs and its variants [FS13b, FSS14, AGKS15, GKST15,

GKS17]. The best known blackbox PIT algorithm for ROABPs is due to [AGKS15]. It

runs in (dwn)O logn time, where n is the number of variables, d is the individual degree and

w is the width of ROABP. [GKS17] gave a blackbox algorithm of running time dnO(logw)

for ROABPs with known variable order. It is currently the best known algorithm for this

model. For constant width, it is a polynomial time algorithm. For commutative ROABPs,

the best known algorithm ((dnw)O(log logw)) is due to [GKS17].

For more details about PIT and its applications, see surveys [Sax09, Sax13, SY10] and

theses [Sap13b, For14, Gur15].

1.2 Contribution of this thesis

Now we describe our results in PIT. For notations and definitions, see Sections 2.1 and 2.2

of Chapter 2.

1.2.1 Bootstrapping in PIT

We study the phenomenon of bootstrapping : converting an HSG for n-variate size s degree

s circuits to an HSG for L(n)-variate size s degree s circuits with L(n) > n. In boolean

settings, this phenomenon is well understood. The analog of HSG in boolean settings is

pseudo-random generator (PRG). Informally, PRG is a “easily” computable function which

stretches a given random string (called seed) to a “longer” pseudorandom string which

still “looks” random for “small” size circuits (see [AB09, Chapter 20]). It is a well-studied

object in the boolean world [Yao82, BM84, NW94, IW97, STV01, Uma03]. By [NW94,

Section 2-3], it is known that a PRG for n = O(log s)-variate size s boolean circuits (with

seed length less than n) can be converted to a PRG for size s circuits with L(n) = 2Θ(n)

8

many variables. No further reduction in number of variables is possible since the size of

any circuit on fewer than log s variables has a circuit of size smaller than s.

The situation is less clear in algebraic settings. On one hand, for every n and s, we have

n-variate polynomials requiring circuits of size s (since polynomials can have arbitrarily

large degrees unlike boolean settings where every function is multilinear). On the other

hand, bootstrapping from O(log s) variables to s variables is not studied explicitly in the

literature.

We bridge this gap in knowledge by showing that an HSG for (log◦c s)-variate size

s degree s circuits can be efficiently converted to an HSG for s-variate size s degree s

circuits. Furthermore, at the cost of making the final HSG “slightly” superpolynomial

(sexp ◦ exp(O(log? s))), we show that bootstrapping can be done from even a constant number of

variables! Our results can also be viewed as a powerful amplification of derandomization:

a “slight” derandomization (sn
δ
-degree HSG for n-variate size s degree s circuits, for

a constant δ < 1/2) implies “nearly” complete derandomization (sexp ◦ exp(O(log? s))) of

PIT. Compare the required sn
δ
-degree HSG with the (s+ 1)n-degree HSG due to trivial

derandomization of [DL78, Zip79, Sch80] (see Section 2.3.1).

We prove an additional result for shallow circuits: poly(s)-time computable o(sn/2)-

degree HSG for n-variate size s depth four circuits (for some constant n ≥ 3) implies

quasi-polynomial time (sO(log s)) blackbox PIT for size s degree s circuits.

With all these bootstrapping results, we also get a circuit lower bound result in

conclusion, which we refer as Conjecture 1 in the formal statements. It says about a

separation between two algebraic classes (VP6= VNP) or two boolean classes (E*P/poly).

Later, in Section 3.1 of Chapter 3, we give a detailed explanation of Conjecture 1.

Now we give the formal statements of our bootstrapping results. Since hitting sets

are more frequently used notion in the context of blackbox PIT compared to hitting set

generator, we describe our bootstrapping theorems in terms of hitting set. However, in all

the statements, one can replace hitting set with hitting set generator. In that case, size of

hitting set will be replaced by the degree of hitting set generator.

Theorem (Perfect Bootstrapping, Theorem 3.1.1). Let c be a positive integer. For all

9

sufficiently large s, suppose that we have a poly(s)-time computable hitting set for dlog◦c se-

variate polynomials computed by size s degree s circuits. Then, we have a poly(s)-time

computable hitting set for the class of s-variate polynomials computed by size s degree s

circuits and Conjecture 1 holds.

Next, we describe the bootstrapping of PIT for constant variate circuits to a “slightly”

super-polynomial PIT for general circuits.

Theorem (Constant Bootstrapping, Theorem 4.1.1). Let e ≥ 2 and 1 > ε ≥ (3 +

6 log(128e2))/(128e2) be some constants. Let n be a constant greater than or equal to

dmax{192e2 log(128e2)1/ε, (64e2)1/ε}e. For all sufficiently large s, suppose that we have an

se-size poly(s)-time computable hitting set for n-variate degree s polynomials computed by

size s circuits. Then, we have an sexp ◦ exp(O(log? s))-time computable hitting set for the class

of s-variate polynomials computed by size s degree s circuits and Conjecture 1 holds.

For e = 2 and ε = 6912/6913, the hypothesis of the above theorem needs a s2-size

poly(s)-time computable hitting set for 6913-variate size s circuits computing degree s

polynomials. Our previous theorem implies the following one, where we describe a powerful

amplification of derandomization for PIT.

Theorem (Theorem 4.1.2). Let δ be a constant less than 1/2. For some sufficiently

large constant n and all s ≥ n, suppose that we have an sn
δ
-size poly(s)-time computable

hitting set for all n-variate polynomials computed by size s degree s circuits. Then, we

have an sexp ◦ exp(O(log? s))-time computable hitting set for the class of s-variate polynomials

computed by size s degree s circuits and Conjecture 1 holds.

Remark. In terms of the number of variables n, the hitting set in the hypothesis could

be computable in sµ(n), where µ(·) is an arbitrary function.

Next, we describe the bootstrapping phenomenon for shallow depth circuits.

Theorem (Shallow Bootstrapping, Theorem 5.1.1). Let n ∈ N be a constant greater than

or equal to 3. For all sufficiently large s, suppose that we have a o(sn/2)-size poly(s)-time

computable hitting set for n-variate polynomials computed by size s depth-4 circuits. Then,

10

we have an sO(log s)-time computable hitting set for the class of s-variate polynomials

computed by size s degree s circuits and Conjecture 1 holds.

We see our results as a positive development; since they reduce PIT to cases that

are special in an unprecedented way. Such special-case PIT algorithms are waiting to be

discovered.

1.2.2 Blackbox PIT for certain log-variate models

Our work on bootstrapping in PIT inspires us to study circuits with “few” variables. For

example, even a poly(s)-time blackbox PIT for (log log s)-variate size s depth-4 circuits

would lead to a quasi-polynomial time blackbox PIT for general circuits. It is a weaker

version of our Shallow Bootstrapping result. The hypothesis in our example ensures a

poly(s)-time computable se-size, for some constant e, hitting set for (log log s)-variate size-s

depth-4 circuits. Let n be a constant greater than 224e . Then for all s ≥ n, we have a

poly(s)-time computable se-size hitting set for 4e-variate size s depth-4 circuits. To satisfy

the hypothesis of Shallow Bootstrapping, we need a poly(s)-time computable o(s2e)-size

hitting set for 4e-variate size s depth-4 circuits, and it is satisfied by the hypothesis of our

example.

Consider the circuit size s and the number of variables n to be independent parameters.

Then, prior to our work on Shallow Bootstrapping, we wanted a poly(sn)-time blackbox

PIT algorithm for depth-4 circuits to get a quasi-polynomial time blackbox PIT algorithm

for general circuits [AV08]. However, the previous example says that now a poly(s)·22n-time

PIT algorithm is sufficient for the same conclusion. This reduces the dependence of PIT

algorithms on the number of variables in a significant way and motivates us to study low

variate circuits.

We study the blackbox PIT question for n = O(log s)-variate size s circuits computing

polynomials of poly(s)-dimensional partial derivative space. The study of the partial

derivative space in algebraic circuit complexity was initiated by Nisan and Wigderson

[NW97] to prove lower bounds for some circuit classes. Later, it was studied in many

other works both on circuit lower bounds and PIT algorithms [GR98, SW01, Raz09, RY09,

11

Kay10, FS13b]. However, no polynomial blackbox PIT was known for the previously

mentioned circuit model. We first give a poly(s2n)-time blackbox PIT algorithm for that

circuit class.

Theorem (Theorem 6.1.1). Let F be a field of characteristic 0 or greater than d. Let P be

a set of n-variate degree d polynomials, over F, computed by circuits of size s such that for

all P ∈ P, the dimension of the partial derivative space of P is at most k. Then, blackbox

PIT for P can be solved in poly(sdk) ·
(

3n
log k

)O(log k)
time.

Note that for k = poly(sd) and n = O(log sd), the time complexity of the algorithm

becomes poly(sd), and we get a polynomial time blackbox PIT algorithm for log-variate

circuits (i.e., number of variables is logarithmic with respect to the circuit size) computing

polynomials with poly(sd)-dimensional partial derivative space. This was not known before

our work. Prior to our work, [FSS14] gave a poly(s) · (ndk)O(log log k)-time blackbox PIT

algorithm for P. Unlike our algorithm, in the log-variate case the running time of their

algorithm remains super-polynomial.

In particular, depth-3 diagonal circuit is a prominent model which computes polynomial

with polynomially large (with respect to the circuit size) dimensional partial derivative

space. Hence, the above theorem gives a polynomial time PIT algorithm for log-variate

depth-3 diagonal circuits. Prior to our work, the sO(log log s)-time algorithm due to [FSS14]

was the best known blackbox PIT algorithm for this model. We give a polynomial time

blackbox PIT algorithm for a more general class of depth-3 diagonal circuits, i.e. log-rank

depth-3 diagonal circuits. For the definition of log-rank depth-3 diagonal circuit, see

Section 2.2 of Chapter 2. From the definition of log-rank depth-3 diagonal circuits, it

easy to see that they subsume log-variate depth-3 diagonal circuits. Later, we show a

polynomial-time computable reduction from nonzero log-rank depth-3 diagonal circuits

to nonzero log-variate depth-3 diagonal circuits (Lemma 6.2.4). This reduction combined

with Theorem 6.1.1 gives a polynomial time blackbox PIT algorithm for log-rank depth-3

diagonal circuits.

Theorem (Theorem 6.1.2). Let F be a field of characteristic 0 or > d. Let D be the set

12

of n-variate degree d polynomials computed by size s depth-3 diagonal circuits with rank

O(log sd). Then, blackbox PIT for D can be solved in poly(sd)-time.

1.2.3 Cone closed bases: A stronger notion of rank concentration

As mentioned earlier, for solving PIT, we can assume that the top gate (output gate) of the

input circuit is an addition gate. Hence, any polynomial f computed by such a circuit can be

written as f(x) =
∑k

i=1 cifi, where ci’s are constants from the underlying field F and fi’s are

polynomials computed by simpler circuits (i.e. lower depth and smaller size circuits). Let

P (x) be the polynomial over Fk defined as (f1, . . . , fk)
ᵀ and c = (c1, . . . , ck)

ᵀ. Then f can be

written as cᵀ ·P (x). A similar representation is also available for polynomials computed by

ROABPs and its variants. Many PIT algorithms are designed by studying the structure of

P (x) for various classes of polynomials [RS05, ASS13, FSS14, AGKS15, GKST15, GKS17].

The main object studied in all these works is the coefficient space of P which is denoted

by sp(P).

Suppose that the coefficient space sp(P) is generated by a “small” set of monomials

S. We describe this phenomenon as the rank of the sp(P) is concentrated on S. Let fS

and PS be the projections of f and P , respectively, on the set of monomials S. Then

f 6= 0 if and only if fS = cᵀ · PS 6= 0. This says that if f is a nonzero polynomial then

it has a monomial from S with nonzero coefficient. Therefore, to test nonzeroness of f ,

it is sufficient to design a hitting set for the set of polynomials which have a monomial

from S with nonzero coefficient. In many places, this approach helps us to design efficient

blackbox PIT algorithms (may not be polynomial-time, but far better than the trivial

one) for various classes of polynomials. One frequently used S in PIT literature is the set

of “low-support” monomials, by which we mean monomials with support size poly(log k).

There is also a standard way to design efficient hitting set for polynomials having a

low-support monomial with nonzero coefficient (Lemma 2.3.14). However, in general, P

may not have low-support concentration property. We may need to apply some linear

transformation ϕ (e.g., shifting variables), such that the new polynomial ϕ(P) achieves

that property. For example, the rank of the coefficient space of (
∏n
i=1 xi, 0, . . . , 0)ᵀ is not

13

concentrated on the low-support monomials. However, after shifting each variable by 1, in

the new polynomial (
∏n
i=1(xi + 1), 0, . . . , 0)ᵀ constant term spans the whole coefficient space.

[ASS13] introduced the concept of rank concentration. Many results on PIT are obtained

by achieving low-support rank concentration [ASS13, FSS14, AGKS15, GKST15, GKS17].

One way of strengthening low-support rank concentration is through low-cone rank

concentration. The cone of a monomial m is the set of monomials dividing m and the

cone-size is the cardinality of that set. In low-cone rank concentration, the rank of

sp(P) is concentrated in the coefficients of “low-cone” monomials, by which we mean

monomials with cone-size poly(k). Low-cone concentration property on P implies the

existence of a low-cone monomial in f with nonzero coefficient. It is not hard to show

that low-cone concentration also implies low-support concentration. Hence, similar to

low-support concentration, Lemma 2.3.14 also gives an efficient PIT for f when P has

low-cone concentration property. However, this algorithm remains super-polynomial in

log-variate regime, and our work on designing polynomial time blackbox PIT for log-variate

depth-3 diagonal circuits can be seen as an improvement over it. There, we develop a

method which gives a different blackbox PIT for polynomials having a low-cone monomial

with nonzero coefficient, and the running time becomes polynomial in log-variate case.

We further strengthen low-support rank concentration by introducing cone-closed basis.

We say P has a cone-closed basis, if there is a set of monomials B whose coefficients form

a basis of sp(P) and B is closed under sub-monomials.. Cone-closed basis also strengthens

low-cone concentration (Lemma 7.2.1). The definition of cone-closed basis is motivated by

the polynomials of the following form:
∑k

i=1 ci(1+ai1x1 + · · ·+ainxn)d. These polynomials

are computed by a special type of depth-3 diagonal circuits, and they can be written as

follows: cᵀ ·D(x), where cᵀ = (c1, . . . , ck) and D(x) = (1 + `1x1 + · · · + `nxn)d ∈ Fk[x].

We show that polynomials (over Fk) of form D(x) have cone-closed property naturally

(Lemma 7.2.7). Currently, we do not know any interesting application of cone-closed basis

in designing PIT algorithms. However, in the following result, we relate cone-closed basis

with Basis Isolating Weight Assignment (Definition 7.1.2), another well studied concept

in PIT. It was introduced by [AGKS15] and also used in many other subsequent works

14

[GKST15, GKS17]. Here, we show that a polynomial P over Fk, when shifted by a basis

isolating weight assignment, becomes cone-closed. It is currently the best known rank

concentration result for polynomials over vector spaces. Our result strengthens some

previously proven properties like a polynomial over Fk when shifted by formal variables

becomes low-support concentrated [FSS13, Corollary 3.22] (extended version of [FSS14])

or, when shifted by a basis isolating weight assignment becomes low-support concentrated

[GKST15, Lemma 5.2].

Theorem (Theorem 7.1.3). Let P (x) be an n-variate degree d polynomial over Fk, and

char(F) = 0 or > d. Let w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment for

P (x). Then, P (x + tw) := P (x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).

1.3 Follow up works

In follow up works, [KST18] and [GKSS19] explored the phenomenon of bootstrapping in

PIT and improved our Theorem 4.1.2. They resolved some of the main open questions in our

work [AGS18]. First, [KST18] improved Theorem 4.1.2 by weakening the hypothesis from

sn
δ

to sn−ε, where ε can be any constant greater than 0. Their proof also works for other

weaker models of computation like formula, algebraic branching programs. Later, [GKSS19]

strengthened the theorem by giving a construction of polynomial-time computable hitting

set in the conclusion. For more detailed discussion, see Section 4.4 of Chapter 4.

1.4 Organization of the thesis

In Chapter 2, we discuss all the basic notations and the known results used in this thesis.

In the next three consecutive chapters, we discuss the bootstrapping phenomenon in PIT.

In Chapters 3, 4 and 5, we prove Perfect Bootstrapping, Constant Bootstrapping and

Shallow Bootstrapping, respectively. In Chapter 6, we give a polynomial-time blackbox PIT

algorithm for log-variate circuits which compute polynomials of low-dimensional partial

derivative space. In Chapter 7, we introduce the concept of cone-closed basis and show

15

that if a polynomial over a vector space is shifted by its basis isolating weight assignment,

the new polynomial becomes cone-closed.

Chapter 2

Preliminaries

In this chapter, we mention some known results in PIT that will be useful in our work.

We also describe some necessary notations and definitions that we use in this thesis.

2.1 Notations and Definitions

We use Q to denote the field of rational numbers, C to denote the field of complex numbers,

F to denote a general field, Z to denote the set of integers, and N to denote the set of

natural numbers, i.e., {1, 2, . . .}. For a prime number q and a positive integer t, by Fqt we

denote the finite field of size qt. For a prime q, the set of integers {0, 1, . . . , q − 1} forms a

field under addition and multiplication modulo q, and we denote it by Fq. For an k-tuple

(a1, . . . , ak),

(a1, . . . , ak)
ᵀ =


a1

...

ak

 .

For a field F, F[x] denotes the ring of polynomials in a variable x and the coefficients

are from F. By F(x) we denote the field of all rational functions in a variable x. The

characteristic of a field F, denoted by char(F), is the smallest positive integer k such that

for all a ∈ F, a+ · · ·+ a︸ ︷︷ ︸
k-times

= 0. If no such k exists, then we say F is a field of characteristic

zero. The characteristic of field can be zero or a prime number. For basic definitions

17

18

regarding field and field extension see [Her06, Section 3.2 and Chapter 5].

For a given positive integer n, by [n] we denote the set of natural numbers {1, . . . , n}.

For a set S, |S| denotes the cardinality of S. For a set S, and a k ∈ N,
(
S
k

)
denotes the set

of all k-size subsets of S. Let f be a mapping from A to B. Then by Img(f) we denote

the image of f , which is {f(a) | a ∈ A}. For a b ∈ B, f−1(b) is the preimage of b, i.e.,

{a ∈ A | f(a) = b}.

For a positive integer n, n! denotes the expression
∏n
i=1 i. For n = 0, n! is defined as 1.

For two nonnegative integers n ≥ k,
(
n
k

)
= n!

k!(n−k)! . When n < k,
(
n
k

)
is defined as 0. Let

a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Nn. Then
(
a
b

)
denotes

∏n
i=1

(
ai
bi

)
. For a nonnegative

integer n and a set of nonnegative integers k1, . . . , k` with k1 + · · ·+ k` = n,(
n

k1, . . . , k`

)
=

n!

k1! · · · k`!
.

By x, we denote the set of variables {x1, . . . , xn}. For any e = (e1, . . . , en) ∈ Nn, xe

denotes the monomial
∏n
i=1 x

ei
i . Sometimes we may use only e to denote the monomial

xe. The degree of a monomial xe is =
∑n

i=1 ei and denoted by deg(xe). For n, d ∈ N,

Mn,d = {e ∈ Nn |
∑n

i=1 ei ≤ d}, which denotes the set of exponent vectors of n-variate

monomials with degree≤ d.

A weight assignment on the set of variables is a mapping from x to N. A weight

assignment w(xi) := wi for all i ∈ [n], is denoted by (w1, . . . , wn). It extends to monomials

as follows: for a monomial m = xe, w(m) :=
∑n

i=1 eiwi. Similarly, for a set of monomials

B, the weight of B is w(B) :=
∑

m∈B w(m).

For a field F, F[x] denotes the ring of polynomials over the variables {x1, . . . , xn} and

the coefficients from F. For a monomial m and a polynomial f , by coefm(f) we denote

the coefficient of m in f . For a polynomial f , the support of f is the set of monomials

which have nonzero coefficients in f , and it is denoted by support(f). The cardinality of

support(f) is called the sparsity of f . By degree d polynomial, we mean the degree of

each monomial in the support is≤ d. We say f is a polynomial with individual degree d, if

for every monomial
∏n
i=1 x

ei
i in the support of f , ei ≤ d. A degree 1 polynomial is called

linear polynomial. A linear polynomial is called linear form, if its constant term is zero. A

19

polynomial with individual degree 1 is called multilinear polynomial.

For basic definitions in linear algebra like vector space, linear independence, basis,

dimension, see [Her06, Sections 4.1 and 4.2]. For a vector space V , dim V denotes its

dimension. By Fk we denote the vector space {(a1, . . . , ak)
ᵀ | ai ∈ F}, where the addition

between two elements is defined by coordinate wise addition, and the scalar multiplication

of an element is defined by multiplying each coordinate by the scalar. Suppose that

a = (a1, . . . , ak)ᵀ and b = (b1, . . . , bk)ᵀ be two elements from Fk. Then by aᵀ ·b we denote

the expression
∑k

i=1 aibi. For any two positive integers, m and n, Fm×n denotes the set of

all m× n matrices over F. It also forms a vector space over F under matrix addition and

scalar multiplication.

In this thesis, we also study multivariate polynomials (over variables x) whose coefficients

are coming from Fk. We denote this set by Fk[x]. For a polynomial P ∈ Fk[x], the support

of P is the set of monomials whose coefficients in P are nonzero vector. For a polynomial

P (x) =
∑

e cex
e over Fk and a ∈ Fk, aᵀ ·P (x) denotes the polynomial

∑
e(aᵀ · ce)xe (over

F). Let P (x) be a polynomial from Fk. For all i ∈ [k], let Pi be the polynomial (over

F) defined as follows: for every monomial m, coefm(Pi) is the projection of coefm(P) at

ith coordinate. Then P can also be seen as (P1, . . . , Pk)
ᵀ, i.e., a vector of polynomials.

Sometimes we can use this representation for P . The coefficient space of P is the subspace

of Fk generated by the coefficients of P , and it is denoted by sp(P). For a set of monomials

B, we say B is a basis of P , if the coefficients of all the monomials in B form a basis for

sp(P).

For a finite set B and a vector u ∈ F|B|, the coordinates of u can be indexed by the

elements of B and for an element e ∈ B, by ue we denote the value at coordinate indexed

by e. Suppose that A is a matrix whose rows are indexed by the elements of U and the

columns are indexed by the elements of V . Then for any two subsets U ′ ⊆ U and V ′ ⊆ V ,

AU ′,V ′ denotes the submatrix formed by taking the rows indexed by S′ and the columns

indexed by V ′. For any elements e ∈ V ′, AU ′,e denote the column of AU ′,V ′ indexed by e.

For a monomial xe, ∂xe(f) denotes the partial derivative of f with respect to the

monomial xe. For a polynomial f over F, by 〈∂<∞(f)〉 we denote the vector space (over

20

F) formed by taking all possible linear combinations of the partial derivatives of f , and

we call it partial derivative space of f . For a nonnegative integer k and a polynomial f ,

〈∂=k(f)〉 denotes the vector space formed by taking all possible linear combinations of the

partial derivatives of f corresponding to exactly k-degree monomials.

By (t, d)-hitting set , we mean a hitting set of size d and computable in time t. By

P[n, d, s], we denote the set of n-variate degree d polynomials computed by size s circuits.

We say a polynomial family {qn}n≥1 is t(n)-time computable, if there exists a turing machine

M such that given n as unary (i.e., n is given as 1n), M computes qn in t(n)-time as a

form of depth-2 circuits, i.e., sum of monomials.

Some functions and asymptotic notations: For a function t : N→ N, by Õ(t(n)) we

denote the class of functions which are in O(t(n) logk n) for some k ∈ N. By exp ◦ exp(t(n))

we denote the function 22t(n) . We say t(n) is a quasi-polynomial function if t(n) = npoly(log n).

For any c ∈ N, log◦c n denotes c-times composition of logarithmic function (in base 2) with

itself. For example, log◦2 n = log logn. By log? s we denote the smallest integer i such that

log◦i n ≤ 1. For any c ∈ N, exp◦c(n) is the c-times composition of the exponential function

(in base 2) with itself. For example, exp◦2(n) = 22n .

Support and cone of a monomial: For a monomial xe, the support of xe is the set

{xi | ei > 0}, (i.e., the set variables whose exponents are positive in xe) and the support

size of xe is the cardinality of that set. For an n-tuple f = (f1, . . . , fn), we say f ≤ e if

fi ≤ ei for all i ∈ [n]. Similarly, we say f ≥ e if fi ≥ ei for all i ∈ [n]. A monomial xf is

called a sub-monomial (respectively, super-monomial) of xe, if f ≤ e (respectively, f ≥ e).

The cone of a monomial xe is the set of sub-monomials of xe, which is also same as the

set of monomials which divide xe, and the cone size of xe is the cardinality of that set.

The cone-size of xe is
∏n
i=1(ei + 1). We say xf is a proper sub-monomial (respectively,

proper super-monomial) of xe if f ≤ e and f 6= e (respectively, f ≥ e and f 6= e). We say a

monomial is a `-support monomial if its support size is ≤ `. Similarly, a monomial is a

k-cone monomial if its cone size is ≤ k.

21

Rank concentration: Suppose that P is a polynomial over the vector space Fk. We say

P has `-support rank concentration, if the coefficients of `-support monomials in P span

the coefficient space. Similarly, we say P has k-cone rank concentration, if the coefficients

of k-cone monomials span the coefficient space of P . Sometimes, informally, by low-support

rank concentration we mean poly(log k)-support rank concentration, and by low-cone rank

concentration we mean poly(k)-cone rank concentration.

Monomial ordering: A monomial ordering ≺ is a total order on the set of all monomials

over x such that

1. for all a ∈ Nn \ {0 = (0, . . . , 0)}, 1 ≺ xa.

2. for all a,b, c ∈ Nn, if xa ≺ xb then xa+c ≺ xb+c.

For a nonzero polynomial f , the leading monomial (with respect to a monomial ordering

≺) is the largest monomial in the support of f . To know more about monomial ordering,

see [CLO15, Chapter 2].

VP and VNP: A polynomial family {fn}n≥1 is in VP if there exists a polynomially

bounded function t : N→ N such that for every n, the number of variables in fn is at most

t(n) and it is computed by a t(n)-size t(n)-degree circuit. We say a polynomial family

{fn}n≥1 is in VNP if there exist two polynomially bounded function t, u : N→ N and a

polynomial family {gn}n≥1 in VP such that for every n,

fn(x1, . . . xu(n)) =
∑

w∈{0,1}t(n)−u(n)
gn(x1, . . . , xu(n), wu(n)+1, . . . , wt(n)).

An interesting polynomial family in VP is the family of determinants,

Detn(X) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

xi,σ(i),

where X = (xi,j) is an n × n matrix, Sn is the set of all permutations of [n] and sgn(σ)

is the signature of the permutation σ. The canonical example for a family in VNP is the

22

family of permanents,

Permn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).

The classes VP and VNP can be seen as algebraic analogue of P and NP, respectively.

These two algebraic classes were introduced by Valiant [Val79] and he conjectured that

VP6=VNP.

E and #P/poly: A boolean function f : {0, 1}∗ → {0, 1} is in E if there exists a Turing

machine M such that for a given binary string x of length n, M computes f(x) in time

2O(n). A family of functions {fn}n≥1, where fn : {0, 1}n → N, is in #P/poly, if there exists

a polynomially bounded function t : N→ N and a family of boolean functions {gn}n≥1 in

P/poly such that for every n and for all a = (a1, . . . , an) ∈ {0, 1}n,

fn(a) =
∣∣∣{b ∈ {0, 1}t(n)−n : gt(n)(a1, . . . , an, b1, . . . , bt(n)−n) = 1

}∣∣∣ .
The domain of both the classes of functions is {0, 1}∗, however the range for the functions

in E is a subset of the range for the functions in #P/poly. Hence, it would be interesting

to know whether E⊆#P/poly.

E-computable polynomial family: Let {fn}n≥1 be a multilinear polynomial family

with integral coefficients and the number of variables in fn is O(n). We say {fn}n≥1 is an

E-computable polynomial family if there exists a Turing machine M such that for a given

n as unary, M computes f (as a sum of monomials, i.e., form of depth-2 circuit) in time

2O(n). If the number variables of fn is m, then fn induces a function gn from {0, 1}m to Z,

called coefficient function, defined as follows: for all b ∈ {0, 1}n, gn(b) is the coefficient of

the monomial b in fn.

2.2 Models of Computation

Now, we describe various models of computation, which are referred in this thesis.

23

Depth-3 circuits: Depth-3 circuits compute polynomials of form

C(x) =
k∑
i=1

a∏
j=1

`ij ,

where `ij ’s are linear polynomials over the underlying field F. The standard notation to

denote depth-3 circuits is ΣΠΣ. Sometimes we use ΣkΠaΣ to denote the upper bound in

fan-in of gates in the respective layers. In this thesis, we always assume the fan-out of

each gate in a depth-3 circuit is at most 1. This implies that the degree of the polynomial

computed by a depth-3 circuit is bounded by the size of the circuit.

Depth-3 diagonal circuits: Depth-3 diagonal circuits compute polynomials of form

C(x) =
k∑
i=1

`dii ,

where `i’s are the linear polynomials over the underlying field F. We denote the class of

depth-3 diagonal circuits by Σ∧Σ. For all i ∈ [k], let fi be the homogeneous degree 1 part

of `i. Then the rank of a depth-3 diagonal circuit, denoted by rk(C), is the dimension

of the subspace (over F) generated by fi’s. Note that the rank of C can be equal or one

less than the dimension of the subspace generated by `i’s. By log-variate depth-3 diagonal

circuit we mean the class of depth-3 diagonal circuits where the number variables is at

most logarithmic with respect to the circuit size. Similarly, by log-rank depth-3 diagonal

circuit we mean the class of depth-3 diagonal circuits where the rank of each circuit is at

most logarithmic with respect to the circuit size.

Depth-4 Circuits: Depth-4 circuits compute polynomials of form

C(x) =

k∑
i=1

a∏
j=1

Qij ,

where Qij ’s are degree b polynomials over the underlying field F. The standard notation to

denote depth-4 circuits is ΣΠΣΠ. Sometimes we use ΣkΠaΣΠb to denote the upper bound

in fan-in of gates in the respective layers. Like depth-3 circuits, in this thesis, we also

assume the fan-out of each gate in a depth-4 circuit is at most 1. This implies the degree

24

of the polynomial computed by a depth-4 circuit is bounded by the size of the circuit.

Read-once oblivious branching program: Let f(x1, . . . , xn) be an n-variate polyno-

mial over F. Let π be a permutation on [n]. We say f is computed by a width w individual

degree d read-once oblivious branching program (ROABP) with variable order π, if f can

be written as

f = aᵀM1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n))b,

where a, b ∈ Fw×1 and for all i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)] can be viewed as a polynomial

over the matrix algebra with degree less than d. There is also an equivalent definition

for ROABP using graphs (see [For14, Section 4.4]). We say f is computed by a width w

individual degree d commutative read-once oblivious branching program, if each Mi is a

polynomial over a commutative sub-algebra of the matrix algebra. For example, consider

the coefficients of each Mi are diagonal matrices. All PIT algorithms for ROABPs are

designed by analyzing the coefficient space of M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)).

2.3 Some known results

In this section, we discuss some known results that we use later in our work.

2.3.1 Randomized PIT algorithm

It is well known that a nonzero univariate degree d polynomial can have at most d roots.

Hence, to test nonzeroness of degree d univariate polynomials, we take a set of d+1 distinct

points and evaluate at those points. If a univariate polynomial evaluates zero on all d+ 1

different points, we output the given polynomial is the zero polynomial. An extension of

this fact to the multivariate case is also known due to [DL78, Zip79, Sch80].

Lemma 2.3.1 ([DL78, Zip79, Sch80]). Let f be an n-variate degree d nonzero polynomial

over a field F. Let S be a subset of F. Then

Pr
a∈rSn

[f(a) 6= 0] ≥ 1− d

|S|
.

25

In the above lemma, if we pick the subset S of size greater than 3d, then the probability

of f(a) 6= 0 becomes greater than 2
3 . This directly gives us a poly(sdn)-time randomized

blackbox PIT algorithm for n-variate degree d polynomials computed by size s circuits

since given a circuit we can evaluate it at a point in O(s) time. However, when F is a finite

field, we may not be able to pick such a large S. For example, consider the polynomial

x3 − x over F3. It evaluates to zero at each point in F3. In such scenarios, we are allowed

to pick points from some polynomially large extension of F. A trivial way of derandomizing

the above lemma gives us the following hitting set.

Corollary 2.3.2. For n-variate degree d polynomials over F, there exists a hitting set of

size (d+ 1)n and computable in poly(dn) time.

Proof. Let f be an n-variate degree d nonzero polynomial. Let S be any subset of F of size

d+ 1. If the size of F is less than d+ 1, we go to an extension K of F such that |K| ≥ d+ 1

and take a subset S ⊆ K of size d+ 1. Then according to the Lemma 2.3.1, at a random

point a from Sn, the probability that f(a) 6= 0 is greater than zero. Therefore, the set Sn

must contain a point where f is nonzero. Since in poly(d) time we can construct K, the

description of S says that the set Sn is computable in poly(dn) time.

Remark. Suppose that PFqt is a class of n-variate degree d polynomials over a finite

field Fqt , and they are computed by size s circuits. Due to the size constraint of Fqt , some

construction of hitting set for PFqt may need to take points from Kn where K is a “small”

extension of Fqt , i.e., |K| = poly(sdn). Let H ⊆ Kn be such a hitting set for PFqt . Then,

in that scenario, we assume that H is also a hitting set for PK where the coefficients of

the polynomials will be from K. The motivation for this assumption is that all our known

construction of hitting set for various polynomial classes satisfies this property. Hence, it

is believable that the property we use to derandomize PIT for PFqt would not change if we

consider the coefficients from an extension of Fqt .

26

2.3.2 Polynomial factorization

One frequently used result in this thesis is Kaltofen’s factoring algorithm [Kal89]. It says

that for any multivariate polynomial computed by a “small” size circuit, its factors also

have “small” size circuits. Formally, they showed the following result.

Lemma 2.3.3. Let f be an n-variate degree d polynomial over F computed by a size s

circuit C. Let f =
∏r
i=1 h

ei
i , where hi’s are irreducible factors of f . Then each hi has a

circuit C ′ of size

O(sd2) + Õ(d3).

In case, if p = char(F) divides any ei, that is ei = pêi · ei with ei not divisible by p, then C ′

computes hp
êi

i .

In most of the cases, the existence of a poly(sd) size circuits hi’s is sufficient for us.

Only in Chapter 4, we work with such accurate size bound mentioned in the lemma. For

proof, see [Kal89, Section 6] or [Bür13, Theorem 2.21].

2.3.3 PIT vs Lower bound

Next, we describe a technique of constructing hard polynomial from a hitting set. It was

shown by [HS80, Agr05]. In general, their approach shows how to construct a polynomial

g from the hitting set for a set of polynomial P such that g /∈ P. Now, consider P is the

set of n-variate degree d polynomials computed by size s circuits. Suppose that one can

also ensure the polynomial g constructed from the hitting set of P has the degree and

the number of variables is less than d and n, respectively. Then we can say that g is not

computable by size s circuits. In this way we use the following lemma to design hard

polynomials from hitting sets.

Lemma 2.3.4 (Hitting set to hardness). Let H be a (t, d)-hitting set for a set of polynomials

P over n-variables. Let δ, n1 ∈ N such that n1 ≤ n and δn1 ≥ d+ 1. Then there exists an

n1-variate nonzero polynomial g(x) /∈ P with individual degree less than δ. Furthermore,

g(x) is computable by a depth-2 circuit of size less than 2nδd, and the circuit can be

constructed in poly(t) time.

27

Proof. A natural candidate for g(x) is any polynomial which vanishes on the set of points

H, since for every nonzero h ∈ P, there exists a point α ∈ H such that h(α) is nonzero.

Let M be the set of first d+ 1 monomials (in lexicographic order) on n1 variables and the

individual degree is less than δ. The set M exists since δn1 ≥ d+ 1. Consider g(x) as an

n1-variate polynomial with individual degree less than δ, and the support of g is a subset

of M . Then, g(x) can be written as:

g(x) =
∑
e∈M

cex
e,

where ce’s are unknown to us. For each α ∈ H, we get a linear equation over ce’s by

evaluating g at α, and we want them to be zero. Thus, we have a system of homogeneous

linear equations, where the number of linear equations is |H| ≤ d, and the number of

variables is d+ 1. Therefore, our system of linear equations has a nontrivial solution, which

gives us a nonzero g.

Since the sparsity of g is d+ 1 and the degree of each monomial is upper bounded by

δn1, g has a depth-2 circuit of size less than 2nδd. The time complexity of computing g

has three components: 1) computing H, 2) computing M , and 3) constructing the system

of linear equations and solving it. Since each of these steps takes poly(t) time, the total

time complexity is poly(t).

Lemma 2.3.5 (Valiant Class Separation). Let {fn}n≥1 be a multilinear polynomial family

such that fn is computable in time t(n) = 2O(n), but no 2o(n)-size circuit can compute it.

Then, there exists a multilinear E-computable polynomial family {gn}n≥1 such that gn has

circuit complexity 2Ω(n). Furthermore, either E*#P/poly or VNP has a polynomial family

of algebraic circuit complexity 2Ω(n).

Proof. First we show how to get an E-computable polynomial family {gn}n≥1 from {fn}n≥1.

Only reason that {fn}n≥1 may not be an E-computable family is that its coefficients may

not be integral. For that, we apply some transformation on fn such that its coefficients

become integral. When fn is a polynomial over Q (or, isomorphic to Q), we can write it in

28

the following form ∑
e∈support(fn)

pe
qe

xe,

where the size of support(fn) = 2O(n), and the bitsize of both pe and qe is also 2O(n). Let

N =
∏

e∈support(fn) qe. Then consider gn := Nfn. It is easy to verify that gn has integral

coefficients, and it is computable in 2O(n)-time, but no 2o(n)-size circuit can compute it.

Hence, {gn}n ≥ 1 is a multilinear E-computable polynomial family {gn}n≥1 such that gn

has circuit complexity 2Ω(n).

Now we describe the case when the coefficients of fn are coming from a finite field of

characteristic q. In that case, our coefficients of fn are elements from an extension K of

Fq, and the degree of the extension ` can be at most t(n). Otherwise representation of an

element in K will take more than t(n)-time, therefore, fn cannot be computable in time

t(n). Then fn can be written as follows

fn(x) =
∑

e∈support(fn)

cex
e,

where ce ∈ K. Since K is a simple extension of Fq, there exists an α ∈ K such that each ce

can be written as

ce =
∑̀
i=0

ce,iα
i, where ce,i ∈ Fq.

Now each integer 0 ≤ i ≤ `, i can be expressed as
∑dlog(`+1)e

j=1 bj2
j−1 where bj ∈ {0, 1}.

Therefore αi can be seen as evaluation of
∏dlog(`+1)e
j=1 y

bj
j at yj = α2j−1

for all j ∈ [dlog(`+1)e].

For 0 ≤ i ≤ `, let bi denote the bit representation of i. Then fn is the evaluation of the

polynomial

gn(x,y) :=
∑

e∈support(fn)

∑̀
i=0

ce,ix
e · ybi ,

at yj = α2j−1
for all j ∈ [dlog(`+ 1)e]. This kind of variable stretching transformation was

used in [KP09, Lemma 3.9]. Now gn is a O(n)-variate multilinear E-computable polynomial

with circuit complexity 2Ω(n). This completes the proof of our first part.

Since gn is E-computable, the coefficients of gn have bitsize 2O(n). Thus, one can index

a bit of a coefficient using O(n) bits. Now, using the variable increasing transformation

29

from the proof of [KP09, Lemma 3.9], we get a multilinear polynomial family {hn}n≥1 such

that it is E-computable, algebraic circuit complexity 2Ω(n), and the coefficients are from

{0, 1}.

Assume E⊆#P/poly. Since each coefficient of hn is 0 or 1 and hn is E-computable, the

coefficient function of hn is in #P/poly. [Val79] showed that if the coefficient function of

a multilinear polynomial family over N is computable in #P/poly, then that polynomial

family belongs to VNP. For proof, one can see [Bür13, Proposition 2.20]. Thus, {hn}n≥1 is

in VNP and has algebraic circuit complexity 2Ω(n).

Now we describe how to design a hitting set from hard polynomial family. Towards

that, a crucial ingredient is Nisan-Wigderson design [NW94]. It is a combinatorial design.

Formally, we define it as follows.

Definition 2.3.6 (Nisan-Wigderson design). Let ` > n > d. A family of subsets D =

{I1, . . . , Im} of [`] is called an (`, n, d)-design, if |Ii| = n and for all i 6= j ∈ [m], |Ii∩Ij | ≤ d.

First, [NW94] gave construction of such design. Here, we mention a construction given

in [AB09, Chapter 20].

Lemma 2.3.7. There exists an algorithm which takes (`, n, d) and a base set S of size

` > 10n2/d as input, and outputs an (`, n, d)-design D having ≥ 2d/10 subsets, in time

2O(`).

Later, in Lemma 4.2.1 of Chapter 4, we describe a slightly more optimized version of

this lemma. However, the proof will be same as the proof given for the above construction

in [AB09, Chapter 20], except technical differences. In the next lemma, we describe how

to design a quasi-polynomial time blackbox PIT algorithm from an exponentially hard but

E-computable multilinear polynomial family. It was shown in [KI04, Theorem 7.7].

Lemma 2.3.8 (Hardness to hitting set). Let {qm}m≥1 be a multilinear polynomial family

such that qm is computable in 2O(m)-time but has no 2o(m)-size algebraic circuit for it.

Then, we have an sO(log s)-time computable hitting set for polynomials computed by size s

degree s circuits.

30

Proof. According to hypothesis, there is a constant c0 > 0 such that qm requires more than

2c0m-size algebraic circuits. Let P be the set of polynomials computed by size s degree

s circuits. Let D = {S1, . . . , Ss} be a (c2 log s, c1 log s, 10 log s)-design on the variable set

z = {z1, . . . , zc2 log s} (Lemma 2.3.7). Constants c2 > c1 > 10 will be fixed later. Our

hitting-set generator for P is defined as follows. For all i ∈ [n], let pi := qc1 log s(Si), i.e.,

the polynomial qc1 log s with Si as the set of variables. Let P (x1, . . . , xn) be a nonzero

polynomial in P. Then n ≤ s. Now we show that P (p1, . . . , pn) is also nonzero.

For the sake of contradiction, assume that P (p1, . . . , pn) is zero. Since P (x) is nonzero,

we can find the smallest j ∈ [n] such that P (p1, . . . , pj−1, xj , . . . , xn) =: P1 is nonzero, but

P1

∣∣
xj=pj

is zero. Thus, (xj − pj) divides P1. Let a be an assignment on all the variables in

P1, except xj and the variables Sj in pj , with the property: P1 at a is nonzero. Since P1 is

nonzero, there exists such an assignment. Now our new polynomial P2 on the variables xj

and Sj is of the form:

P2(Sj , xj) = P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , an),

where for each i ∈ [j − 1], p′i is the polynomial on the variables Si ∩ Sj , and ai’s are field

constants decided by the assignment a. By the design, for each i ∈ [j−1], |Si∩Sj | ≤ 10 log s.

Since p′i are multilinear polynomials on variables Si ∩Sj , each p′i has a circuit (of form ΣΠ)

of size at most 10 log s · 210 log s ≤ 211 log s. Then we have a circuit for P2 of size at most

s1 := s+ n · 211 log s, and degree at most d1 := s · 10 log s. Since (xj − pj) divides P2, we

can invoke the Kaltofen’s factorization algorithm (see Lemma 2.3.3) and get an algebraic

circuit for pj of size (s1d1)c3 , for some constant c3 (independent of c1, c2).

Now we fix constants c1, c2. Pick c1 such that 2c0·c1 log s becomes greater than (s1d1)c3 ,

and c1 := 15c3/c0 satisfies that condition. Pick c2, according to Lemma 2.3.7, such that

c2 log s > 10 · (c1 log s)2/(10 log s). Hence, c2 := 1 + c2
1 works.

Moreover, if P (p1, . . . , pn) is zero then, by the above discussion, pj = qc1 log s(Sj) has a

circuit of size (s1d1)c3 < 2c0·c1 log s. This violates the lower bound hypothesis for pj . Thus,

P (p1, . . . , pn) is nonzero.

The time for computing (p1, . . . , pn) depends on: (1) computing the design, which

31

takes 2O(c2 log s) = poly(s) time, and (2) computing qc1 log s which takes 2O(log s) = poly(s)

time. Thus, in poly(s) time we can convert a size s degree s circuit to a O(log s)-variate

poly(s) size poly(s) degree circuit while preserving nonzeroness. Now using Corollary 2.3.2,

we get an sO(log s)-time computable hitting set for polynomials computed by size s degree

s circuits.

Remark. When the underlying field F is a finite field of characteristic p and size pr, then

by invoking Kaltofen’s factoring algorithm, we get a small size circuit for qp
t

c1 log s for some

nonnegative integer t divisible by r. Over a finite field, it is not known whether a small size

circuit for qp
t

c1 log s implies a small size circuit for qc1 log s itself. However, the evaluations

of qp
t

c1 log s coincides with the evaluations of qc1 log s over Fc1 log s. Hence, [KI04] defined the

circuit complexity of an n-variate polynomial q over a finite field F as the size of a smallest

circuit that agrees with q over Fn.

2.3.4 Lifting hardness from depth-4 circuits to general circuits

Now, we discuss a result from [AV08], where they first showed that in some cases we

can reduce a circuit to a depth-4 circuit of nontrivial size (i.e., better than depth-2

representation). Our next lemma says that if an n-variate multilinear polynomial has a

2o(n) size circuit, then it has also a 2o(n) size depth-4 circuit. The contrapositive of the

previous statement says that if the depth-4 circuit complexity of an n-variate multilinear

polynomial is 2Ω(n), then any circuit computing that polynomial must have size 2Ω(n).

Lemma 2.3.9 (Corollary 2.5 [AV08]). Let {qm}m∈N be a multilinear polynomial family. If

there exists a 2o(m)-size circuit computing qm, then there exists a 2o(m)-size depth-4 circuit

for qm. Furthermore, the fan-in of the top multiplication layer a(m) is any sufficiently slow

growing function in ω(1), and the fan-in of the bottom multiplication layer b(m) = o(m).

Proof. Suppose that the degree of qm is o(m). Then, there exists a 2o(m)-size depth-2

circuit (ΣΠ) for qm, and the fan-in of the multiplication layer is o(m). This implies we

have a 2o(m)-size depth-4 circuit for qm with the fan-in of the top multiplication layer

32

a(m) = O(1), and the fan-in of the bottom multiplication layer b(m) = o(m). Next, we

analysis the case when the degree of qm is Ω(m).

According to hypothesis, qm has a 2o(m)-size circuit. From ‘log-depth reduction result’

[Sap16, Section 5.3.2] 1 we get a circuit C, of dm = Θ(logm) depth and sm = 2o(m) size,

with the additional properties:

1. alternative layers of addition/multiplication gates with the top-gate (root) being

addition,

2. from top as we go below, at each multiplication layer the degree of the related

polynomials at least halves compared to the previous multiplication layer, and

3. fan-in of each multiplication gate is at most 5.

Now we cut the circuit C at the t-th layer of multiplication gates from the top, where

t = t(dm) will be fixed later, to get the following two parts:

Top part: The top part computes a polynomial of degree at most 5t, and the number of

variables is at most sm. Therefore, it can be reduced to a trivial ΣΠ circuit of size(
sm+5t

5t

)
= s

O(5t)
m (see Lemma 2.3.19).

Bottom part: In the bottom part, we can have at most sm many top-multiplication gates

that feed into the top part as input. Each multiplication gate computes a polynomial

of degree at most m · 2−t, and the number of variables is at most m. Therefore, each

multiplication gate can be reduced to a trivial ΣΠ circuit of size
(m+m/2t

m/2t

)
= 2O(mt/2t)

(see Lemma 2.3.19).

From the above discussion, we have a ΣΠ5tΣΠm/2t circuit C ′, computing qm, that has

size s
O(5t)
m + 5tsm · 2O(mt/2t). The second summand is multiplied by an additional factor of

5t to ensure that the fan-out of each node in the final circuit is at most 1.

Now we fix t. The second summand becomes 2o(m) if we pick a t = ω(1) such that

5t = o(m) (recall that sm = 2o(m)). To get a similar upper bound on the first summand we

1[VSBR83] first showed the log-depth reduction result. However, we are using the proof given in [Sap16,
Section 5.3.2].

33

need to pick 5t log sm = o(m). Finally, we also want 5t ≤ a(m), to satisfy the fan-in bound

of the top multiplication layer. A function t = t(dm), satisfying the three conditions, exists

as log sm = o(m) and a(·) is an increasing function. Let us fix such a function t. (As C

has super-constant depth, we can also assume that the cut at depth t is possible.) Thus

the circuit C ′, computing qm, has size s′m = 2o(m).

Finally, we have a 2o(m)-size depth-4 circuit, where the fan-in of the top layer multi-

plication gates is 5t ≤ a(m), and the fan-in of the bottom layer multiplication layer is

m/2t = o(m).

2.3.5 Reduction from depth-4 circuits to depth-3 circuits

In the next lemma, we describe a reduction from ΣΠ[a]ΣΠ[b] circuits to ΣΠΣ circuits. This

result is from [GKKS16] which improves the depth-4 reduction result of [AV08, Koi12,

Tav13] and showed a “nontrivial” depth-3 reduction for algebraic circuits. The statement

we mention here does not appear in that form in [GKKS16]. They proved it in different

parts (see [GKKS16, Section 4]). We combine them and present as a single lemma.

Lemma 2.3.10. Let f be an n-variate degree d polynomial computed by a size s ΣΠ[a]ΣΠ[b]

circuit over Q. Then there exists a size poly(s2a+b) ΣΠΣ circuit computing f .

Remark. The above lemma works over any field of characteristic zero.

Proof. The proof has three following steps:

• Convert a size s ΣΠ[a]ΣΠ[b] to a Σ ∧[a] Σ ∧[b] Σ circuit of size s1 =poly(s2a+b).

• Convert a size s1 Σ ∧[a] Σ ∧[b] Σ circuit to a ΣΠΣ circuit of size s2 =poly(s1) over C.

• Convert a size s2 ΣΠΣ over C to a ΣΠΣ circuit of size poly(s2) over Q.

Step 1: A size s ΣΠ[a]ΣΠ[b] circuit C computes polynomial of the following form:

C =
∑
i∈[s]

∏
j∈[a]

Qij ,

34

where deg(Qij) ≤ b and the sparsity of Qij ≤ s. Applying Lemma 2.3.13, we get an s2bb2-

size Σ[s2b] ∧[b] Σ[b] circuit for each Qij . Again using Lemma 2.3.13, each Ti =
∏
j∈[a]Qij

can be written as a sum of power of 2a `k’s, where each `k is a linear combination of Qij ’s.

Hence, for each Ti, we have a Σ[2a] ∧[a] Σ[sa2b] ∧[b] Σ[b] circuit of size s2a+ba2b2. Therefore,

overall we get a Σ ∧[a] Σ ∧[b] Σ circuit of size s2a2b2 · 2a+b =poly(s2a+b). Furthermore, by

multiplying necessary number of 1’s, we can get a Σ∧[a] Σ∧[b] Σ circuit where the fan-in of

the bottom layer powering gates is exactly b. In next step, we work with Σ ∧[a] Σ ∧[=b] Σ

circuits.

Step 2: Any size s circuit C of form Σ ∧[a] Σ ∧[=b] Σ computes polynomial of form

C = T1 + · · ·+Ts1 , where each Ti is of form (`bi1 + · · ·+`bis1)a and `ij ’s are linear polynomials.

Using Lemma 2.3.12, each T of form (`b1 + · · ·+ `bs1)a can be written as

T =
(
`b1 + · · ·+ `bs1

)a
=

s1a∑
i=0

a∑
j=0

βij(αi + `b1)j · · · (αi + `bs1)j

=

s1a∑
i=0

a∑
j=0

βijfi(`1)j · · · fi(`s1)j ,

where fi(t) = (αi + tb). Since fi(t) is a univariate polynomial over C, it completely splits

into linear factors. Therefore, each T can be written as follows

T =

s1a∑
i=0

a∑
j=0

βij

s1∏
k=1

b∏
r=1

(`k − γir)j .

Thus, each T need a depth-3 circuit of top fan-in at most (s1a+ 1)(a+ 1) = O(s1a
2) and

the degree is at most s1ab. Hence, to compute C we need a depth-3 circuit of size at most

O(s2
1a

3b(n+ 1)) = poly(s1) .

Step 3: After Step 2, we get a depth-3 circuit which computes a polynomial over Q,

but the field constants in the circuit are from C. However, we want a poly(s1)-size circuit

over Q. In the previous step, the reason we need C is that we want to split fi(t) = (αi + tb)

35

into linear factors. The polynomial

fi(t) = (αi + tb) =
b∏
i=1

((−αi)
1
b · ωib − t),

where ωb is a bth primitive root of unity. Since we have complete freedom to pick αi’s, we

can pick them in a way such that (−αi)
1
b is also in Q. Then, to completely split fi(t), we

only need to go to the field Q(ωb), an extension of Q, not C. The field Q(ωb) is a simple

extension over Q of degree at most b. There is a generic way of converting a circuit over a

small extension (of the base field) to a circuit over the base field. We skip the details here

and refer to [GKKS16, Section 4.3.1]. Thus, we have a ΣΠΣ circuit of size poly(s2a+b)

computing f .

2.3.6 Reducing the degree of a circuit

In general, the degree of a circuit can be much larger than the degree of the polynomial

it computes. However, [Str73] showed that in those scenarios the polynomial is also

computable by a slightly larger size circuit whose degree is same as the degree of the

polynomial.

Lemma 2.3.11. Let f be a degree d polynomial computed by a size s circuit. Then f is

also computed by a size O(sd2) degree d circuit.

Proof. Let C be a size s circuit which computes f . Without loss of generality, we can

assume the fan-in of each node is 2. Now we construct a new circuit C ′ of degree d and it

also computes f . For every gate g in C, we introduce d+ 1 many copies, {g0, . . . , gd}, of

it with the following motivation: gi will compute the homogeneous degree i part of the

polynomial computed at g. Since f is a degree d polynomial, we do not need to consider

the higher degree parts of g. Now we inductively build the circuit C ′. Let g has two

children u and v.

When g = u+ v: For all i ∈ {0, . . . , d}, the gate gi is defined as ui + vi.

When g = u× v: For all i ∈ {0, . . . , d}, the gate gi is defined as
∑d

j=0 ujvd−j .

36

Hence, for each gi we need to add at most 2(d+ 1) many edges. By this process, we get a

(d+ 1)-output circuit of size O(sd2) such that the ith output computes the homogeneous

degree i part of f . Now we add a addition gate on the top which adds all the homogeneous

components of f . Thus we have a O(sd2) size degree d circuit computing f .

2.3.7 Miscellaneous results

Now, we describe the duality trick by [Sax08]. The statement below is slightly different

from the statement in [Sax08], and the proof below is by [FGS13]. The original statement

has a dependence on the characteristic of the underlying F. However, the proof by [FGS13]

removes that dependence, and it works over any sufficiently large fields.

Lemma 2.3.12 (Duality trick). Let m, d be two positive integers. Let F be a field of size

greater than d(m− 1). Then for every distinct α0, α1, . . . α(m−1)d ∈ F, there exist βij’s such

that

(z1 + . . .+ zm)d =

(m−1)d∑
i=0

d∑
j=0

βij(z1 + αi)
j · · · (zm + αi)

j .

Proof. Consider the polynomial p(t) = (z1 + t) · · · (zm + t)− tm. The coefficient of tm−1

in p(t) is (z1 + · · · + zm). Let g(t) := p(t)d. Then the coefficient of t(m−1)d in g(t) is

(z1 + · · · + zm)d. Now consider {g(α0), . . . , g(α(m−1)d)}, the set of evaluations of g(t) at

αi’s. It is well known that for any ti, the coefficient of ti in g(t) can be extracted by taking

linear combinations of g(αi)’s. Therefore, there exist β′i’s

(z1 + · · ·+ zm)d =

(m−1)d∑
i=0

β′ig(αi)

=

(m−1)d∑
i=0

β′i ((z1 + αi) · · · (zm + αi)− αmi)d

=

(m−1)d∑
i=0

d∑
j=0

βij(z1 + αi)
j · · · (zm + αi)

j

where βij =
(
d
j

)
β′i(−αmi)d−j .

Next lemma describes a way to write a monomial into a sum of powers. The statement

37

given below can be derived from Fischer’s trick [Fis94] or Ryser’s formula [Rys63]. It

requires char(F) = 0 or large.

Lemma 2.3.13. Over a field F of char(F) = 0 or greater than n, any expression of the

form g =
∏
i∈[n]

gi can be rewritten as g =
∑

j∈[2n]

cjf
n
j where each fj is a linear combination

of gi’s.

Proof. First we prove that

n! · x1 · · ·xn =
∑
S⊆[n]

(−1)n−|S|

(∑
i∈S

xi

)n
.

The only summand which contributes the monomial x1 · · ·xn is when S = [n], and in

(x1 + · · ·+ xn)n, the coefficient of x1 · · ·xn is n!. Next we show that the coefficients of

all other monomials are zero. The proof is based on inclusion-exclusion principle. Let

m = xe11 · · ·xenn be a degree n monomial other than x1 · · ·xn. Let M be the subset of

[n] such that for all i ∈ [n], the variable xi is present in m if and only if i ∈ M . Since

m 6= x1 · · ·xn, M is a proper subset of [n]. In the above expression, the only summands

which contribute m are when S ⊇ M , and the coefficient of m in that summand is

(−1)n−|S| ·
(

n
e1,...en

)
. Therefore, the coefficient of m is

∑
M⊆S⊆[n]

(−1)n−|S| ·
(

n

e1, . . . , en

)
= 0,

since M is not equal to [n]. Now put xi = gi in the above relation and get our desired

expression for g.

In the following lemma we describe a standard technique to design a hitting set for the

set of polynomials having a “low-support” monomial in their support. It has been used

in almost all PIT results regarding the construction of hitting sets for various restricted

classes of circuits.

Lemma 2.3.14. Let P be the set of n-variate degree d polynomials such that every nonzero

polynomial in P has a `-support monomial with nonzero coefficient. Then there exists a

hitting set for P computable in time (nd)O(`).

38

Proof. Let x = {x1, . . . , xn} be the set of variables over which P is defined. For every

`-size subset S of [n], let ϕS : x→ x be the mapping defined as, for all i ∈ [n],

ϕS(xi) :=

 xi if i ∈ S

0 otherwise.

Let P be a nonzero polynomial in P. Since P has a `-support monomial with nonzero

coefficient, there exists a `-size subset S of [n] such that P (ϕS(x)) is also nonzero. For

every `-size subset S of [n], P (ϕS(x)) becomes a `-variate degree d polynomial. From

Corollary 2.3.2, P (ϕS(x)) has a hitting set computable in time dO(`). Since for given a P

we do not know the `-size subset S of [n] for which P (ϕS(x)) is nonzero, we try all possible

ϕS ’s. This combined with Corollary 2.3.2 gives a (nd)O(`)-time computable hitting-set for

P.

Next lemma describes a relation between the dimension of partial derivative space and

cone size of monomials. It was shown in [For14, Corollary 4.14] (with origins in[FS13a]).

Lemma 2.3.15. Let F be a field of characteristic 0 or greater than d. Let P be a set of

n-variate degree d polynomials over F such that for all P ∈ P, the dimension of the partial

derivative space of P is at most k. Then for every nonzero P ∈ P has a k-cone monomial

with nonzero coefficient.

Proof. Let x be the set of variables over which P is defined. Let ≺ be a monomial ordering

on the set of monomials over x. For example, one can assume ≺ is the lexicographic

ordering on the monomials. Then for any polynomial f , by LM(f) we denote the leading

monomial of f (with respect to ≺). For notations, see Section 2.1. Our proof has the

following steps.

1. First, we show that the dimension of the partial derivative space of P is lower bounded

by the number of distinct leading monomials (with respect to the monomial ordering

≺) we can get from all the polynomials in the partial derivative space of P , i.e.

dim 〈∂<∞(P)〉 ≥
∣∣{LM(f) | f ∈ 〈∂<∞(P)〉

}∣∣ .

39

2. Next, we prove that the number of distinct leading monomials one can get from all

the polynomials in the partial derivative space of P is lower bounded by the cone

size of the leading monomial of P , i.e.

∣∣{LM(f) | f ∈ 〈∂<∞(P)〉
}∣∣ ≥ |cone(LM(P))| .

Step 1: Since the degree of every polynomial in 〈∂<∞(P)〉 is upper bounded by d,

|{LM(f) | f ∈ 〈∂<∞(P)〉}| is finite. Let it be k. Suppose that {f1, . . . , fk} be the set of

polynomials in 〈∂<∞(P)〉 such that

{LM(f) | f ∈ 〈∂<∞(P)〉} = {LM(fi) | i ∈ [k]}.

Let mi = LM(fi). Without loss of generality, we can assume that m1 ≺ m2 ≺ · · · ≺ mk.

Now we show that fi’s are linearly independent over F. Let g =
∑k

i=1 cifi be a nonzero

linear combination of fi’s, i.e., there exists an i such that ci is nonzero. Then we show that

g is also a nonzero polynomial. Let j be the largest i such that cj is nonzero. Then the

leading monomial LM(fj) do not cancel in the expression
∑k

i=1 cifi. Hence, g is a nonzero

polynomial. This completes our first step.

Step 2: Let xe be the leading monomial of P with respect to ≺. Then P can be

written as

P = cex
e +

∑
h∈support(P)\{e}

chxh,

where ce and ch’s are the coefficients of the respective monomials in P . Now we show

that for every monomial m in the cone of xe, there exists a polynomial P ′ in the partial

derivative space of P such that LM(P ′) = m. Let xf be a monomial in the cone of xe and

g := e− f . Let e = (e1, . . . , en) and g = (g1, . . . , gn). Then the partial derivaive of P with

respect to xg is

∂xg(P) = c′xexe−g +
∑

h∈support(P)\{e}

c′hxh−g,

where

c′e = ce ·
n∏
i=1

ei!

(ei − gi)!
.

40

Similarly, c′h’s are also defined. From the definition of the monomial ordering, xh−g ≺ xe−g

for all h ∈ support(P) \ {e}. Since the characteristic of F is 0 or greater than d, c′e is a

nonzero element in F. Hence, LM(∂xg(P)) is xf . This implies that for every monomial xf

in the cone of xe, there exists a polynomial h in 〈∂<∞(P)〉 such that LM(h) is same as xf .

Thus, we proved that

|{LM(f) | f ∈ 〈∂<∞(P)〉}| ≥ |cone(LM(P))|.

This completes the proof of our lemma.

Our next lemma implies that the dimension of the partial derivative space of a poly-

nomial computed by a depth-3 diagonal circuit is polynomially large with respect to the

circuit size.

Lemma 2.3.16. Let P be an n-variate polynomial over F which can be written as∑k
i=1 ci(ai0 + ai1x1 + · · ·+ ainxn)di , where ci’s and aij’s are in F. Then the dimension of

the partial derivative space of P is less than or equal to k(d+ 1), where d = maxi di.

Proof. Let Pi = (ai0 + ai1x1 + · · · + ainxn)di . Let xe be a degree b monomial and

e = (e1, . . . , en). Then

∂xe(Pi) =

(
b

e1, . . . , en

)
(ai0 + ai1x1 + · · ·+ ainxn)di−b

n∏
j=1

a
ej
ij .

Then for all b ≤ di,

dim 〈∂=b(Pi)〉 ≤ 1,

and for all b > di, it is zero. Hence, the dimension of the partial derivative space of Pi is

at most (di + 1). Since the dimension of the partial derivative space follows sub-additivity

property,

dim 〈∂<∞(P)〉 ≤
k∑
i=1

dim 〈∂<∞(Pi)〉

≤
k∑
i=1

(di + 1)

≤ k(d+ 1).

41

In the following lemma, we describe a formula for the determinant of the multiplication

of two “fat” matrices. It is known as Cauchy-Binet formula [Zen93].

Lemma 2.3.17. Let n ≥ m be two positive integers. Let A be an m × n and B be an

n×m matrix over F. Then

det(AB) =
∑

S∈([n]m)

det(A[m],S) · det(BS,[m]).

Proof. Let M be an n× n diagonal matrix with (i, i)th entry is xi. Then det(AMB) is a

polynomial f over the variables x = {x1, . . . , xn} such that f(1, . . . , 1) = det(AB). Also

note that f is a homogeneous degree m polynomial, since each entry in AMB is degree

1 polynomial and AMB is an m × m matrix. Let S be a subset of [n] of size m. Let

ρS : x→ x be a mapping defined as, for all i ∈ [n],

ρS(xi) :=

 xi if i ∈ S

0 otherwise,

Then f(ρS(x)) becomes det(A[m],S) · det(BS,[m])
∏
i∈S xi. This also implies that the coeffi-

cient of any non-multilinear monomial in f is zero. Hence, we can write

f(x) =
∑

S∈([n]m)

f(ρS(x))

=
∑

S∈([n]m)

det(A[m],S) · det(BS,[m])
∏
i∈S

xi

Now, assign each xi to 1 and get the required expression for det(AB).

Now we describe a property of matrices whose entries are binomial coefficients. It was

shown in [GKS17, Claim 3.3]. They used this property in designing PIT algorithms for

ROABPs.

42

Lemma 2.3.18. Let a1, . . . , an be n distinct nonnegative integers and F be a field such

that char(F) = 0 or greater than the maximum of all aj’s. Let A be an n× n matrix such

that for all i, j ∈ [n], Ai,j :=
(aj
i−1

)
. Then, A has full rank over F.

Proof. We show that for every nonzero vector b = (b1, . . . , bn) ∈ Fn×1, bA is also a nonzero

vector. Consider the polynomial

g(x) =

n∑
i=1

bi
x(x− 1) · · · (x− i+ 2)

(i− 1)!
.

It is a nonzero polynomial of degree at most n− 1. The jth entry of bA can be seen as

the evaluation of g at aj . Since g is a polynomial of degree at most n− 1, it can have at

most n− 1 roots. This implies that bA has a nonzero coordinate. Hence, we prove our

claim.

An alternative proof of the above lemma can be done using Lindstrm-Gessel-Viennot

Lemma. For interested reader, we refer [GV16]. Next, we show an estimation of binomial

coefficients.

Lemma 2.3.19. For all 0 < k ≤ n integers,

k∑
i=0

(
n

i

)
≤
(en

k

)k
.

Proof. For 0 < t ≤ 1,

k∑
i=0

(
n

i

)
≤ 1

tk

k∑
i=0

(
n

i

)
ti ≤ (1 + t)n

tk
.

Since (1 + t) < et for all t 6= 0, from the above expression we get
∑k

i=0

(
n
k

)
≤ etn

tk
. Now put

t = k/n and get the given inequality.

Chapter 3

Perfect Bootstrapping

Abstract

This chapter is based on joint work with Manindra Agrawal and Nitin Saxena

[AGS18].

In this chapter, we show that if for some c ∈ N and all sufficiently large s, we

have a poly(s)-size hitting set for log◦c s-variate size s degree s circuits, then we

have a poly(s)-size hitting set for s-variate size s degree s circuits. We refer to this

phenomenon as Perfect Bootstrapping. We also study a case when the number of

variables is so(1) and the size of the hitting set is sub-exponential in the hypothesis,

and bootstrap it to a sub-exponential size hitting set in the conclusion.

3.1 Motivation and our result

Pseudorandom generator (PRG) is a well studied object in boolean circuit complexity

theory and cryptography [AB09, Chapters 9 & 20]. One of the main motivation of studying

PRG is to efficiently derandomize all randomized algorithms. Indeed, one can show that if

we have an optimal PRG against BPP, then BPP=P. By optimal PRG, we mean a PRG

which stretches an n-length string to a 2Ω(n)-length string and is computable in 2O(n) time.

43

44

Interestingly, constructing an optimal PRG is closely related to strong circuit lower bounds.

It is a celebrated result that designing optimal PRG against P/poly is equivalent to finding

a boolean function in E with (boolean) circuit complexity 2Ω(n) [NW94, Sections 2 and 3],

[IW97, Theorem 2].

Naturally, an algebraic analog of the latter property would be to identify an E-

computable polynomial family which has algebraic circuit complexity 2Ω(n). By Valiant’s

criterion [Bür13, Proposition 2.20], if the coefficients of a polynomial family are computable

in #P/poly, then that polynomial family is in VNP . Hence, if one replaces E by #P/poly

in the first line, then we are directly talking about identifying a polynomial family in VNP

which has algebraic circuit complexity 2Ω(n). Such a statement is a stronger version of

VP6=VNP, since in VP6=VNP question we are only interested in finding a polynomial family

in VNP which has circuit complexity nω(1). As a first challenge, we can pose the following

reasonable complexity conjecture.

Conjecture 1. There is an E-computable polynomial family which has algebraic complexity

2Ω(n). Thus, either E *#P/poly or VNP has a polynomial family of algebraic circuit

complexity 2Ω(n).

Hitting-set generator (HSG) in the algebraic world can be viewed as an analogy to

PRG in the boolean world. So one can naturally ask about the relation between HSG

and algebraic circuit lower bound. [HS80, Theorem 4.5] introduced the concept of efficient

annihilator of the HSG. They showed that if we can efficiently compute an HSG for a set of

polynomials P , then we can also efficiently compute a polynomial (namely, the annihilator)

which does not belong to P. This technique can be easily extended to get a circuit lower

bound (Theorem 0). Like in the boolean world, our hard polynomial is also E-computable

and has algebraic circuit complexity 2Ω(n).

Theorem 0 (Connection). If we have a poly(s)-time computable HSG for polynomials

computed by size s degree s circuits, then Conjecture 1 holds.

Proof sketch. For all s ∈ N, let Ps be the set of polynomials computed by size s degree s

circuits. Using basic linear algebra, in 2O(m)-time, we can construct an m-variate multilinear

45

annihilator qm, where m = O(log s), of the HSG of Ps. This qm cannot lie in Ps, otherwise

qm evaluated at the HSG would be a nonzero polynomial (contradicting the annihilation

property). For details, see the proof of [Agr05, Theorem 51]1. For the sake of contradiction,

assume that it has a circuit of size so(1). Since the degree of qm is O(log s), we can use

Lemma 2.3.11 and get a so(1)-size O(log s)-degree circuit computing qm. Therefore, we

get that qm ∈ Ps, which is a contradiction. So we have a multilinear polynomial family

{qm}m≥1 such that it is computable in 2O(m)-time but the algebraic circuit complexity is

sΩ(1) = 2Ω(m). Now applying Lemma 2.3.5, we get either E * #P/poly or VNP has a

polynomial family of algebraic circuit complexity 2Ω(m).

A weak converse of the above theorem, i.e. hardness to HSG, is well-known due to

[KI04, Theorem 7.7]. We state it as Lemma 2.3.8. Suppose that we have an exponentially

hard but 2O(m)-time computable multilinear polynomial family {qm}m≥1. Then by using

Lemma 2.3.8, we get a quasi-polynomial time computable HSG for Ps. This suggests that

the ‘hardness vs randomness’ connection here is less satisfactory than the boolean world.

Nonetheless, one wonders whether the conclusion in Theorem 0 can be strengthened in a

different way, so that we get a perfect equivalence. In this work, we answer this question

by introducing the concept of partial HSG.

Partial HSG. For all s ∈ N, let Ps be the set polynomials over (x1, . . . , xs) variables

and computed by size s degree s circuits. For any m ≤ s, let Ps,m be the subset of those

polynomials in Ps which depend only on the first m variables, i.e., (x1, . . . , xm) . Suppose

that, for some m� s, one efficiently compute an HSG gs,m for Ps,m. We call such an HSG

is a partial HSG of Ps. Then can we bootstrap this partial HSG, i.e., using gs,m, can we

also efficiently design a complete HSG gs for Ps?

Suppose that m = s1/c for some c ∈ N and we can compute gs,m in poly(s)-time. Then

we can also design gs in poly(s)-time and the reason is the following: The set Ps can

be thought of as a subset of those polynomials in Psc which depend only on the first s

variables. Therefore, gsc,s is an HSG for Ps. Clearly, gsc,s can be computed in poly(s)-time.

However, for m = so(1), we cannot use the same argument for the following reason. To

1Lemma 2.3.4 describes the same phenomenon using the notion of hitting set.

46

compute the HSG of Ps, we have to compute the partial HSG for Psω(1) , which may not

be computable in poly(s)-time. Naively speaking, there is no reason why a partial HSG

gs,so(1) could be bootstrapped efficiently to gs. The former is a property of the polynomial

ring F[x1, . . . , xso(1)] compared to the latter one which is a property of the “much larger”

polynomial ring F[x1, . . . , xs]; so a considerable blow-up might be expected. Somewhat

surprisingly, we give a positive answer when m is as small as log◦c s for some c ∈ N.

Theorem 3.1.1 (Perfect Bootstrapping). Let c be a positive integer. For all sufficiently

large s, suppose that we have a poly(s)-time computable hitting set for dlog◦c se-variate

polynomials computed by size s degree s circuits. Then, we have a poly(s)-time computable

hitting set for the class of s-variate polynomials computed by size s degree s circuits and

Conjecture 1 holds.

Remark. In the boolean world, we cannot reduce the number of variables beyond log s.

For more details, see Section 1.2.1.

We also study the case when our partial HSG can be computed in sub-exponential

time, which is far worse than polynomial time. In this case, our result is not as strong as

Theorem 3.1.1. However, in the hypothesis we still deal with a partial HSG gs,m where

m = so(1) and manage to bootstrap that partial HSG in subexponential time. Also, an

E-computable super-polynomially hard polynomial family is implied (say, weak Conjecture

1). For details see Theorem 3.3.1.

3.2 Proof of our result

Our proof of the Theorem 3.1.1 is iterative in nature. We start from a poly(s)-size hitting set

for size s degree s circuits over dlog◦c se variables. At each step, we perform an exponential

stretch of variables and get a polynomial size hitting set for circuits with more number of

variables. After applying this step for constantly many rounds we get a poly(s)-size hitting

set for s-variate size s degree s circuits. Each variable stretching step has a structure like

Figure 3.1. One crucial component in that structure is Step 2, where we reduce the number

of variables of polynomials in P[n, s, s] using a hard polynomial. As we mentioned earlier,

47

Step 1: hitting set to
hard polynomial

Step 2: variable reduction

Step 3: re-using hitting
set of P[m,w,w]

Assumption: hitting
set of P[m,w,w]

Construct hard
polynomial qw,
where w = sO(1)

get hitting set of
P[n, s, s]

P [m, s1, s1],
s1 = sO(1)

n� m

Goal: hitting set
of P[n, s, s]

Figure 3.1: Structure of a single step of Perfect Bootstrapping

such technique is already available due to [KI04, Theorem 7.7] (see Lemma 2.3.8). They

showed an efficient variable reduction from an exponentially hard multilinear polynomial

family. However, while bootstrapping in Theorem 3.1.1, we work in a scenario where the

number of variables can be as low as log◦c s compared to s (i.e., size of the circuit). In this

extremely low variate regime, the hard polynomials we get from Step 1 have non-constant

individual degree. This imposes a bit more technical challenges in proving Step 2 than

the proof of Lemma 2.3.8. However, by carefully fixing the associated parameters, one can

extend the proof of Lemma 2.3.8 and prove Step 2. In the proof of our following lemma, we

give a detailed proof of Step 2. Now we formally describe what happens in each variable

stretching step.

Lemma 3.2.1 (Induction step). For any nonnegative integer i, let gi be a function defined

as gi(s) := (log◦i s)2. For all sufficiently large s, suppose that we have a poly(s)-time

computable hitting set for gi(s)-variate degree s polynomials computed by size s circuits.

Then we have a poly(s)-time computable hitting set for gi−1(s)-variate degree s polynomials

48

computed by size s circuits.

Proof. In the proof, we use P[gi−1, s, s] to denote the set of polynomials P[gi−1(s), s, s].

It is a slight abuse of notation. However, it will simplify our representation. Similarly,

we use for P[gi, s, s] for P[gi(s), s, s]. For a given s, we want to construct a poly(s)-time

computable hitting set for P[gi−1, s, s]. According to hypothesis, for some constant e, we

have a we-size we-time computable hitting set for P[gi, w, w] for all w ≥ s. Our proof has

three steps:

1. constructing a hard polynomial from the hitting set of P[gi, w, w],

2. nonzeroness preserving variable reduction from P[gi−1, s, s] to P[gi, w, w] for some

w = sO(1), and

3. re-use the hitting set of P[gi, w, w].

Before proceeding further, we define some notations. Let c3 ≥ 1 be a constant such that

for every degree d nonzero polynomial computed by a size s circuit, we have a (sd)c3-size

circuit for each of its irreducible factors. Kaltofen’s factoring algorithm (Lemma 2.3.3)

ensures us the existence of such constant. Let

c0 := d16c3e, c1 := d50ec3e and c2 := 1 + c2
1 .

Let ε be defined as ε(w) := 2dlog◦iwe. Now we discuss the steps in detail.

Constructing hard polynomial: Let mw := c1ε(w) and δw := dw3e/mwe. Since δmww

is greater than we, using Lemma 2.3.4, we get a polynomial qw from the hitting set of

P[gi, w, w] such that

• mw-variate and the individual degree is less than δw, so the degree is less than

δwmw ≤ wo(1).

• is not computable by size-w circuits, since qw /∈ P[gi, w, w], the degree ≤ w and the

number of variables mw ≤ gi(w).

• has a depth-2 circuit of size poly(w) and that circuit can be constructed in poly(w)

time.

49

Variable reduction: Now we construct a nonzeroness preserving variable reduction map

for polynomials in P [gi−1, s, s] such that every nonzero polynomial in P [gi−1, s, s] composed

with the variable reduction map becomes a nonzero polynomial in P[gi, s
O(1), sO(1)]. Let

s0 := sc0 and n := gi−1(s). Let {S1, . . . , Sn} be a (c2ε(s0),ms0 , 10ε(s0))-design on the

variable set z = {z1, . . ., zc2ε(s0)}. Constants c2 > c1 > 10 will ensure the existence of the

design by Lemma 2.3.7. Define for all j ∈ [n], qs0(Sj) =: pj with Sj as the set of variables.

Then, we show that for every nonzero polynomial P (x) ∈ P [gi−1, s, s], P (p1, . . . , pn) is also

nonzero.

For the sake of contradiction, assume that P (p1, . . . , pn) is zero. Since P (x) is nonzero,

we can find the smallest j ∈ [n] such that P (p1, . . . , pj−1, xj , . . . , xn) =: P1 is nonzero, but

P1

∣∣
xj=pj

is zero. Thus, (xj − pj) divides P1. Let a be an assignment to all the variables in

P1, except xj and the variables Sj in pj maintaining its nonzeroness. Since P1 is nonzero,

we can find such an assignment. Now our new polynomial P2 on the variables Sj and xj is of

the form P2(Sj , xj) = P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , an), where for each i ∈ [j − 1], p′i is the

polynomial on the variables Si ∩ Sj , and ak’s are field constants decided by the assignment

a. By the design, for each i ∈ [j − 1], |Si ∩ Sj | ≤ 10ε(s0). Since p′i are polynomials on

variables Si ∩ Sj of individual degree≤ δs0 , each p′i has a circuit (of the form ΣΠ) of size at

most

ms0δs0 · δ10ε(s0)
s0 = ms0δs0 · δ

10ms0
c1

s0 .

Thus, we have a circuit for P2 of size at most s1 and the degree at most d1, where

s1 := s+ nms0δs0 · δ
10ms0
c1

s0 and d1 := sms0δs0

Since (xj − pj) divides P2, we can invoke Kaltofen’s factorization algorithm (Lemma 2.3.3)

and get an algebraic circuit for pj of size (s1d1)c3 . For finite fields, see the remark given

50

after the proof.

(s1d1)c3 ≤ (snms0δs0 · δ
10ms0
c1

s0 · sms0δs0)c3

=

(
s2nm2

s0δ
2+

10ms0
c1

s0

)c3

<

(
s3+o(1) · δ

10ms0
c1

s0

)c3
(∵ n ≤ s and both ms0 , δs0 = so(1))

< s(4+ 30ec0/c1)c3 (∵ δs0 = ds3e/ms0
0 e and s0 = sc0)

This exponent is

(4 + 30ec0/c1)c3 =

(
4c3

c0
+

30ec3

c1

)
c0

=

(
4c3

d16c3e
+

30ec3

d50ec3e

)
c0

=

(
1

4
+

3

5

)
c0 (∵ c0 := d16c3e and c1 := d50ec3e)

< c0

So, pj = qs0(Sj) has a circuit of size smaller than s0, which contradicts the hardness of qs0 .

Thus, P ′ := P (p1, . . . , pn) is nonzero.

Reusing the given hitting set: Now we calculate the degree and the circuit size of

the polynomial P ′.

• Circuit size: From the the property of the hard polynomial, we know each pi has

a circuit (of the form ΣΠ) of size poly(s). So the total circuit size of P ′ is upper

bounded by s+ nsO(1), which is poly(s).

• Degree: Since the degree of each pi ≤ so(1) and the degree of P ≤ s, the total degree

of P ′ is upper bounded by poly(s).

So, the polynomial P ′ ∈ P[gi, s
e1 , se1], for some constant e1. Now, we use the poly(s)-size

hitting set of P[gi, s
e1 , se1] to test the nonzeroness of P ′.

Time Complexity: In brief, we have the following steps to compute the hitting set for

P[gi−1, s, s].

51

1. Compute the hard polynomial qs0 , where s0 = sc0 .

2. Compute NW-design {S1, . . . , Sn} on the variable set {z1, . . . , zc2ε(s0)}, where n =

gi−1(s).

3. Let pi := qs0(Si). Let p(z) := (p1, . . . , pn). Let H be the hitting set of P[gi, s
e1 , se1]

as promised in the hypothesis. Then output

H′ := {p(a)|a ∈ H},

as the hitting set of P[gi−1, s, s].

The time complexity of computing hitting set for P [gi−1, s, s] has the following components.

1. Computing qs0 takes poly(s) time, as mentioned in the properties of the hard polyno-

mial.

2. According to the Lemma Lemma 2.3.7, computing NW-design takes 2c2ε(s0) ≤ sO(1)

time.

3. For each a ∈ H, computing p(a) takes poly(s) time since each pi has a poly(s) size

circuit. So, computing all the points in H′ takes poly(s) time

So, the overall process takes poly(s) time.

Remark. When the underlying field F is a finite field of characteristic q, then in the

variable reduction part of the above proof, instead of pj , Kaltofen’s factoring algorithm

ensures us a size (s1d1)c3 circuit for pq
t

j for some t ∈ N. According to the proof of Lemma

2.3.4, pj is a polynomial which vanishes at all points in the hitting set of P[gi, s0, s0].

Thus, pq
t

j also has the same property. This implies that pq
t

j also has no algebraic circuit of

size≤ s0. However, our calculation show that pq
t

j has a circuit of size (s1d1)c3 < s0, which

leads to the contradiction we need to run our argument.

Now we give the proof of Perfect Bootstrapping.

Theorem 3.1.1 (restated). Let c be a positive integer. For all sufficiently large s,

suppose that we have a poly(s)-time computable hitting set for dlog◦c se-variate polynomials

computed by size s degree s circuits. Then, we have a poly(s)-time computable hitting set

52

for the class of s-variate polynomials computed by size s degree s circuits and Conjecture 1

holds.

Proof. Consider the following two statements. S1: we have a poly(s)-time computable

hitting set for size s degree s circuits over dlog◦c se variables, and S2: we have a poly(s)-

time computable hitting set for dlog◦c se-variate degree s polynomials computed by size

s circuits. According to the theorem statement, S1 is our given hypothesis. However, in

this proof, we work with S2 which is stronger than S1, as in the former case circuits may

have degree larger than s. So we first argue that they are equivalent up to polynomial

overhead. S2 trivially implies S1. For the other direction, we invoke Lemma 2.3.11. It

ensures that for any size s circuit C computing a degree s polynomial, we have an s4-size

s-degree circuit C ′ computing the same polynomial. Now apply S1 for s4-size s-degree

circuits and get a poly(s)-time computable hitting set for C. Next, we focus on designing

poly(s)-size hitting set for s-variate degree s polynomials computed by size s circuits, using

our stronger hypothesis S2.

For any nonnegative integer i, let gi be a function defined as gi(s) := (log◦i s)2. Since

gc+1(s) ≤ dlog◦c se, from the hypothesis we get a poly(s) time computable hitting set

for P[gc+1(s), s, s]. Now we apply the Lemma 3.2.1 c + 1 times and get a poly(s)-time

computable hitting set for P[s, s, s].

Now we show that Conjecture 1 holds. For some constant e, we obtained a se-time

computable hitting set for P [s, s, s]. Let m := d(e+ 1) log se. Then applying Lemma 2.3.4,

we get a family of multilinear polynomials {qm}m≥1 such that computable in 2O(m)-time,

but has no 2o(m)-size circuit. Now using Lemma 2.3.5, we get Conjecture 1.

3.3 Bootstrapping of sub-exponential size hitting set

First, we recall the following standard definition.

subexp: A function f(s) is in subexp if f(s) = exp(so(1)). For example, 2
√
s /∈ subexp,

but exp(2
√

log s) is in subexp. One can recall the standard complexity class, SUBEXP :=

∩ε>0DTIME(exp(nε)). Basically, these are decision problems whose time-complexity is a

53

subexp function.

In our next theorem, we show bootstrapping of sub-exponential size hitting set.

Theorem 3.3.1 (Subexp bootstrap). Let f be a function in subexp. Suppose that we

have a poly(f(s))-time computable hitting set for 10dlog f(s)e-variate polynomials computed

by size s degree s circuits. Then, we have a sub-exponential time, more precisely in

exp(O(log2 f(sc))) time for some constant c, computable hitting set for s-variate polynomials

computed by size s degree s circuits. Furthermore, either E * #P/poly or VNP 6=VP.

Remark. The hitting set size f(s) in the hypothesis of the above theorem is a sub-

exponential function, which is a much weaker assumption compare to the hitting set size we

considered in the hypothesis of Theorem 3.1.1. On the other hand, the number of variables

10dlog f(s)e becomes much larger than the number of variables (log◦c s) we considered in

the hypothesis of Theorem 3.1.1. Therefore, the amount of variable stretch we obtain in

the conclusion is much less compare to Theorem 3.1.1. Also, the final hitting set is not as

strong as Theorem 3.1.1. Since the above theorem is weaker than Theorem 3.1.1 on some

points as well as stronger on some other points, it is hard to compare them. Hence, we

see the above theorem as a bootstrapping of hitting set in a different setting compare to

Theorem 3.1.1.

Proof. Our proof is divided into three parts. First, we show how to construct a hard

polynomial family using sub-exponential time hitting set. Next, we show a nontrivial

variable reduction for circuits using the hard polynomial family. Finally, we use Corollary

2.3.2 and get our desired hitting set. For lower bound part, we apply a transformation on

our hard polynomial family and show that the new polynomial family satisfies the required

conditions.

Define the function ε(s) := 10dlog f(s)e. For all s ∈ N, let Ps be the set of ε(s)-variate

polynomials computed by size s degree s circuits. According to the hypothesis, we have, for

some constant e, an f(s)e-size f(s)e-time computable hitting set for Ps. Using Lemma 2.3.4,

we get an m-variate polynomial qm,s, where m := ε(s), such that: 1) its individual degree

54

is less than δ for some constant δ, 2) computable in poly(f(s)) time, and 3) qm,s /∈ Ps.

Now we prove that qm,s is not computable by circuits of size less than
√
s.

For the sake of contradiction assume that qm,s has a circuit of size s1 <
√
s. Since f ∈

subexp, the number of variables m = ε(s) = so(1). So, the degree d := mδ of qm,s is also

so(1). Now applying Lemma 2.3.11, we get a d-degree circuit C of size O(s1d
2) for qm,s.

Since d = so(1), the size of C is < s. This implies that qm,s ∈ Ps, which is a contradiction.

So qm,s is not computed by circuits of size less than
√
s. This gives us a family of hard

polynomials F := {qm,s | s ∈ N,m = ε(s)} such that it is: 1) m-variate and the individual

degree is less than δ for some constant δ, and 2) computable in poly(f(s)) time but no

circuits of size less than
√
s can compute it.

In the following claim, we describe how to reduce variables nontrivially using F ’s

hardness.

Claim 3.3.2 (Subexp var.reduction). Using F , for some constant c, we have an exp(ε(sc)2/ log s)-

time computable variable reduction map, from s to dε(sc)2/ log se, that preserves nonze-

roness for s-variate degree s polynomials computed by size s circuits. Furthermore, after

the variable reduction, the degree of the new polynomial will be poly(s).

Define ε′ := ε′(s) := dε(sc)2/ log se. Using the above claim, any s-variate degree

s nonzero polynomial P computed by a size s circuit can be converted to a ε′-variate

nonzero polynomial P ′ of degree sO(1). P ′ has a sO(ε′)-time computable hitting set

(Corollary 2.3.2). Total time taken (variable reduction + hitting set complexity) is

exp(O(ε′)) + exp(O(ε′) log s). Since f ∈ subexp, ε′ = so(1). So the total time is also in

subexp. In terms of f , our time complexity is exp(O(log2 f(s0))), where s0 = sc.

Now we discuss the hardness of {qm,s | s ∈ N, m = ε(s)} with respect to m, i.e.,

the number of variables of qm,s. We know that qm,s requires circuit size ≥
√
s. Since

m = ε(s) = so(1), the circuit size is mω(1). On the other hand, qm,s is poly(f(s)) = 2O(m)-

time computable and has individual degree less than δ for some constant δ. Now apply the

following transformation on qm,s: replace every monomial
∏m
i=1 x

ei
1 in the support of qm,s by∏n

i=1

∏ei
j=1 yij

2. It is not hard to verify that our new polynomial is a δm-variate multilinear

2If one becomes more careful, this transformation can done with mdlog δe variables. It is similar to the

55

polynomial with circuit size remains mω(1) and also 2O(m)-time computable. This gives a

2O(m)-time computable multilinear polynomial polynomial family {qm}m≥1 with circuit

complexity mω(1). Then using Lemma 2.3.5, we get our lower bound result. However, the

situation here is slightly different from Lemma 2.3.5. In the hypothesis of Lemma 2.3.5, we

assume exponentially hard polynomial family. But, our qm is super-polynomially hard. So,

if we follow the same proof, in the conclusion we get an E-computable super-polynomially

hard polynomial family which gives us E*#P/poly or VP 6=VNP.

The lower bound for qm,s can also be calculated in terms of f . Since m = ε(s) =

10dlog f(s)e and f is an increasing function, so s = f−1(2Ω(m)). This implies that qm,s

requires circuit size (f−1(2Ω(m)))Ω(1).

Claim 3.3.2 (restated). Using F , for some constant c, we have an exp(ε(sc)2/ log s)-time

computable variable reduction map, from s to dε(sc)2/ log se, that preserves nonzeroness for

s-variate degree s polynomials computed by size s circuits. Furthermore, after the variable

reduction, the degree of the new polynomial will be poly(s).

Proof. Idea is the same as in the proof of Lemma 2.3.8. Technical difference is due to the

different parameters of Nisan-Wigderson design. Here we provide the details.

Let P be the set of n-variate degree s polynomials computed by size s circuits. The

number of variables n ≤ s. Let ε′ := ε′(s) := dε(sc)2/ log se. Constant c will be fixed later.

Next we describe how to reduce number of variables for every P ∈ P, from n to ε′.

Let s0 := sc. Let {S1, . . . , Sn} be an (ε′, ε(s0), 10dlog se)-design on the variable set

z := {z1, . . . , zε′} (Lemma 2.3.7). Define for all i ∈ [n], qε(s0),s0(Si) =: pi with Si as the

set of variables. For pi, we do not have circuit of size <
√
s0. Then, we show that for any

nonzero polynomial P (x) ∈ P, P (p1, . . . , pn) is also nonzero.

For the sake of contradiction, assume that P (p1, . . . , pn) = 0. Since P (x) is nonzero,

we can find the smallest j ∈ [n] such that P (p1, . . . , pj−1, xj , . . . , xn) =: P1 is nonzero, but

P1

∣∣
xj=pj

is zero. Thus, (xj − pj) divides P1. Let a be an assignment on all the variables in

P1, except xj and the variables Sj in pj , with the property: P1 at a is nonzero. Since P1 is

transformation we mentioned in the proof of Lemma 2.3.5. Only difference is that here we applying this
transformation on the monomials.

56

nonzero, we can find such an assignment. Now our new polynomial P2 on the variables Sj

and xj is of the form:

P2(Sj , xj) = P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , an)

where, for each i ∈ [j − 1], p′i is the polynomial on the variables Si ∩ Sj , and ak’s

are field constants decided by the assignment a. By the design, for each i ∈ [j − 1],

|Si ∩ Sj | ≤ 10dlog se. Since p′i’s are polynomials on variables Si ∩ Sj of individual-degree

< δ, each p′i has a circuit (of form ΣΠ) of size at most 10dlog seδ · δ10dlog se ≤ sc0 for some

constant c0. Then we have a circuit for P2 of size at most s1 := s+ n · sc0 , and the degree

of P2 is at most d1 := s · 10dlog seδ. Since (xj − pj) divides P2, we can invoke Kaltofen’s

factoring algorithm (Lemma 2.3.3) and get an algebraic circuit for pj of size (s1d1)c1 , for

some constant c1. Consequently, we have a circuit for pj of size ≤ sc′1 for some constant c′1

(independent of c). On the other hand, pj has no circuit of size < sc/2. Pick c greater than

2c′1. Then we get a contradiction. So, for c > 2c′1, P (p1, . . . , pn) remains nonzero.

The time for computing (p1, . . . , pn) depends on: (1) computing the design (i.e., 2O(ε′)-

time), and (2) computing pi’s (i.e, 2O(ε(s0))-time). Thus, the variable reduction map is

computable in exp(O(ε′)) time, as ε(s0) ≥ log s.

After variable reduction, the degree of the new polynomial will be ≤ s · deg(qε(s0),s0) =

sO(1).

3.4 Discussion

Our Theorem 3.1.1 can also be seen through the lens of fixed-parameter tractable (FPT)

algorithms. In FPT-algorithm, one provides input with multiple parameters, with the

intention that the running time will be polynomial in input size but possibly exponential

(or worse) in other parameters [DF13]. Here, circuit is the primary input and the running

time of the FPT-blackbox PIT must depend polynomially on the circuit size s. We consider

the number variables n as the extra parameter in the FPT-algorithm for PIT. Then, our

Theorem 3.1.1 says that if, for some c ∈ N, we have a blackbox fpt-algorithm for PIT of

57

running time poly(s) · exp◦c(n), we completely solve PIT. This reduces the dependence of

PIT algorithm on the number of variables significantly.

One immediate open question after Perfect Bootstrapping can be to show a polynomial

time blackbox PIT algorithm from a polynomial size hitting set for log? s-variate circuits. If

we try an iterative approach like our proof of Perfect Bootstrapping to stretch the variables,

the size of the final hitting set would not be polynomial. So, we need a different idea. Later,

in Section 4.4 of Chapter 4, we discuss a result by [GKSS19] which resolves this question.

Chapter 4

Constant Bootstrapping

Abstract

This chapter is based on joint work with Manindra Agrawal and Nitin Saxena

[AGS18].

In this chapter, we study the bootstrapping of hitting sets for constant variate

circuits. Unlike Perfect Bootstrapping in the previous chapter, here in the conclusion

we get a “slightly” super polynomial (sexp ◦ exp(O(log? s))) size hitting set for size s

degree s circuits. This phenomenon of constant bootstrapping implies a powerful

amplification of derandomization for PIT. We show that a hitting set for n-variate

size s degree s circuits of size as bad as sn
δ
, where δ is a constant < 1/2, can be used

to get an sexp ◦ exp(O(log? s)) size hitting set for size s degree s circuits.

4.1 Our results and proof ideas

The bootstrapping idea brings forth pleasant surprises if we are willing to content ourselves

with a “slightly” super-polynomial time blackbox PIT in the conclusion. In that case, we

can even do bootstrapping from the hitting sets of constant variate circuits. Formally, we

show the following.

59

60

Theorem 4.1.1 (Constant Bootstrapping). Let e ≥ 2 and 1 > ε ≥ (3+6 log(128e2))/(128e2)

be some constants. Let n be a constant greater than or equal to dmax{192e2 log(128e2)1/ε, (64e2)1/ε}e.

For all sufficiently large s, suppose that we have an se-size poly(s)-time computable hit-

ting set for n-variate degree s polynomials computed by size s circuits. Then, we have an

sexp ◦ exp(O(log? s))-time computable hitting set for the class of s-variate polynomials computed

by size s degree s circuits and Conjecture 1 holds.

In the above theorem, the exponent e in the size of the hitting set is a constant just

below
√
n/8, where n is the number of variables. This can be achieved from a “poor”

quality blackbox PIT algorithm (thinking both s and n as independent parameters).

Theorem 4.1.2. Let δ be a constant less than 1/2. For some sufficiently large constant

n and all s ≥ n, suppose that we have an sn
δ
-size poly(s)-time computable hitting set

for all n-variate polynomials computed by size s degree s circuits. Then, we have an

sexp ◦ exp(O(log? s))-time computable hitting set for the class of s-variate polynomials computed

by size s degree s circuits and Conjecture 1 holds.

The trivial derandomization of [DL78, Zip79, Sch80] gives a (s+ 1)n-size hitting set for

n-variate degree-s polynomials (Corollary 2.3.2). On the other hand, our aim is to design

a poly(s)-size hitting set for s-variate polynomials computed by size s degree s circuits.

Therefore, the above theorem can be seen as a powerful amplification of derandomization

for PIT. It converts a “slightly” better hitting set (over the trivial one) to an “almost”

optimal hitting set for PIT. Additionally, the lower bound result that it gives is truly

exponential.

The overall proof strategy is similar to the proof of Perfect Bootstrapping (Theorem

3.1.1). However, we have to be more careful while fixing the associated parameters.

This makes the proof technically more challenging than the proof of Theorem 3.1.1. In

Perfect Bootstrapping, we assume an se-size hitting set, where e is a constant, for log◦c s-

variate degree s polynomials computed by size s circuits. On the other hand, Theorem 4.1.1

assumes an se-size hitting set for n-variate degree s polynomials computed by size s circuits,

where n ≥ dmax{192e2 log(128e2)1/ε, (64e2)1/ε}e and 1 > ε ≥ (3 + 6 log(128e2))/(128e2)

61

are constants. In both cases, our hypotheses demand improved hitting set over the trivial

ones (namely, (s+ 1)log◦c s and (s+ 1)n respectively). This is the common strength of both

the hypotheses, which is exploited in the proofs.

In Theorem 4.1.1 we desire, for a given e, to find the minimum number of variables for

which we can reach the conclusion. This imposes more technical challenges and in many

steps of the proof we have to work with much finer parameters compare to Theorem 3.1.1.

For example, our calculation suggests that for e = 2, the number of variables that we need

is n = 6913 (or, for e = 3, n = 17574 suffices).

Like the proof of Theorem 3.1.1, in each inductive step, we stretch the number of

variables exponentially. However, here we finally stretch n variables to s variables, where n

is a constant. Therefore, we need around log? s steps, which is non-constant with respect

to the circuit size s. We show that if we have an (sti , sfi)-hitting set, in the i-th induction

step, then in the next step we get an (sti+1 , sfi+1)-hitting-set where ti+1 = O(t2i) and

fi+1 := 16f2
i . Hence, after log? s steps, we get a hitting set of our desired complexity.

Like in Lemma 3.2.1 (Perfect Bootstrapping), Lemma 4.3.1 combines all the crucial

tools needed in the inductive step of Theorem 4.1.1. Also, the proof outline of Lemma

4.3.1 is the same as the proof outline of Lemma 3.2.1. Our key ingredients here are

again Nisan-Wigderson design and Kaltofen’s factoring. However, we use them in a more

optimized way. It helps us improve the relation between n, e and ε.

For proving Theorem 4.1.2, we show that the hypothesis of it implies the hypothesis of

Constant Bootstrapping (Theorem 4.1.1) for some constants e, ε and n. Then, we simply

apply Constant Bootstrapping result and get Theorem 4.1.2.

4.2 Preliminaries

Here, we discuss some notations and results which will be used later in the proof of Constant

Bootstrapping. First, we describe a slightly better version (compare to Lemma 2.3.7) of

Nisan-Wigderson(NW) design. It has helped us to get better relation between the constants

(e, ε and n) in Theorem 4.1.1. For the definition of (`, n, d)-design, see Definition 2.3.6.

62

Lemma 4.2.1 (NW design). There exists an algorithm which takes (`, n, d), with ` ≥ 100

and d ≥ 13, and a base set S of size ` := d4n2/de as input, and outputs an (`, n, d)-design

D having ≥ 2d/4 subsets, in time 2O(`).

Proof. Proof is similar to Lemma 2.3.7. Due to differences in the parameters, we provide

the details. We describe a greedy algorithm to construct D.

D ← ∅;

while |D| < 2d/4 do

Find the first n-subset D of S such that ∀I ∈ D, |I ∩D| ≤ d;

D ← D ∪ {D};

end while

Using probabilistic method, we show that for |D| < 2d/4, we can always find an n-size

subset D of S such that ∀I ∈ D, |I ∩D| ≤ d. Let D be a random subset of S, constructed

by the following procedure: For all s ∈ S, s will be in D with probability 2n/`. Therefore,

the expected size of D is Exp[|D|] = 2n and for each I ∈ D, the expected size of I ∩D is

Exp[|I ∩D|] = 2n2/` ≤ d/2. Using Chernoff bound [AB09, Theorem A.14] we have that

Pr [|D| < n] = Pr

[
|D| <

(
1− 1

2

)
2n

]
≤
(

2

e

)n
and

Pr [|D ∩ I| > d] ≤ Pr

[
|D ∩ I]| ≥ 4n2

`

] (
∵ d ≥ 4n2

`

)
≤
(e

4

) 2n2

`
(applying Chernoff bound)

≤
(e

4

) d
2

(1− 1
`
)
(
∵ ` ≤ 4n2

d
+ 1

)
.

Let E denote the event that |D| < n. For all I ∈ D, let EI denote the event that

63

|D ∩ I| > d. Then,

Pr [E or ∃I ∈ D, EI] ≤ Pr[E] + |D| · Pr[EI] (Union bound)

≤
(2

e

)d
+ 2

d
4

(e
4

) d
2

(1− 1
`
)

< 1 (∵ ` > d ≥ 13) .

Thus, an n-size subset D does exist when |D| < 2d/4 and the algorithm will grow the

collection D.

It is easy to verify that the running time of the above algorithm is 2O(`).

Remark. In the above lemma, if the set S has size greater than 4n2

d , then we take a subset

of S of size d4n2

d e and run the argument.

Exponent vs variables. As we mentioned, our proof of Constant Bootstrapping is

iterative in nature. To keep track of how the hitting-set size and the number of variables

grow at each iteration, we take two sequences of numbers: 1) (fi)i≥0 (“exponent of hitting

set size”) and (mi)i≥0 (“number of variables”). They are defined as follows: f0 ≥ 2 and

m0 ≥ 1024 are two numbers and for all i ≥ 1,

fi := 16f2
i−1 and mi := 2mi−1/(64f2i−1) .

Our strategy is to use an (mi,
mi
8fi
, mi

16f2i
)-design to stretch mi variables to mi+1. We

want to show that mi grows much faster in contrast to fi. In particular, we need mi to be

a tetration in i (i.e., iterated exponentiation), while fi is “merely” a double-exponentiation

in i. In the next few propositions, we prove some properties about these two sequence of

numbers.

From now on we will assume that ε is a constant fraction satisfying 1 > ε ≥ 3+6 log(128f2i)

128f2i
,

for i = 0. Since fi increases with i, the fraction
3+6 log(128f2i)

128f2i
decreases. Thus, the constant

ε remains larger than the latter, for all i ≥ 0.

Proposition 4.2.2. If, for some i ≥ 0, mi ≥ 192f2
i · 1

ε log(128f2
i), then the same relation

holds between mi+1 and fi+1.

64

Proof. From the definition,

mi+1 = 2
mi

64f2
i

≥ 2

192f2i ·
1
ε log(128f2i)

64f2
i (from hypothesis)

= 2
3
ε

log(128f2i)

= 2
21
ε f

6
ε
i

and 192f2
i+1 · 1

ε log(128f2
i+1) = 3× 214f4

i · 1
ε log(215f4

i). Since mi+1 ≥ 221/εf
6/ε
i > 221f6

i ≥

3× 214f4
i · 1

ε log(215f4
i), we prove the required statement.

Proposition 4.2.3 (mi is a tetration). Suppose that m0 ≥ max{(8f0)
2
ε , 192f2

0 ·1ε log(128f2
0)}.

Then for all i ≥ 0: 1) mi+1 ≥ 2m
1−ε
i and 2) mi+1 ≥ 2mi > 3456f2

i .

Proof. (1) Proving mi+1 ≥ 2m
1−ε
i is equivalent to proving mi ≥ (8fi)

2
ε . Hence, at i = 0,

the hypothesis implies that m1 ≥ 2m
1−ε
0 .

For i ≥ 1, to prove mi ≥ (8fi)
2
ε , it is sufficient to prove that mi−1 ≥ 64f2

i−1 · 2
ε log(8×

16f2
i−1) = 128f2

i−1 · 1
ε log(128f2

i−1). The latter relation is true for i = 1. Using Proposition

4.2.2, we can claim that for all i ≥ 0, mi ≥ 192f2
i · 1

ε log(128f2
i). Consequently, for all

i ≥ 0, mi+1 ≥ 2m
1−ε
i .

(2) From mi ≥ 192f2
i · 1

ε log(128f2
i) we get that mi > 192f2

i × 9 = 1728f2
i .

Proving mi+1 ≥ 2mi is equivalent to proving mi ≥ 64f2
i log(2mi). For all fi, let

g(fi) := 192f2
i · 1

ε log(128f2
i). Then,

g(fi)

log(2g(fi))
= 64f2

i ·
3 log 128f2

i

ε log(2g(fi))
.

Note that the right multiplicand of the right hand side is ≥ 1 for all i. Hence, g(fi)
log(2g(fi))

≥

64f2
i for all i.

The hypothesis on m0 and Proposition 4.2.2 ensure mi ≥ g(fi) for all i. Since x
log 2x is

an increasing function for all x ≥ 2, we can say that

mi

log(2mi)
≥ g(fi)

log(2g(fi))
≥ 64f2

i .

65

Once we know that mi grows rapidly, we want to estimate the number of iterations

before which it reaches s.

Proposition 4.2.4 (Iteration count). The least i, for which mi ≥ s, is ≤ 3
1−ε log

(
3

1−ε

)
+

2 log? s.

Proof. Let i0 := 3
1−ε log

(
3

1−ε

)
. Note that for all m ≥ 2i0 , m1−ε > logm

1−ε . By Proposition

4.2.3 we know that mj more than doubles as we go from j to j + 1. Hence, for all j ≥ i0,

mj > 2i0 . Therefore, for all j ≥ i0,

m1−ε
j >

logmj

1− ε
, which implies 2(1−ε)m1−ε

j > mj .

Also, from the previous proposition we have that mj+1 ≥ 2m
1−ε
j . Hence, for all j ≥ i0,

mj+2 ≥ 22
(1−ε)·m1−ε

j
> 2mj .

Hence, beyond i = i0 + 2 log? s, we have mi ≥ s.

4.3 Proofs of our results

Now we describe a single step of the bootstrapping. In the proof, we assume that mi’s and

fi’s satisfy the hypothesis of Proposition 4.2.3.

Lemma 4.3.1 (Induction step). Suppose that for all sufficiently large s, we have an

(sti , sfi)-hitting set for mi-variate degree s polynomials computed by size s circuits. Then

we have an (sti+1 , sfi+1)-hitting set for m-variate degree s polynomials computed by size s

circuits, where m = min{mi+1, s
1
4 } and ti+1 = ct2i for some constant c.

Proof. For given m and s, we want to design hitting set for polynomials in P [m, s, s]. From

the hypothesis, for all w ≥ s, we have a (wti , wfi)-hitting set for P [mi, w, w]. Without loss

of generality, we can assume that mi is less than s
1
4 . Let n := min{mi, 16f2

i dlog se}. For

all w ≥ s, the hypothesis promises a (wti , wfi)-hitting set for P [n,w,w]. See Figure 4.1 for

the outline of the proof.

66

Constructing hard polynomial: First we describe how to construct a hard polynomial

against w-size circuits, for all w ≥ s. Let δw := dw
fi(8fi+1)

n e and n1 := b n8fi c. Since δ
n
8fi
w is

at least wfi+
1
8 and δw is much less than w

1
8 for sufficiently large value of s, δn1

w is greater

than wfi . Now using Lemma 2.3.4, for all w ≥ s, we get a polynomial qw such that

• individual degree is less than δw, n1-variate and the total degree n1δw ≤
√
w

• not computable by size w circuits, since qw /∈ P[n,w,w], the total degree is ≤ w and

the number of variables is ≤ n

• computable by a depth-2 circuit of size O(wfi+
1
2) and the circuit can be constructed

in time wO(ti).

Variable reduction map: Now we construct a nonzeroness preserving variable reduction

for polynomials in P [m, s, s] such that every nonzero polynomial in P [m, s, s] composed with

the variable reduction becomes a nonzero polynomial in P [n, s12fi , s12fi]. Let {S1, . . . , Sm}

be an (n, b n8fi c,
n

16f2i
)-design on the variable set z = {z1, . . . , zn}. The Lemma 4.2.1 ensures

that such a design exists. Let s0 := s8. Define for all j ∈ [m], pj := qs0(Sj) with Sj as the

set of variables. Next, we show that for any nonzero P ∈ P[m, s, s], P (p1, . . . , pm) is also

nonzero.

For the sake of contradiction, assume that P (p1, . . . , pm) is zero. Since P (x) is nonzero,

we can find the smallest j ∈ [m] such that P (p1, . . . , pj−1, xj , . . . , xm) =: P1 is nonzero, but

P1

∣∣
xj=pj

is zero. Thus, (xj − pj) divides P1. Let a be an assignment on all the variables in

P1, except xj and the variables Sj in pj , with the property: P1 at a is nonzero. Since P1 is

nonzero, we can find such an assignment. Now our new polynomial P2, on the variables

Sj and xj , is of the form P2(Sj , xj) := P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , am), where for each

i ∈ [j− 1], p′i is the polynomial on the variables Si ∩Sj , and ai’s are field constants decided

by the assignment a. By the design, for each i ∈ [j − 1], |Si ∩ Sj | ≤ n
16f2i

. Since each p′i is

a polynomials on variable Si ∩ Sj of individual degree less than δs0 , each p′i has a circuit

(of form ΣΠ) of size at most

n

16f2
i

δs0 · δ
n

16f2
i

s0 .

67

Thus, we have a circuit for P2 of size at most s1 and the degree is at most d1, where

s1 := s+
mnδs0
16f2

i

· δ
n

16f2
i

s0 and d1 := s · nδs0
16f2

i

.

Since (xj − pj) divides P2, we can invoke Kaltofen’s factoring algorithm (Lemma 2.3.3)

and get an algebraic circuit for pj of size

s′0 := O(s1d
2
1) + Õ(d3

1) .

From Claim 4.3.2, we know that s′0 < s0, for large enough s 1. This implies that qs0 has a

circuit of size≤ s0, which contradicts the hardness of qs0 . Hence, P ′ := P (p1, . . . , pm) is

nonzero n-variate polynomial.

Using the given hitting set: Now we calculate the degree and the circuit size of the

polynomial P ′.

• Circuit size: From the the property of the hard polynomial, we know each pi has a

circuit (of form ΣΠ) of size O(s8fi+4). Therefore, the total circuit size of P ′ is upper

bounded by s+O(ms8fi+4) ≤ s12fi .

• Degree: Since the degree of each pi ≤ s4 and the degree of P ≤ s, the total degree of

P ′ is upper bounded by s5.

Hence, the polynomial P ′ ∈ P[n, s12fi , s12fi]. Now, we use the s12fi-size hitting set to test

nonzeroness of P ′.

Time Complexity: In brief, we have the following steps to construct the hitting set of

P[m, s, s].

1. Constructing the hard polynomial qs8 (as ΣΠ circuit) from the hitting set of P [n, s8, s8].

2. Compute NW design {S1, . . . , Sm} on the variable set z = {z1, . . . , zn}.

3. Let pi := qs8(Si) and p(z) = (p1, . . . , pm). Let H be the hitting set of P [n, s12fi , s12fi]

1Over finite fields, the explanation will be same as the the explanation given in the remark after the
proof of Lemma 3.2.1

68

promised in the hypothesis. Then output

H′ := {p(a) | a ∈ H}

as a hitting set of P[m, s, s].

The time complexity of constructing hitting set of P [m, s, s] has the following components:

1. Computing qs8 takes sO(ti) time, as mentioned in the properties of the hard polynomial.

2. Computing Nisan-Wigderson design takes sO(f2i) time, since n ≤ 16f2
i dlog se (see

Lemma 4.2.1).

3. Computing H, the hitting set of P [n, s12fi , s12fi], takes sO(tifi) = sO(t2i) time. For each

a ∈ H, computing p(a) takes s12fi time. Therefore, computing all the points in H′

takes s12fi(fi+1) time.

Hence, the overall process takes sct
2
i time, for some constant c.

Claim 4.3.2. Let s0 := s8. Then for sufficiently large s, s′0 = O(s1d
2
1) + Õ(d3

1) is less than

s0, where

s1 := s+
mnδs0
16f2

i

· δ
n

16f2
i

s0 and d1 := s · nδs0
16f2

i

.

Proof. We bound each summand of s′0. From Claim 4.3.3, we know that

δ

n

16f2
i

s0 ≤ 2s5+ 1
4 and δs0 ≤ 2s

1
27

+ 1
432 .

First part:

O(s1d
2
1) ≤ O

(
s +

mn

16f2
i

· δ
1+ n

16f2
i

s0

)
·O
(
snδs0
16f2

i

)2

≤ s3+o(1)δ2
s0 + s

9
4

+o(1)δ
3+ n

16f2
i

s0

(
∵ m = s

1
4 , n ≤ 16f2

i dlog se
)

≤ 4s4+o(1) + 8s
9
4

+ 3
27

+ 3
432

+o(1) · δ
n

16f2
i

s0 (substituting δs0 ≤ 2s
1
27

+ 1
432)

≤ 4s4+o(1) + 16s
9
4

+ 3
27

+ 3
432

+5+ 1
4

+o(1) (substituting δ

n

16f2
i

s0 ≤ 2s5+ 1
4)

≤ 4s4+o(1) + 16s7.62+o(1)

69

Second part:

Õ(d3
1) ≤ Õ

(snδs0
16f2

i

)3

≤ s3+o(1) · δ3
s0

(
∵ n ≤ 16f2

i dlog se
)

≤ s3+o(1) · 8s
3
27

+ 3
432

(
substituting δs0 ≤ 2s

1
27

+ 1
432

)
≤ s4, for sufficiently large s.

Hence s′0 = O(s1d
2
1) + Õ(d3

1) < s0 = s8, for sufficiently large s.

Claim 4.3.3. For sufficiently large s, we have

1. δ

n

16f2
i

s0 ≤ 2 · s5+ 1
4 .

2. δs0 ≤ 2s
1
27

+ 1
432 .

Proof. 1.

δ

n

16f2
i

s0 ≤
(

2s
fi(8fi+1)

n
0

) n

16f2
i (∵ δs0 := ds

fi(8fi+1)

n
0 e)

≤ 2dlog se · s
1
2

+ 1
32

0 (∵ fi ≥ 2 and n ≤ 16f2
i dlog se)

≤ 2 · s5+ 1
4 (∵ s0 = s8)

2. When n = mi,

δs0 ≤ 2s
fi(8fi+1)

mi
0

≤ 2s
64

1728
+ 8

3456 (∵ s0 = s8, mi ≥ 1728f2
i and fi ≥ 2)

≤ 2s
1
27

+ 1
432

and when n = 16f2
i dlog se,

δs0 ≤ 2s

fi(8fi+1)

16f2
i
dlog se

0

≤ 2s
4

dlog se+
1

4dlog se (∵ s0 = s8, fi ≥ 2)

≤ 2s
1
27

+ 1
432 , for large s

70

Step 1: hitting set to
hard polynomial

Step 2: variable reduction

Step 3: reusing hitting
set of P[n,w,w]

Assumption:
(wti , wfi)-hitting
set for P[n,w,w]

hard polynomial qw,
where w = s8

get (sti+1 , sfi+1)-
hitting set of
P[m, s, s]

P[n, s12fi , s12fi]
m = min{mi+1, s

1
4 }

n = min{mi, 16f2
i dlog se}

ti+1 = O(t2i) and fi+1 = 16f2
i

Goal: hitting set
of P[m, s, s]

Figure 4.1: Proof structure of Lemma 4.3.1

Now we describe the proofs of our theorems.

Theorem 4.1.1 (restated). Let e ≥ 2 and 1 > ε ≥ (3 + 6 log(128e2))/(128e2) be some

constants. Let n be a constant greater than or equal to dmax{192e2 log(128e2)1/ε, (64e2)1/ε}e.

For all sufficiently large s, suppose that we have an se-size poly(s)-time computable hitting

set for n-variate degree s polynomials computed by size s circuits. Then, we have an

sexp ◦ exp(O(log? s))-time computable hitting set for the class of s-variate polynomials computed

by size s degree s circuits and Conjecture 1 holds.

Proof. From the hypothesis, we get an (st0 , sf0)-hitting set for P [m0, s, s], where t0 is some

constant b, f0 = e and m0 = n. The hypothesis also ensures that m0 and f0 satisfy the

condition mentioned in the hypothesis of Proposition 4.2.3. Now we apply the Lemma

4.3.1 repeatedly and get a hitting set for P[s
1
4 , s, s]. According to Proposition 4.2.4, we

have to apply the Lemma 4.3.1 k many times to get a hitting set for P[s
1
4 , s, s], where

k = O(log? s). It is easy to verify that

• fk = (16)2k−1 · e2k = exp ◦ exp(O(log? s)).

71

• tk = c2k−1 · b2k = exp ◦ exp(O(log? s)), where c is the constant mentioned in Lemma

4.3.1.

Now we have an sexp ◦ exp(O(log? s))-time computable hitting set for P[s
1
4 , s, s]. Since

P[s, s, s] is a subset of P[s, s4, s4], we construct a hitting set for P[s, s4, s4] in time

sexp ◦ exp(O(log? s)) using the above mentioned procedure and get a hitting set for P[s, s, s]

of desired complexity. For more details, see Algorithm 1.

The final the hitting set we are getting for P [s, s, s] is not a polynomial time computable

hitting set. Therefore using Lemma 2.3.4, we can not obtain a E-computable polynomial

family with exponential hardness. To prove Conjecture 1, we invoke our Shallow Boot-

strapping result (Theorem 5.1.1). In Shallow Bootstrapping, we show the following: if for

a constant n ≥ 3 and all sufficiently large s we have an o(sn/2)-size explicit hitting set

for n-variate size s depth-4 circuits, then we get a quasi-polynomial time PIT for general

circuits and Conjecture 1 holds. Since f0 < m0/2, one can see that the hypothesis of

Theorem 5.1.1 is satisfied. Therefore, applying Theorem 5.1.1 we get Conjecture 1. For

details, see the proof of Theorem 5.1.1 in Section 5.2.

Theorem 4.1.2 (restated). Let δ be a constant less than 1/2. For some sufficiently

large constant n and all s ≥ n, suppose that we have an sn
δ
-size poly(s)-time computable

hitting set for all n-variate polynomials computed by size s degree s circuits. Then, we

have an sexp ◦ exp(O(log? s))-time computable hitting set for the class of s-variate polynomials

computed by size s degree s circuits and Conjecture 1 holds.

Proof. Suppose that we have, for some constant δ < 1/2 and some sufficiently large

n, an (sO(1), sn
δ
)-hitting set for size s degree s circuits over n variables. By invoking

Lemma 2.3.11, we know that P[n, s, s] is a subset of poly(s)-size degree s circuits over

n variables. Therefore, for P[n, s, s] we have a hitting set of size (sO(1), sO(nδ)). For

sufficiently large n, sO(nδ) ≤ sn
δ1 where δ1 is a constant from (δ, 1/2). This implies that

we have a (sO(1), sn
δ1)-hitting set for P[n, s, s] where δ1 is a constant less than 1/2.

For every ε ∈ (2δ1, 1), we can pick some large enough n such that

n ≥ d(64e2)1/εe ≥ 192e2 log(128e2)1/ε, where e := nδ1 ,

72

since 2δ1
ε < 1. For such an n, we have an (sO(1), se)-hitting set for P [n, s, s]. Now we simply

invoke Theorem 4.1.1.

Remark. We give an explanation why we need the second exponent δ in Theorem 4.1.2

to be slightly less than 1/2. The reason is technical. For explaining it, we need to go back

to the variable reduction step in the proof of Lemma 4.3.1. Let (`, k, d) be the parameters

used for the NW design in that step. To show the contradiction, we calculated the circuit

size for the polynomial P2 = P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , am), and the major contribution

came from the estimation of the circuit size of each p′i. We estimated the size needed for

a depth-2 representation of each p′i, and it becomes δds0 . Since δs0 is approximately s
fi/k
0 ,

our estimated circuit size for each p′i was around s
fid/k
0 . For contradiction (i.e., circuit

size of pj is less than s0), k has to be greater than fid. This says that the ratio k : d is

roughly equal to fi : 1. According to Lemma 4.2.1, to get a (`, k, d)-design we need ` to

be around k2

d . Hence, the (`, k, d)-design we are using in Lemma 4.3.1 has its respective

parameters in the ratio f2
i : fi : 1 (roughly). This seems to be the reason why we need the

second-exponent δ to be slightly less than 1/2. However, in the next section, we mention

some recent developments which improve our Theorem 4.1.2 significantly.

4.4 Discussion

In the original version of our work [AGS18], improving Theorem 4.1.2 was left as an open

question. Later, in subsequent works, it is improved significantly. First, [KST18] gave an

improvement by weakening the hypothesis of Theorem 4.1.2. They showed that instead of

an sn
δ
-size (for some constant δ < 1/2) explicit hitting set, an sn−ε-size (for some constant

ε > 0) explicit hitting set for n-variate polynomials computed by size s degree s circuits also

gives the same conclusion as Theorem 4.1.2. Their proof also works for weaker models of

computation like formula, algebraic branching programs. Later, [GKSS19] further improved

it. For n-variate polynomials with individual degree s and computable by size s circuits

has a trivial hitting set of size (s + 1)n. They showed that even saving a single point

over the trivial hitting set (i.e., hitting set of size (s + 1)n − 1) gives a polynomial-size

73

Algorithm 1 Constant Bootstrapping

1: Input: 1s

2: Output: Hitting set of P[s, s, s].
3: Assumption: wf0-size explicit hitting set for P[m0, w, w]. We denote it by Hw.

4: Compute the smallest integer k such that mk ≥ s;
5: n← min{mk−1, 16f2

k−1dlog s4e};
6:

7: H ←Compute Hitting-set(s4, k);
8: return H as a hitting set of P[s, s, s];
9:

10: function Compute Hitting-set(w, i) //computes hitting set for P[mi, w, w].
11: if i = 0 then
12: return Hw;
13:

14: else if i = k then
15: H ← Compute Hitting-set(w8, k − 1);
16: From H, compute the hard polynomial qw8 ;
17:

18: Let {S1, . . . , Ss} be

(
n, b n

8fk−1
c, n

16f2k−1

)
-design over z = {z1 . . . , zn};

19: Let pj be the polynomial qw8(Sj) and p(z) = (p1, . . . , ps);
20:

21: H ←Compute Hitting-set(w12fk−1 , k − 1)
22: H′ ← {p(a) | a ∈ H};
23: return H′;
24:

25: else if i < k then
26: i← i− 1;
27: H ← Compute Hitting-set(w8, i);
28: From H, compute the hard polynomial qw8 ;
29:

30: Let {S1, . . . , Smi+1} be
(
mi, bmi8fi

c, mi
16f2i

)
-design over z = {z1 . . . , zmi};

31: Let pj be the polynomial qw8(Sj) and p(z) = (p1, . . . , pmi+1);
32:

33: H ←Compute Hitting-set(w12fi , i)
34: H′ ← {p(a) | a ∈ H};
35: return H′;
36: end if
37: end function

74

hitting set in the conclusion. Their proof does not rely on clever combinatorial designs like

Nisan-Wigderson design. Their hitting set generator is purely algebraic. Unlike [KST18],

the proof in [GKSS19] does not work for weaker models like formula, algebraic branching

programs.

Chapter 5

Shallow Bootstrapping

Abstract

This chapter is based on joint work with Manindra Agrawal and Nitin Saxena

[AGS18].

In this chapter, we study the bootstrapping for shallow depth circuits. We show

that if for a constant n ≥ 3 and all sufficiently large s we have a o(sn)-size explicit

hitting set for n-variate size s depth-4 circuits, then for all s, we have an sO(log s)-time

computable hitting set for s-variate size s degree s circuits. We also show similar

bootstrapping results for two other special classes of depth-4 circuits, which are

depth-4 diagonal circuits (Σ ∧ ΣΠ) and preprocessed depth-3 circuits (ΣΠΣ∧).

5.1 Our results and proof ideas

Unlike boolean circuits, the algebraic circuits have amazing depth reduction properties.

Suppose that a size s circuit C computing a d-degree polynomial. Then [VSBR83] showed

that C can be converted to a poly(sd)-size O(log d)-depth circuit computing the same

polynomial. Later, [AV08, Koi12, Tav13] showed that the circuit C can even be converted

to an sO(
√
d)-size depth-4 circuit computing the same polynomial. It was further improved

75

76

by [GKKS16] where they showed that C can be reduced to a depth-3 circuit of size sO(
√
d)

1. One interesting outcome of these results is that any circuit computing low degree (i.e.,

d = O(s)) polynomial can be converted to a depth-4 (or depth-3) circuit of nontrivial size

(i.e., better than ΣΠ representation). These depth reduction results have also interesting

consequences in the derandomization of PIT. [AV08] showed that polynomial time blackbox

PIT algorithm for depth-4 circuits gives quasi-polynomial time blackbox PIT algorithm for

general circuits. A similar result also shown in [GKKS16] by assuming polynomial time

blackbox PIT algorithm for depth-3 circuits.

The above results show that even if one can completely derandomize PIT for depth-4

(or depth-3) circuits, that would be a very good progress towards derandomizing PIT for

general circuits. We strengthen [AV08] in the following way: our conclusion is as strong as

theirs, but our hypothesis needs a hitting set which is slightly better than the trivial one.

Formally, we show the following.

Theorem 5.1.1 (Shallow Bootstrapping). Let n ∈ N be a constant greater than or equal to

3. For all sufficiently large s, suppose that we have a o(sn/2)-size poly(s)-time computable

hitting set for n-variate polynomials computed by size s depth-4 circuits. Then, we have an

sO(log s)-time computable hitting set for the class of s-variate polynomials computed by size

s degree s circuits and Conjecture 1 holds.

Remark. If we fix n = 3, then the hypothesis demands a o(s1.5)-size explicit hitting set

for tri-variate size s depth-4 circuits. While (s+ 1)3-size hitting set is trivial to design.

Our proof of Shallow Bootstrapping is via an intermediate model. For all s ∈ N, let Ts

be the set of n log s-variate multilinear polynomials computed by size s depth-4 circuits.

First, we show that a o(sn)-size poly(s)-time computable hitting set for Ts implies the

conclusion of Shallow Bootstrapping. Here, the proof is along the lines of [AV08, Theorem

3.2]. First step is to construct a 2O(m)-time computable but exponentially hard (for depth-4

circuits) multilinear polynomial family {qm}m≥1 from the hitting set of Ts. Then we show

that the multilinear polynomial family is also exponentially hard for general circuits. From

this hard polynomial family, we get sO(log s)-time blackbox PIT algorithm for size s degree

1It only holds over characteristic zero fields.

77

s circuits using Lemma 2.3.8 and Conjecture 1 using Lemma 2.3.5. Next, we show that

the hypothesis of Shallow Bootstrapping (Theorem 5.1.1) gives a o(sn)-size poly(s)-time

computable hitting set for Ts. We show that by giving a nonzeroness preserving reduction

from Ts to n-variate polynomials computed by O(s2)-size depth-4 circuits.

We also have similar results like Shallow Bootstrapping for two special classes of depth-4

circuits: 1) depth-4 diagonal circuits, and 2) preprocessed depth-3 circuits. Depth-4 diagonal

circuits compute the polynomials of form
∑

i∈[k] cif
ai
i , where fi’s are sparse polynomials

(i.e., sum of monomials) of degree ≤ b, ai ≤ a and ci’s are in F. A standard notation to

denote this class is Σ ∧a ΣΠb. Preprocessed depth-3 circuits (ΣΠΣ∧) are quite close to

depth-3 circuits. We get this model by simply substituting univariate monomials in the

variables of a depth-3 circuit. Unlike our previous bootstrapping theorems, these results

require the characteristic of the underlying field to be zero. For depth-4 diagonal circuits,

we prove the following theorem.

Theorem 5.1.2 (Tiny variate Σ ∧a ΣΠ). Let n ∈ N be a constant greater than or equal to

3 and a(·) be some growing function over N. For all sufficiently large s, suppose that we

have a o(sn/2)-size poly(s)-time computable hitting set for n-variate polynomials computed

by size s Σ ∧a ΣΠ circuits. Then, we have an sO(log s)-time computable hitting set for the

class of s-variate polynomials computed by size s degree s circuits and Conjecture 1 holds.

For preprocessed depth-3 circuits, we show the following.

Theorem 5.1.3 (Tiny variate ΣΠΣ∧). Let n ∈ N be a constant greater than or equal to

3. For all sufficiently large s, suppose that we have a o(sn/2)-size poly(s)-time computable

hitting set for n-variate polynomials computed by size s ΣΠΣ∧ circuits. Then, we have an

sO(log s)-time computable hitting set for the class of s-variate polynomials computed by size

s degree s circuits and Conjecture 1 holds.

Proofs of both the theorems are similar to the proof of Shallow Bootstrapping (Theorem

5.1.1). The proofs will go via intermediate models. In the next section, we give the detailed

proofs.

78

5.2 Proofs of our results

First we prove the bootstrapping results obtained from depth-4 diagonal circuits (Σ∧a ΣΠ)

and preprocessed depth-3 circuits (ΣΠΣ∧). As we mentioned, both the proofs will go via

intermediate models. In the following theorem, we describe the intermediate result needed

for proving the bootstrapping result regarding Σ ∧a ΣΠ circuits.

Theorem 5.2.1. Let n ∈ N be a constant greater than or equal to 2 and a(·) be some

growing function over N. For all sufficiently large s, suppose that we have a poly(s)-

time computable hitting set of size less than sn for n log s-variate multilinear polynomials

computed by size s Σ∧a ΣΠ circuits. Then, we have an sO(log s)-time computable hitting set

for the class of s-variate polynomials computed by size s degree s circuits and Conjecture 1

holds.

Proof. The proof is along the lines of [AV08, Theorem 3.2]. For all s ∈ N, let Ts be

the set of n log s-variate multilinear polynomials computed by size s Σ ∧a ΣΠ circuits.

According to the hypothesis, we have a poly(s)-time computable hitting set Hs of size less

than sn for Ts. First, we show how to construct an exponentially hard but 2O(m)-time

computable multilinear polynomial family {qm}m≥1 from the hitting set of Ts. From this

hard polynomial family, we get an poly(slog s)-time computable hitting set for size s degree

s circuits by using Lemma 2.3.8 and get Conjecture 1 using Lemma 2.3.5. Next we discuss

how to construct the hard polynomial family from the promised hitting set of Ts.

Let m := n log s. The number of m-variate multilinear monomials is

2m = sn > |Hs| , for all s ∈ N of form 2k.

Hence, using Lemma 2.3.4, we get an m-variate multilinear polynomial qm /∈ Ts and it is

computable in sO(1) = 2O(m) time. Since qm /∈ Ts, no Σ ∧a ΣΠ circuit of size < s = 2Θ(m)

can compute it. Next we show that it is also not computable by any 2o(m)-size circuit.

For the sake of contradiction, assume that qm has a 2o(m)-size circuit. Then using

Lemma 2.3.9, we get an sm = 2o(m) size ΣΠa1ΣΠ for qm, where a1(m) ≤ a(m) and

a1(m) = o(m). Applying Lemma 2.3.13, we get a circuit computing qm of the form

79

Σ ∧a1 ΣΠ and size poly(sm · 2a1) = 2o(m) which is < s. This contradicts the hardness of

qm. Thus, there is no algebraic circuit for qm of size 2o(m). Hence proved.

Theorem 5.1.2 (restated). Let n ∈ N be a constant greater than or equal to 3 and a(·)

be some growing function over N. For all sufficiently large s, suppose that we have a

o(sn/2)-size poly(s)-time computable hitting set for n-variate polynomials computed by size

s Σ ∧a ΣΠ circuits. Then, we have an sO(log s)-time computable hitting set for the class of

s-variate polynomials computed by size s degree s circuits and Conjecture 1 holds.

Proof. For all s ∈ N, let Ts be the set of n log s-variate multilinear polynomials computed

by size s Σ ∧a ΣΠ circuits. For all s ∈ N, let Ps be the set of n-variate polynomials

computed by size s Σ ∧a ΣΠ circuits. By the hypothesis, we have a
(
poly(s), o(sn/2)

)
-

hitting set for Ps. Now we show how to convert every nonzero polynomial in Ts to a

nonzero polynomial in PO(s2) in poly(s) time. Then applying the given hitting set for

PO(s2), we get a (poly(s), o(sn))-hitting set for Ts. Next we use Theorem 5.2.1 and get our

conclusion.

Now, we describe the nonzeroness preserving reduction from Ts to PO(s2). Let T be a

nonzero polynomial in Ts. Let m := n log s. Partition the variable set {x1, . . . , xm} into n

blocks, each of size log s. For all j ∈ [n], the jth block looks like {xu(j)+1, xu(j)+2, . . . , xu(j)+log s}

where u(j) := (j − 1) log s. Consider the variable-reducing “local Kronecker” map

ϕ : xu(j)+i 7→ y2i
j . Note that ϕ(T) ∈ F[y1, . . . , yn]. It is easy to see that ϕ(T) 6= 0.

Basically, we use the fact that T is a nonzero multilinear polynomial over n log s vari-

ables, and ϕ keeps all the multilinear monomials over n log s variables distinct. Finally,

ϕ(T) becomes an n-variate polynomial computed by Σ ∧a ΣΠ circuit of size at most

s+ s · 2log s = O(s2). Thus, the hitting set for PO(s2) promised in the hypothesis gives a

(poly(s), o(sn))-hitting set for Ts.

Next we prove the bootstrapping result obtained from ΣΠΣ∧ circuits (Theorem 5.2.2).

First we show the intermediate result needed for proving the bootstrapping result regarding

ΣΠΣ∧ circuits.

Theorem 5.2.2. Let n ∈ N be a constant greater than or equal to 2. For all sufficiently

large s, suppose that we have a poly(s)-time computable hitting set of size less than sn for

80

n log s-variate multilinear polynomials computed by size s depth-3 circuits. Then, we have

an sO(log s)-time computable hitting set for the class of s-variate polynomials computed by

size s degree s circuits and Conjecture 1 holds.

Proof. Proof will be similar to the proof of Theorem 5.2.1. Main difference is that there we

were dealing with depth-4 circuits, but here we have depth-3 circuits. Therefore, we need

‘depth-3-reduction’ result [GKKS16] with ‘depth-4-reduction’ result [AV08]. For all s ∈ N,

let Ts be the set of n log s-variate multilinear polynomials computed by size s depth-3

circuits. According to hypothesis, we have a poly(s)-time computable hitting set Hs of

size less than sn for Ts.

First, we show that how to construct a hard multilinear polynomial family from the

hitting set of Ts. Let m := n log s. The number of m-variate multilinear monomials is

2m = sn > |Hs| , for all s ∈ N of form 2k.

Hence, using Lemma 2.3.4, we get an m-variate multilinear polynomial qm /∈ Ts, and it

is computable in poly(s) = 2O(m)-time. Thus, no depth-3 circuit of size < s = 2Θ(m) can

compute it. Next we show that it is also not computable by any 2o(m)-size algebraic circuit.

For the sake of contradiction, assume that qm has a 2o(m)-size circuit. Using Lemma

2.3.9, we get an sm = 2o(m)-size ΣΠaΣΠb circuit, where a, b = o(m). Next applying Lemma

2.3.10, we get an s′m =poly(sm2a+b)-size ΣΠΣ circuit for qm. Since both a, b = o(m),

s′m = 2o(m). This contradicts the hardness of qm. Thus, there is no algebraic circuit for qm

of size 2o(m).

Thus, we have a multilinear polynomial family {qm}m≥1 such that qm is computable

in 2O(m)-time but has no circuit of size 2o(m). Now we get poly(slog s)-time computable

hitting set for size s degree s circuits using Lemma 2.3.8 and Conjecture 1 using Lemma

2.3.5.

Theorem 5.1.3 (restated). Let n ∈ N be a constant greater than or equal to 3. For all

sufficiently large s, suppose that we have a o(sn/2)-size poly(s)-time computable hitting set

for n-variate polynomials computed by size s ΣΠΣ∧ circuits. Then, we have an sO(log s)-

time computable hitting set for the class of s-variate polynomials computed by size s degree

81

s circuits and Conjecture 1 holds.

Proof. The proof is similar to Theorem 5.1.2. For all s ∈ N, let Ts be the set of n log s-

variate multilinear polynomials computed by size s depth-3 circuits. For all s ∈ N, let Ps

be the set of n-variate polynomials computed by size s ΣΠΣ∧ circuits. According to the

hypothesis, we have a o(sn/2)-size poly(s)-time computable hitting set for Ps. Next we

show how to convert every nonzero polynomial in Ts to a nonzero polynomial in PO(s2) in

poly(s) time.

Let T be a nonzero polynomial in Ts. Let m := n log s. Partition the variable set

{x1, . . . , xm} into n blocks, each of size log s. For all j ∈ [n], the jth block looks like

{xu(j)+1, xu(j)+2, . . . , xu(j)+log s} where u(j) := (j− 1) log s. Consider the variable-reducing

“local Kronecker” map ϕ : xu(j)+i 7→ y2i
j . Note that ϕ(T) ∈ F[y1, . . . , yn]. It is easy to

see that ϕ(T) 6= 0. Basically, we use the fact that T computes a nonzero multilinear

polynomial over n log s variables, and ϕ keeps all the multilinear monomials over n log s

variables distinct. Finally ϕ(T) becomes an n-variate ΣΠΣ∧ circuit of size at most

s+ s · 2log s = O(s2). Thus, using the hitting set for PO(s2) promised in the hypothesis, we

get a (poly(s), o(sn))-hitting set for T .

Now we have a o(sn)-size poly(s)-time computable hitting set for Ts. Next applying

Theorem 5.2.2, we get our conclusion.

Now we give the proof of Shallow Bootstrapping.

Theorem 5.1.1 (restated). Let n ∈ N be a constant greater than or equal to 3. For all

sufficiently large s, suppose that we have a o(sn/2)-size poly(s)-time computable hitting set

for n-variate polynomials computed by size s depth-4 circuits. Then, we have an sO(log s)-

time computable hitting set for the class of s-variate polynomials computed by size s degree

s circuits and Conjecture 1 holds.

Proof. Since both depth-4 diagonal circuits (Σ ∧a ΣΠ) and preprocessed depth-3 circuits

(ΣΠΣ∧) are special cases of depth-4 circuits, each of Theorem 5.1.2 and Theorem 5.1.3 gives

a proof for Shallow Bootstrapping when the characteristic of the underlying field is zero.

Next we discuss the reasons why Theorem 5.1.2 becomes dependent on the characteristic

of the underlying field and give a brief sketch how to fix them.

82

There are two places where the proof of Theorem 5.1.2 becomes dependent on the

characteristic of the field and both of them lie in the proof of the intermediate theorem

(Theorem 5.2.1). The proof of Theorem 5.2.1 has two steps. First we show how to get

an exponentially hard multilinear polynomial family {qm}m≥1 from the hitting set of Ts.

Then, we invoke Lemma 2.3.8 which gives the construction of a quasi-polynomial size

hitting set from {qm}m≥1. In the first step, we need to convert a ΣΠaΣΠ to Σ ∧a ΣΠ, and

for that, we use Lemma 2.3.13 which depends on the characteristic of the field. However,

for general depth-4 circuits we do not need this step.

The other place where we become dependent on field’s characteristic is during the use

of Lemma 2.3.8, which gives the construction of a quasi-polynomial size hitting set from

{qm}m≥1. If the underlying field is a finite field F = Fpr of characteristic p, by invoking

Kaltofen’s factoring algorithm in the proof of Lemma 2.3.8, instead of qm, we get a small

size circuit for qp
t

m for some nonnegative integer t divisible by r. Over the finite fields, it is

not known whether a small size circuit for qp
t

m implies a small size circuit for qm. Therefore,

like in [KI04, Remark 7.5], we redefine algebraic complexity of qm over F suitably and it

works. For details, see the remark given after the proof of Lemma 2.3.8.

Hence, Theorem 5.1.1 holds over any field and the proof is same as the proof of Theorem

5.1.2, except those modifications.

Remark-1) In the above proof, observe that the way we fixed our second problem, which

arises due to the finite fields is different from the approach we took for Perfect Bootstrapping

to fix the same problem. For details about the approach used there, see the remark given

after the proof of Lemma 3.2.1. It is currently unknown to us whether we can use some

similar method (used in Perfect Bootstrapping) to fix this problem.

2) Can we get a result like Theorem 5.1.1 with depth-3 circuits in the hypothesis? At

this point it is not clear how to get to arbitrarily tiny variate ΣΠΣ circuits because: 1)

The above trick of applying local Kronecker map, which reduces the number of variables

from n log s to n, increases the circuit depth to 4. 2) If we do not go via intermediate

model as we did for Theorem 5.1.1, then in this tiny variate regime the hard polynomial

we get from the hitting set given in the hypothesis has degree ≥ sΩ(1). With such a high

83

degree, we cannot apply depth-reduction results (Lemma 2.3.9 and 2.3.10) to amplify the

hardness from depth-3 to general circuits. In the hypothesis, even for n = o(log s), if we

assume poly(s)-size hitting set for n-variate size s depth-3 circuits, we do not know how to

bootstrap it to a quasi-polynomial time blackbox time PIT algorithm for general circuits.

Here also the degree of the hard polynomial we try to get from the promised hitting set

will be ω(n). Thus, we will not be able to apply the depth reduction results.

5.3 Discussion

As we go to the larger depth (i.e., depth is ω(1) compared to size) circuits, the structure

of the polynomial they compute become more complex. Hence, it becomes challenging

to study those larger depth circuits. However, due to amazing depth reduction results,

[AV08, GKKS16], the study of algebraic circuits, in some sense, reduces to the study of

the constant depth (depth-3 or depth-4) circuits. [AV08] (respectively, [GKKS16]) showed

that if have a strong enough lower bound against depth-4 (respectively, depth-3) circuits,

we get a super-polynomial lower bound for general circuits. Since these constant depth

circuits are much simpler, it is believed that discovering techniques to get such strong

enough lower bounds against these circuits is easier compared to a direct approach of

getting super-polynomial lower bound for general circuits. A Similar thing is also true

for PIT. We already mentioned that [AV08] (or [GKKS16]) showed that if we have a

polynomial-time blackbox PIT algorithm for depth-4 (respectively depth-3), then we have

a quasi-polynomial time blackbox PIT algorithm for general circuits. Our results in this

chapter strengthen those results. Now, we need a slight improvement over the trivial

hitting set to get the same conclusion. We see our results positively. In near future, it

may be possible to discover techniques that can give us such weak hitting set for those

well-structured circuit classes studied in this chapter. We also expect that those techniques

will be powerful enough to provide a direction to the solution of PIT problem.

Chapter 6

Blackbox PIT for certain

Log-variate Models

Abstract

This Chapter is based on joint work with Michael A. Forbes and Nitin Saxena

[FGS18].

In this chapter, we give a poly(sdk) ·
(

n
log k

)O(log k)
time blackbox PIT algorithm for

n-variate degree d polynomials having k dimensional partial derivative space and

computable by size s circuits. When k = poly(s) and n = O(log s), our algorithm

runs in polynomial time. Since depth-3 diagonal circuit is a prominent circuit model

of computing polynomials with polynomially large dimensional partial derivative

space, our algorithm gives the first polynomial-time blackbox PIT algorithm for

log-variate depth-3 diagonal circuits.

6.1 Our results and proof ideas

In Section 1.2.2, we discussed how our work, bootstrapping in PIT, motivates us to study

PIT for circuits with “few” variables. After the bootstrapping results, we can now focus on

85

86

discovering new techniques that can give efficient PIT algorithms for the low-variate circuit

models. Here, we study the log-variate case of a circuit model, called depth-3 diagonal

circuits (Σ ∧ Σ) . By log-variate, we mean the number of variables is logarithmic with

respect to the circuit size. Depth-3 diagonal circuits compute the sum of power of linear

polynomials. We give a polynomial-time blackbox PIT algorithm for the log-variate case of

this model. Depth-3 diagonal circuit model was introduced by [Sax09] and has since drawn

significant attention of PIT research community. [Sax09] first gave a polynomial-time

whitebox algorithm and exponential lower bound for this model, by introducing duality

trick (Lemma 2.3.12). In subsequent work, [Kay10] gave a different polynomial-time

whitebox algorithm for depth-3 diagonal circuits based on the partial derivative method,

which was introduced by [NW97] to prove circuit lower bounds. However, one limitation of

these approaches was that they depend on the characteristic of the underlying field. Later,

[FGS13] gave an alternative proof of duality trick which depends only on the field size (as

mentioned in [GKKS16, Lemma 4.7]) and [Sap13b, Chapter 3] extended [Kay10] for large

enough field.

Although this model is very weak (requires 2Ω(n) size to even compute the monomial

x1 · · ·xn), studying this model has proved quite fruitful. Duality trick was crucially used

in work by [GKKS16], where they showed that depth-3 circuits, in some sense, capture the

complexity of general arithmetic circuits.

As we know a polynomial time white-box algorithm for depth-3 diagonal circuits, a

natural question is whether we get a polynomial time black-box algorithm for the same

model. This question is addressed in some recent papers. Both [ASS13] and [FS12] gave two

independent and different sO(log s)-time (s is the circuit size) blackbox PIT algorithms for

this model. [FS13a] also gave a blackbox PIT for this model with same time complexity by

exploiting its partial derivative space. Later, [FSS14] gave an sO(log log s)-time blackbox PIT

algorithm for this model. Mulmuley [Mul12, Mul17] showed that Noether Normalization

for representations of SLm(F), for constant m, can be reduced to designing blackbox PIT

algorithm for depth-3 diagonal circuits. We cannot give the detailed notation here and

would like to refer to [Mul17, Section 9.3]. Despite a lot of effort, no polynomial-time

87

blackbox PIT for this model is known. After depth-2 circuits (or sparse polynomials), this

can be thought of as the simplest model for which no polynomial-time blackbox PIT is

known. Because of its simplicity, this model is a good test case for generating new ideas in

PIT.

Our method to design polynomial-time blackbox PIT algorithm for log-variate depth-3

diagonal circuits extends to a possibly more general class of polynomials. It gives a

polynomial-time blackbox PIT algorithms for log-variate circuits having “low-dimensional”

partial derivative space. By low-dimensional partial derivative space, we mean the dimension

of the partial derivative space is polynomially bounded with respect to the circuit size.

Formally, we show the following.

Theorem 6.1.1. Let F be a field of characteristic 0 or greater than d. Let P be a set of

n-variate degree d polynomials, over F, computed by circuits of size s such that for all

P ∈ P, the dimension of the partial derivative space of P is at most k. Then, blackbox

PIT for P can be solved in poly(sdk) ·
(

3n
log k

)O(log k)
time.

When k = poly(sd) and n = O(log sd), the above theorem gives a poly(sd)-time black-

box PIT algorithm for log-variate circuits computing polynomials of poly(sd)-dimensional

partial derivative space (Corollary 6.2.3). Previously, the best known blackbox PIT

algorithm for this model was due to [FSS14], and it runs in time (sd)O(log log sd).

Since depth-3 diagonal circuits have low-dimensional partial derivative space, the above

theorem directly gives a polynomial time blackbox PIT algorithm for log-variate depth-3

diagonal circuits. In our next result, we give a polynomial time blackbox PIT algorithm for

a more general class of depth-3 diagonal circuits, i.e., log-rank depth-3 diagonal circuits.

Theorem 6.1.2. Let F be a field of characteristic 0 or > d. Let D be the set of n-variate

degree d polynomials computed by size s depth-3 diagonal circuits with rank O(log sd).

Then, blackbox PIT for D can be solved in poly(sd)-time.

Our proof of Theorem 6.1.1 can be seen as a way of strengthening the blackbox PIT

algorithm for depth-3 diagonal circuits given by [FS13a]. Their algorithm also works for

circuits with low-dimensional partial derivative space. They first showed that every nonzero

88

polynomial P ∈ P has a log k-support monomial with nonzero coefficient. Then, they used

the standard hitting-set available for polynomials having a log k-support monomial with

nonzero coefficient (Lemma 2.3.14). It gives a blackbox PIT algorithm for P which runs in

time poly(s) · (nd)O(log k). For n = O(log sd), the running time remains super-polynomial.

Hence, their algorithm does not give a polynomial time PIT for P for the log-variate case.

Instead of support size, we work with a different measure of monomials, i.e., cone-size.

It was already shown in [For14, Corollary 4.14] (with origins in[FS13a]) that every nonzero

polynomial P ∈ P has a k-cone monomial with nonzero coefficient. However, it was not

known how to design an efficient PIT algorithm for circuits having a “low-cone” monomial

(with nonzero coefficient) such that the running time becomes polynomial in the log-variate

case. One of our main technical contributions is to do that. The strategy is to check

whether the coefficients of all the monomials in P with cone-size ≤ k are zero. We show

that the number of such monomials is small (Lemma 6.2.2), i.e., quasi-polynomial in

general, but, merely polynomial in the log-variate case. Next, we give a method to extract

the coefficient of a low cone monomial of a circuit (Lemma 6.2.1). Our method runs in

polynomial time with respect to the cone-size of the given monomial. This gives us an

efficient way to extract any low-cone monomial of a circuit. Using these two facts, we get

an efficient PIT algorithm for circuits having a low-cone monomial with nonzero coefficient.

Hence, we have Theorem 6.1.1.

For Theorem 6.1.2, we show a polynomial time computable and nonzero preserving

reduction from a O(log sd)-rank depth-3 diagonal circuit to a O(log sd)-variate depth-3

diagonal circuit (Lemma 6.2.4). This can be done by applying a Vandermonde based

linear map on the variables. Since a depth-3 diagonal circuit has low-dimensional partial

derivative space (see Lemma 2.3.16), apply Theorem 6.1.1 to the log-variate depth-3

diagonal circuits and get poly(sd)-time PIT for D.

89

6.2 Proofs of our results

First we show that the coefficient of a low-cone monomial can be efficiently extracted from

a circuit given as blackbox.

Lemma 6.2.1 (Coefficient extraction). Let C be a circuit which computes an n-variate

degree d polynomial over a field of size greater than d. Suppose that we have blackbox access

to the circuit C. Then for any monomial m =
∏
i∈[n] x

ei
i , we have a poly(|C|d, cs(m))-time

algorithm to compute the coefficient of m in C, where cs(m) denotes the cone-size of m

and |C| denotes the size of C.

Proof. Our proof has two steps. First, we inductively build a circuit computing a polynomial

which has two parts; one is coefm(C) ·m, and the other (that we shall call ‘junk’) is a

polynomial where every monomial in the support of that polynomial is a proper super-

monomial of m. Using this, in the next step, we construct a circuit which computes the

coefficient of m. In both these steps the key is a standard interpolation trick.

We induct on the variables. For each i ∈ [n], let m[i] denote
∏
j∈[i] x

ej
j . We construct a

circuit C(i) which computes a polynomial of the form,

C(i)(x) = coefm[i]
(C) ·m[i] + C

(i)
junk, (6.1)

where for every monomial m′ in the support of C
(i)
junk, m[i] is a proper sub-monomial of

m′[i].

Base case: Since C =: C(0) computes an n-variate degree-d polynomial, C(x) can be

written as C(x) =
∑d

j=0 cjx
j
1, where cj ∈ F[x2, . . . , xn]. Let α0, . . . , αe1 be some (e1 + 1)

distinct elements from F. For every αj , let Cαjx1 denote the circuit C(αjx1, x2, . . . , xn)

which computes c0 + c1αjx1 + . . .+ ce1α
e1
j x

e1
1 + · · ·+ cdα

d
jx

d
1 . Since

M =


1 α0 . . . αe10

...
...

...
...

1 αe1 . . . αe1e1


is an invertible Vandermonde matrix, one can find an a = [a0, . . . , ae1] ∈ F1×(e1+1) such

90

that aM = [0, 0, . . . , 1] . Using this a, we get the circuit C(1) :=
∑e1

j=0 ajC
(0)
αjx1 . Its

least monomial with respect to x1 has degx1 ≥ e1, which is the property we wanted. The

size of the circuit C(1) is at most |C| · (e1 + 1) + (e1 + 1).

Induction step (i→ i+ 1): From induction hypothesis, we have the circuit C(i) with the

properties mentioned in Equation 6.1. The polynomial computed by C(i) can also be written

as b0 + b1xi+1 + . . .+ bei+1x
ei+1

i+1 + . . . bdx
d
i+1 , where every bj is in F[x1, . . . , xi, xi+2, . . . , xn].

Like the proof of the base case, for (ei+1 + 1) distinct elements α0, . . . , αei+1 ∈ F, we get

C(i+1) =
∑ei+1

j=0 ajC
(i)
αjxi+1 , for some a = [a0, . . . , aei+1] ∈ F1×(ei+1+1) and the structural

constraint of C(i+1) is easy to verify. This completes the induction. The size of the circuit

C(i+1) is at most |C(i)| · (ei+1 + 1) + (ei+1 + 1).

Now we describe the second step of the proof. After the first step, we get

C(n)(x) = coefm(C) ·m + C
(n)
junk ,

where for every monomial m′ in the support of C
(n)
junk , m is a proper sub-monomial of m′.

The size of the circuit C(n) is O(|C| · cs(m)). Consider the circuit C ′ := C(n)(x1t, . . . , xnt)

over x and a new variable t. Let d′ be the degree of the monomial m. Then C ′ computes

the polynomial of form

C ′(x, t) =
d∑
i=0

cit
i,

where ci’s are from F[x] and cd′ is coefm(C) ·m. Let a0, . . . , ad be d+ 1 distinct elements

from F. Then 

C ′(x, a0)

C ′(x, a1)

...

C ′(x, ad)


=



1 a0 . . . ad0

1 a1 . . . ad1
...

...
...

...

1 ad . . . add





c0

c1

...

cd


Since the matrix in the right hand side is an invertible matrix, we can compute b0, . . . , bd

in F such that

coefm(C) ·m =

d∑
i=0

biC
′(x, ai).

Let C1(x) be the final circuit computing coefm(C)·m. Then evaluating C1 at 1 = (1, . . . , 1),

91

we get coefm(C). From the description of the final circuit C1, it is easy to see that the

time taken by the whole procedure depends polynomially on |C|, d and cs(m).

In the following lemma, we give an estimate on the number of low-cone monomials.

Our calculation shows that the number of low-cone monomials in the log-variate regime are

polynomially bounded. Though, in general, they are quasi-polynomially many [Sap13a].

Lemma 6.2.2 (Counting low-cones). The number of n-variate monomials with cone-size

at most k is O(rk2), where r =
(

3n
log k

)log k
.

Proof. First, we prove that for any fixed support set, the number of cone-size ≤ k monomials

is less than k2. Next, we multiply by the number of possible support sets to get the estimate.

Let T (k, `) denote the number of cone-size≤ k monomials with support set, say, exactly

{x1, . . . , x`}. Since the exponent of x` in such a monomial is at least 1 and at most k−1, we

have the following by the disjoint-sum rule: T (k, `) ≤
∑k

i=2 T (k/i, `− 1). This recurrence

affords an easy inductive proof as, T (k, `) <
∑k

i=2(k/i)2 < k2 ·
∑k

i=2

(
1
i−1 −

1
i

)
< k2.

From the definition of cone, a cone-size ≤ k monomial can have support size at most

` := blog kc. The number of possible support sets, thus, is
∑`

i=0

(
n
i

)
. Using Lemma 2.3.19,

we get
∑`

i=0

(
n
i

)
≤ (3n/`)`.

Now we give the proof of Theorem 6.1.1.

Theorem 6.1.1 (restated). Let F be a field of characteristic 0 or greater than d. Let

P be a set of n-variate degree d polynomials, over F, computed by circuits of size s such

that for all P ∈ P, the dimension of the partial derivative space of P is at most k. Then,

blackbox PIT for P can be solved in poly(sdk) ·
(

3n
log k

)O(log k)
time.

Proof. According to Lemma 2.3.15, we know that every nonzero P ∈ P has a k-cone

monomial with nonzero coefficient. Using this, we can get a blackbox PIT algorithm for P

by testing whether the coefficients of all k-cone monomials in P are zero. Next, we analyze

the time complexity to do this.

We apply Lemma 6.2.1, on the circuit of P and a monomial m of cone-size ≤ k, to get

the coefficient of m in P in poly(sdk)-time. Finally, Lemma 6.2.2 tells that we have to

92

check at most k2 · (3n/ log k)log k many monomials. Multiplying these two expressions, we

get our time bound.

This immediately gives us the following corollary.

Corollary 6.2.3. Let F be a field of characteristic 0 or > d. Let P be a set of n-variate

d-degree polynomials, over F, computed by circuits of size s with n = O(log sd). Suppose

that, for all P ∈ P, the dimension of the partial derivative space of P is poly(sd). Then,

blackbox PIT for P can be solved in poly(sd)-time.

Next, we discuss our result regarding depth-3 diagonal circuits. First, we recall the

definition of the rank of a depth-3 diagonal circuit. Depth-3 diagonal circuits compute

polynomials of form
∑k

i=1 ci`
di , where ci’s are field constants and `i’s are linear polynomials.

For each `i, let fi be the non-constant part of `i (i.e., degree one homogeneous component

of `i). The rank of a depth-3 diagonal circuit denotes the dimension of the subspace

generated by fi’s. Now we show a nonzeroness preserving variable reduction for depth-3

diagonal circuits.

Lemma 6.2.4 (Variable reduction). Let P (x) be an n-variate degree d polynomial computed

by a size s depth-3 diagonal circuit C over a field F. Let r be the rank of C. Then, there

exists a poly(n)-time computable map ϕ : Fn ← F[t]r such that P (ϕ(x)) is an r-variate

degree d polynomial computed by a poly(s)-size depth-3 diagonal circuit over F[t] and if

P 6= 0, then P (ϕ(x)) 6= 0.

Proof. The polynomial P (x) can be written as
∑

i∈[k] ci`
di
i , where `i’s are linear polynomials

over F, ci’s are in F and k ≤ s. Let fi be the non-constant part of `i for all i ∈ [k]. Then

r = rkF{f1, . . . fk}, i.e., the dimension of the subspace generated by taking all possible linear

combinations (over F) of fi’s. Without loss of generality, we can assume that {f1, . . . , fr} is

a basis of the space spanned by fi’s. Then there exists an r-variate polynomial A(z1, . . . , zr)

such that P (x) = A(f1, . . . , fr).

Consider ϕ is the map defined as

ϕ(xi) :=

r∑
j=1

tijyj for all i ∈ [n].

93

For any set of n-variate linear polynomials S over F with rkF(S) ≤ r, one can show

that rkF(S) = rkF(t)(ϕ(S)) [GR08, Lemma 6.1]. Let gi := ϕ(fi) for all i ∈ [r]. Then

rkF(t){g1, . . . , gr} is same as r. Now, we show that P (x) 6= 0 implies P (ϕ(x)) = A(g1, . . . , gr) 6=

0. If P (x) is a nonzero polynomial, then A is also a nonzero polynomial. Next, applying

Proposition 6.2.5, we can claim that A(g1, . . . , gr) 6= 0.

From the definition of ϕ, it is clear that given an xi, ϕ(xi) is computable in poly(n)

time. Since for every xi, ϕ(xi) is a linear polynomial over F[t], the polynomial P (ϕ(x)) is

a degree d polynomial computable by a poly(s)-size depth-3 diagonal circuit over F[t].

Proposition 6.2.5. Let g1, . . . , gr are linearly independent linear forms in y = {y1, . . . , yr}

over some field F. Let A(g1, . . . , gr) = 0. Then A is the zero polynomial.

Proof. Since g1, . . . , gr are linearly independent, there exists r linearly independent linear

forms p1, . . . , pr in y such that for all i ∈ [r],

pi(g1, . . . , gr) = yi.

We can express this relation in matrix form as follows:

PG = I,

where

1. P and G are n × n matrices such that ith rows denote the linear forms pi and gi,

respectively.

2. I is the n× n identity matrix. Its ith row denotes the linear form yi.

From the above relation, we can say that P is the inverse of G and vice-versa. Hence, GP

is also same as I. This gives us for all i ∈ [r], gi(p1, . . . , pr) = yi.

Now consider the homomorphism, θ from F[y] to F[y], defined as, θ(yi) := pi for all

i ∈ [r]. From the above discussion, θ(gi) = gi(p1, . . . , pr) = yi. Therefore, applying θ on

A(g1, . . . , gr), we get

θ(A(g1, . . . , gr)) = A(θ(g1), . . . , θ(gr)) = A(y1, . . . , yr).

94

Since θ maps identity to identity, A(g1, . . . , gr) = 0 implies A is the zero polynomial, which

completes the proof.

Theorem 6.1.2 (restated). Let F be a field of characteristic 0 or > d. Let D be the set

of n-variate degree d polynomials computed by size s depth-3 diagonal circuits with rank

O(log sd). Then, blackbox PIT for D can be solved in poly(sd)-time.

Proof. Let P be a polynomial in D. Then, Lemma 6.2.4 gives us a nonzeroness preserving

variable reduction (n 7→ rk(P)) that reduces P to a O(log(sd))-variate degree d polynomial

P ′ computed by a poly(s)-size depth-3 diagonal circuit over F[t].

The dimension of the partial derivative space of P ′ (over F(t)) is poly(s) (Lemma

2.3.16). Therefore, if P ′ is a nonzero polynomial, it has a poly(s)-cone monomial with

nonzero coefficient. However, in P ′, the coefficients are not from F, they are poly(sd)-degree

univariate polynomials over F. Hence, when we apply Lemma 6.2.1 to extract a low-cone

monomial, we get a poly(sd)-degree univariate polynomial over F. To test nonzeroness of

that, we evaluate it at poly(sd) many values from F. Therefore, the coefficient-extraction

of a low-cone monomial and testing its nonzeroness can be done in poly(sd)-time. Since

Lemma 6.2.2 ensures that we need to do this operation only for poly(sd) many times, we

have a blackbox PIT for D in poly(sd)-time.

6.3 Discussion

After solving blackbox PIT of log-variate depth-3 diagonal circuits in polynomial time, one

can try to design a polynomial time blackbox PIT algorithm for general depth-3 diagonal

circuits. One major problem of extending our idea for log-variate case to general variate

case is that the number of “low-cone” monomials (i.e., monomials of polynomially large

cone size with respect to the circuit size) is quasi-polynomially many in general variate

case. Hence, a direct extension of our idea to solve log-variate case would not work for

general variate case. It would be interesting to develop some new techniques which can

give us a polynomial time blackbox PIT algorithm for general depth-3 diagonal circuits.

Chapter 7

Cone-closed Bases: A stronger

notion of rank concentration

Abstract

This chapter is based on joint work with Michael A. Forbes and Nitin Saxena [FGS18].

In this chapter, we introduce the concept of cone-closed basis for polynomials over

the vector space Fk, which is a stronger notion of rank concentration compared to

both low-support and low-cone rank concentration. We show that if any polynomial

P over Fk is shifted by a basis isolating weight assignment for P , the new polynomial

becomes cone-closed.

7.1 Motivation and our result

In Chapter 6, we showed a polynomial time blackbox PIT for log-variate depth-3 diagonal

circuits where the number of variables can be at most logarithmic compared to the circuit

size. Our bootstrapping results inspires us to study such “low-variate” circuit models. The

technique we developed in Chapter 6 is applicable to a more general setting than log-variate

depth-3 diagonal circuits. It gives a polynomial time PIT for any log-variate circuit model

95

96

which has the following property: any circuit in the model computing a nonzero polynomial

has a “low-cone” monomial with nonzero coefficient. By low-cone monomial we mean the

cone-size of the monomial is polynomially large compared to the circuit size. However, in

general, there are very simple polynomials which do not have low-cone monomial (with

nonzero coefficient). For example, consider the polynomial xd11 · · ·xdnn . It has a circuit

of size d1 + · · ·+ dn, but the cone-size is (d1 + 1) · · · (dn + 1). However, if we shift each

variable by 1, the new polynomial has a circuit of almost same size and also has a low-cone

monomial. Hence, it would be interesting to study the circuit models under shifts and try

to find ‘good’ shifts which give low-cone monomial in the shifted polynomial.

In Section 1.2.3, we discussed how the study of polynomials over vector space can

be helpful in designing PIT algorithms for circuit models. We also described the notion

of rank concentration and its usefulness to study the polynomials over vector spaces.

One important variant of rank concentration is low-support rank concentration and it

has been widely used in designing many PIT algorithms. For more details, see Section

1.2.3. However, it is not clear how the notion of low-support rank concentration can help

to get polynomial time PIT in log-variate regime. Hence, we defined a stronger notion

of rank concentration called low-cone rank concentration, and it can be helpful in log

variate regime because of the following reason: If a polynomial P ∈ Fk[x] satisfies low-cone

concentration property, then for every c ∈ Fk, the support of the polynomial cᵀ · P has a

monomial with cone-size poly(k). Now we can apply our technique from Chapter 6 and

obtain a polynomial time PIT when the number of variables is few. However, in general,

a polynomial P over Fk may not have low-cone concentration. Therefore, it would be

interesting to know some transformation φ such that φ(P) achieves it. In this chapter, we

show that after shifting a polynomial P over Fk by a basis isolating weight assignment

(Definition 7.1.2), the new polynomial P ′ achieves low-cone rank concentration. More

specifically, the new polynomial P ′ achieves a much stronger rank concentration property

(than low-cone rank concentration), which we call cone-closed basis. At this point, we do

not know any interesting application of our result in designing PIT algorithm. However, it

investigates a nontrivial structural property of polynomials over Fk.

97

Definition 7.1.1 (Cone-closed Basis). A set of monomials B is called cone-closed set of

monomials, if for every monomial in B, all its sub-monomials also belong to B. Let P

be an n-variate polynomial over Fk. We say that P has a cone-closed basis if there is a

cone-closed set of monomials B whose coefficients in P form a basis for the coefficient

space of P .

We recall the definition of basis isolating weight assignment. For the definition of weight

assignment see Section 2.1.

Definition 7.1.2. (Basis Isolating Weight Assignment [AGKS15, Definition.5]). A weight

assignment w is called a basis isolating weight assignment for a polynomial P (x) ∈ Fk[x],

if there exists a set of monomials B such that

1. the coefficients of the monomials in B form a basis for sp(P),

2. weights of all the monomials in B according to w are distinct, and

3. the coefficient of every m in the support of P but not in B is in the linear span of

{coefm′(P) | m′ ∈ B, w(m′) < w(m)}.

Formally, we show the following structural property of polynomials over Fk.

Theorem 7.1.3. Let P (x) be an n-variate degree d polynomial over Fk, and char(F) = 0

or > d. Let w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment for P (x). Then,

P (x + tw) := P (x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).

An outline of the proof of our theorem is as follows. First, with respect to the weight

assignment w, we define an ordering among the set of bases. Then, we show that for the

basis isolating weight assignment w, there exists a unique minimum weight basis for the

coefficient space of P (Lemma 7.2.2). Let B be the set of monomials whose coefficients

form the minimum weight basis (with respect to w) of the coefficient space of P .

Now, we consider the set of all sub-monomials of those in B and identify a subset

A that is cone-closed. We define A in an algorithmic way (see Algorithm 2). Besides

the cone-closed property, A also satisfies the following algebraic property. In the transfer

matrix T (n), that captures the variable-shift transformation (Equation 7.2), the sub-matrix

98

T
(n)
A,B is full rank (Lemma 7.2.5). We prove that the coefficients of the monomials in A is a

basis of the shifted P by studying the action of the shift on the coefficient vectors. The

properties of w mentioned above and Cauchy-Binet Formula (Lemma 2.3.17) are crucially

used in the study of the coefficient vectors after the variable-shift.

Theorem 7.1.3 has an immediate consequence that any polynomial P (x) over Fk, when

shifted by formal variables (i.e., P (x1 + t1, . . . , xn + tn)), becomes cone-closed; since the

weight assignment induced by the formal variables on the monomials (i.e., lexicographic

ordering) is a basis isolating weight assignment. This seems to be quite a nontrivial property

of polynomials (over vector spaces).

7.2 Proof of our result

First, we show that the notion of cone-closed basis subsumes the other two notions of rank

concentration, i.e., low-support rank concentration and low-cone rank concentration.

Lemma 7.2.1. Let P (x) be a polynomial in Fk[x]. Suppose that P (x) has a cone-closed

basis. Then, P (x) has k-cone rank concentration and log k-support rank concentration.

Proof. Let B be a cone-closed set of monomials such that it is a basis of P . Clearly,

|B| ≤ k. Since B is cone-closed, for every monomial in B, all its sub-monomials are also in

B. Thus, each m ∈ B has cone size ≤ k. In other words, P has k-cone rank concentration.

Moreover, each m ∈ B has support size ≤ log k. Otherwise, there will be a monomial

in B whose cone-size is greater than k. This is not possible, since B is cone-closed. Hence,

P has log k-support rank concentration.

Next, we define the notions which are useful for the proof of Theorem 7.1.3.

Bases & weights. For notations, see Section 2.1. Consider a weight assignment w =

(w1, . . . , wn) ∈ Nn on the variables x = {x1, . . . , xn}. Let B = {m1, . . . ,m`},respectively

B′ = {m′1, . . . ,m′`}, be a ordered set of monomials (nondecreasing with respect to w) such

that it is a basis of P . We say that B < B′ (with respect to w), if there exists i ∈ [`] such

that for all j < i, w(mj) = w(m′j) but w(mi) < w(m′i).

99

We say that B ≤ B′ if either B < B′ or if for all i ∈ [`], w(mi) ≤ w(m′i). A basis B is

called a least basis, if for any other basis B′, B ≤ B′. Next, we describe a condition on w

such that least basis will be unique.

Lemma 7.2.2. If w is a basis isolating weight assignment for P ∈ Fk[x], then P has a

unique least basis B (with respect to w). Furthermore, for any other basis B′ of P , we

have w(B) < w(B′).

Proof. The proof idea is similar to the idea used for proving [AGKS15, Lemma 8]. Let `

be the dimension of sp(P). Since w is a basis isolating weight assignment, we get a basis B

that satisfies the conditions 2 and 3 in Definition 7.1.2. We will show that B is the unique

least basis. Let B = {m1, . . . ,m`} with w(m1) < . . . < w(m`).

Consider any other basis B′ = {m′1, . . . ,m′`}, with w(m′1) ≤ . . . ≤ w(m′`). Let j be the

minimum number such that mj 6= m′j . Such a j exists since B 6= B′. Suppose that w(mj) ≥

w(m′j). Then m′j /∈ {mj , . . . ,m`}, since w(m′j) ≤ w(mj) < · · · < w(m`) and mj 6= m′j .

As {m1, . . . ,mj−1} = {m′1, . . . ,m′j−1}, m′j also does not belong to {m1, . . . ,mj−1}. This

implies that m′j /∈ B. Therefore, according to the definition of basis isolating weight

assignment, we can say that the coefficient of m′j can be written as a linear combination

of the coefficients of mi’s for i < j. Thus, the coefficient of m′j can also be written as a

linear combination of the coefficients of m′i’s for i < j. This contradicts that B′ is a basis.

Therefore, w(mj) < w(m′j). This says that B < B′ for every other basis B′. Hence, B is

the unique least basis of P .

Now we prove that for all i ∈ [`], w(mi) ≤ w(m′i). For the sake of contradiction assume

that there exists a number a such that w(ma) > w(m′a). Pick the least such a. Let V be

the span of the coefficients of monomials in P whose weights are ≤ w(m′a). Since, for all

i ∈ [a], the coefficient of m′i is in V and all of them are linearly independent, we know that

dim(V) ≥ a. On the other hand, for every monomial m in P of w(m) ≤ w(m′a) < w(ma),

the coefficient of m can be written as a linear combination of the coefficients of mi’s where

i < a. This implies that dim(V) < a, which yields a contradiction. Thus, for all i ∈ [`],

w(mi) ≤ w(m′i). Togetherwith w(mj) < w(m′j) proved in the previous paragraph, we get

that w(B) < w(B′).

100

Next we want to study the effect of shifting P by a basis isolating weight assignment.

As before P (x) is an n-variate degree d polynomial over Fk. For a weight assignment

w = (w1, . . . , wn), by P (x + tw) we denote the polynomial P (x1 + tw1 , . . . , xn + twn). For

every a ∈Mn,d, coefxa(P (x + tw)) can be expanded using the binomial expansion, and we

get: ∑
b∈Mn,d

(
b

a

)
· tw(b)−w(a) · coefxb(P (x)) . (7.1)

We express this information in matrix form as

F ′ = D−1T (n)D · F, (7.2)

where the matrices involved are,

1. F and F ′: rows are indexed by the elements of Mn,d and columns are indexed by [k]. In

F , respectively F ′, the a-th row is coefxa(P (x)), respectively coefxa(P (x + tw)).

2. D: is a diagonal matrix with both the rows and columns indexed by Mn,d. For a ∈Mn,d,

Da,a := tw(a) .

3. T (n): both the rows and columns are indexed by Mn,d. For a,b ∈Mn,d, T
(n)
a,b :=

(
b
a

)
. It

is known as transfer matrix (for n-variables).

We prove Theorem 7.1.3 by analyzing the above matrix equation. Our method of analyzing

that equation can be seen as a way of strengthening the method used in [FSS13, GKST15]

to study the action of shift on polynomials over Fk. [FSS13, Corollary 3.22] (extended

version of [FSS14]) showed that when a polynomial P over Fk shifted by formal variables,

the new polynomial becomes log k-support concentrated. Later, [GKST15, Lemma 5.2]

improved it and showed that if P is shifted by a basis isolating weight assignment, the new

polynomial becomes log k-support concentrated. One crucial difference in our proof is that

we use a stronger property of the transfer matrix T (n) compared to them. We prove that

for every B ⊆ Mn,d, there is a cone-closed A ⊆ Mn,d such that the submatrix T
(n)
A,B has

full rank. It strengthens the property of transfer matrix shown in [FSS13, Lemma 3.19].

They showed that for every B ⊆Mn,d, there is a A ⊆Mn,d of monomials of support size

101

≤ blog(|B|)c such that the submatrix T
(n)
A,B has full rank. [GKST15, Lemma 5.3] gave a

different proof of [FSS13, Lemma 3.19]. To prove our property about the transfer matrix,

we describe the construction of the cone-closed set A as Algorithm 2.

Algorithm 2 Finding cone-closed set

1: Input: A subset B of the n-tuples from Mn,d.

2: Output: A cone-closed A ⊆Mn,d with full rank T
(n)
A,B.

3: function Find-Cone-closed(B, n)
4: if n = 1 then
5: s← |B|;

return {0. . . . , s− 1};
6: else
7: Let π be the map which projects every tuple in B on the first n− 1 coordinates;
8: `← maxf∈Img(π) |π−1(f)|;
9: ∀i ∈ [`], Fi collects those elements in Img(π) whose preimage size≥ i;

10: A← ∅;
11: for i← 1 to ` do
12: Si ← Find-Cone-closed(Fi, n− 1);
13: Wi ← {(b1, , . . . , bn−1, i− 1) | (b1, . . . , bn−1) ∈ Si}
14: A← A

⋃
Wi;

15: end for
return A;

16: end if
17: end function

In Algorithm 2, if the input B is a set of univariate monomials (or, n = 1), it is not

hard to see why the output set A is cone-closed. Also, the full rank property of T
(1)
A,B

directly follows from Lemma 2.3.18. However, it is not obvious how the algorithm works

for n ≥ 2. Therefore, we provide a simple example with bivariate monomials explaining

how the algorithm works, and our general proof will be based on this idea. For example,

let B = {(b1, a1), (d1, c1), (d2, c1)}. Then the value of ` is 2. Now applying π we get

F1 = {a1, c1} and F2 = {c1}. After the completion of ‘for’ loop, we get W1 = {(0, 0), (0, 1)},

W2 = {(1, 0)} and A =
⋃2
i=1Wi. To prove T

(2)
A,B has full rank, we show that for any

u ∈ F|B|, T (2)
A,B · u = 0 implies u = 0. We can think that T

(2)
A,B is a matrix consists of two

disjoint submatrices TW1,B and TW2,B. Hence, T
(2)
A,B · u can be seen as the following way:

T
(2)
A,B · u =

 T
(2)
W1,B

· u

T
(2)
W2,B

· u



102

Now we see each component individually. Let u = (u1, u2, u3)ᵀ. Then

T
(2)
W1,B

· u =

(
b1
0

)
u1

 (
a1
0

)
(
a1
1

)
+

((
d1

0

)
u2 +

(
d2

0

)
u3

) (
c1
0

)
(
c1
1

)
 , and

T
(2)
W2,B

· u =

(
b1
1

)
u1

(
a1

0

)
+

((
d1

1

)
u2 +

(
d2

1

)
u3

)(
c1

0

)
Now T

(2)
A,B · u = 0 implies that both T

(2)
W1,B

· u and T
(2)
W2,B

· u are zero vector. Since((
a1
0

)
,
(
a1
1

))ᵀ
and

((
c1
0

)
,
(
c1
1

))ᵀ
are linearly independent (Lemma 2.3.18), both

(
b1
0

)
u1 and((

d1
0

)
u2 +

(
d2
0

)
u3

)
are zero. This implies u1 = 0. Since T

(2)
W2,B

· u = 0 and u1 = 0, we get((
d1
1

)
u2 +

(
d2
1

)
u3

)
is also zero. One can see that

((
d1
0

)
,
(
d1
1

))ᵀ
and

((
d2
0

)
,
(
d2
1

))
are linearly

independent (again use Lemma 2.3.18). Hence, both u2 and u3 are zero. This implies u is

a zero vector. In the proof, we extend this idea using induction. Observe that T
(2)
W1,B

·u and

T
(2)
W2,B

· u can be written as T
(1)
S1,F1

· u1 and T
(1)
S2,F2

· u2, respectively, for some u1 ∈ F|F1| and

u2 ∈ F|F2|. This point of view will be helpful in our proof since from induction hypothesis,

we can say both T
(1)
S1,F1

and T
(1)
S2,F2

have full rank. In the next few lemmas, we prove the

correctness of Algorithm 2.

Lemma 7.2.3 (Comparison). Let B and B′ be two nonempty subsets of M such that

B ⊆ B′. Let A = Find-Cone-closed(B,n) and A′ = Find-Cone-closed(B′, n) in

Algorithm 2. Then A ⊆ A′.

Proof. We prove the lemma using induction on n.

Base case (n = 1): For n = 1, the set A is {0, . . . , |B| − 1} and the other one A′ is

{0, . . . , |B′| − 1}. Since B is a subset of B′, |B| ≤ |B′|. Hence, A is also a subset of A′.

Induction step (n− 1→ n): Let `, respectively `′, be the maximum size of preimages of

π in B, respectively B′. To denote the set of all elements in Img(π) whose preimage size

≥ i, we use Fi for the set B and F ′i for the set B′. Since B ⊆ B′, we have ` ≤ `′, and for all

i ∈ [`′], Fi ⊆ F ′i . Therefore, from induction hypothesis, Si ⊆ S′i. Since A =
⋃`
i=1 Si×{i−1}

and A′ =
⋃`′

i=1 S
′
i × {i− 1}, we deduce that A ⊆ A′.

Lemma 7.2.4 (Closure). Let B be a nonempty subset of M . If A = Find-Cone-

closed(B,n) in Algorithm 2, then A is cone-closed. Moreover, |A| = |B|.

103

Proof. We prove it by induction on n.

Base case (n = 1): For n = 1, A = {0, . . . , |B| − 1}. Hence, A is cone-closed.

Induction step (n − 1 → n): Now A =
⋃`
i=1 Si × {i − 1}. Let f be an element in A

and xe be a sub-monomial of xf . We will show that e ∈ A. Let f = (f ′, k) and e = (e′, t).

Then t ≤ k. We divide our proof into the following two cases.

Case 1 (t = k): We have f ′ ∈ Sk+1 = Find-Cone-closed(Fk+1, n− 1). By induction

hypothesis, Sk+1 is cone-closed. Since e′ ≤ f ′, we get e′ ∈ Sk+1. Hence, e = (e′, k) ∈

Sk+1 × {k}, which implies that it is also in A.

Case 2 (t < k): We have Fk+1 ⊆ Ft+1. By Lemma 7.2.3, we get Sk+1 ⊆ St+1. Therefore,

f ′ ∈ St+1. From induction hypothesis, St+1 is a cone-closed set. This implies that e′ ∈ St+1

and e ∈ St+1 × {t}. Thus, e is also in A.

Since e was arbitrary, we deduce that A is cone-closed.

Note that |A| = |B| is true when n = 1. Let us prove the induction step from n − 1

to n. Since |A| =
∑

i∈[`] |Si|, and by induction hypothesis |Si| = |Fi|, we deduce that

|A| =
∑

i∈[`] |Fi|. From the definition of Fi’s we get that Img(π) = F1 ⊇ F2 ⊇ · · · ⊇ F`. A

tuple e ∈ Img(π) that has preimage size j is counted exactly once in each of F1, . . . , Fj ,

but is not counted in Fk for j < k ≤ `. Thus,

|A| =
∑
i∈[`]

|Fi| =
∑

m∈Img(π)

|π−1(m)| = |B|.

In the next lemma, we prove that the sub-matrix T
(n)
A,B has full rank, where B ⊆Mn,d

and A is the output of Algorithm 2 on input B. It requires char(F) = 0 or greater than d.

Lemma 7.2.5 (Full rank). If A = Find-Cone-Closed(B,n) for some B ⊆Mn,d, then

T
(n)
A,B has full rank.

Proof. The proof will be by induction on n.

Base case: For n = 1, our set A = {0, 1, . . . , |B| − 1}. Therefore, applying Lemma

2.3.18, we get T
(n)
A,B has full rank for n = 1.

104

Induction step (n − 1 → n): In induction step, we show that for any B ⊆ Mn,d, if

A = Find-Cone-Closed(B,n), then T
(n)
A,B has full rank. By Bi we denote the subset of

B such that Bi = π−1(Fi), i.e., for each e ∈ Bi, the size of the preimage of π(e) is≥ i.

From induction hypothesis, we can say that if V = Find-Cone-Closed(U, n − 1) for

U ⊆Mn−1,d, then T
(n−1)
U,V has full rank. Using this induction hypothesis, we prove Claim

7.2.6 which is crucial for the induction step.

To show T
(n)
A,B has full rank, we prove that if T

(n)
A,B · b is a zero vector for b ∈ F|B|, then

b itself is zero vector. For this, we show an invariant holds at the end of each iteration

of the ‘for’ loop in Algorithm 2. Let Ai be the the value of A at the end of ith iteration.

Then our invariant is the following.

Invariant: If T
(n)
Ai,B
· b is a zero vector, then be = 0 for each e ∈ B with the preimage

size of π(e) ≤ i.

At the end of iteration i = 1, we have the vector T
(n)
A1,B

· b. According to our notations,

B = B1 and W1 = A1. Hence, T
(n)
A1,B

· b is same as the vector T
(n)
A1,B1

· b. Let e be an

element in B such that the preimage size of π(e) is 1 and e = (f , k) for some k ∈ N and

f ∈ F1. Then using Claim 7.2.6, we can say that(
k

0

)
· be = 0.

This implies be = 0, since
(
k
0

)
6= 0.

(i− 1→ i): Let T
(n)
Ai,B
· b be a zero vector. This implies that for all j ∈ [i], T

(n)
Wj ,B

· b is

also a zero vector since Wj is a subset of Ai. As for all j < i, Aj is a subset of Ai, T
(n)
Aj ,B
·b

is also a zero vector. Therefore, applying the loop invariant of previous iterations, we get

be = 0 for all e ∈ B with the preimage size of π(e) is less than i. This has the following

two implications.

1. For all j ∈ [i], T
(n)
Wj ,B

· b is same as T
(n)
Wj ,Bj

· b(j), where b(j) is the projection of b on the

coordinates indexed by Bj .

2. For proving the loop invariant at the end of ith iteration, we have to only show that

be = 0 for any e ∈ B with the preimage size of π(e) is exactly i.

105

For any such e there exists an f ∈ Fi, such that e = (f , k1) for some k1 ∈ N and

π−1(f) = {(f , k1), . . . , (f , ki)}. Since for all j ∈ [i], T
(n)
Wj ,Bj

· b(j) is a zero vector and b(j) is

the projection of b on the coordinates indexed by Bj , using Claim 7.2.6, we get that

i∑
r=1

(
kr
j − 1

)
b(f ,kr) = 0, for all j ∈ [i].

These set of equations we can write in matrix form as follows:

(
k1
0

) (
k2
0

)
· · ·
(
ki
0

)
(
k1
1

) (
k2
1

)
· · ·
(
ki
1

)
...

...
...(

k1
i−1

) (
k2
i−1

)
· · ·
(
ki
i−1

)





b(f ,k1)

b(f ,k2)

...

b(f ,ki)


=



0

0

...

0


Now invoking Lemma 2.3.18, we get b(f ,kr) = 0 for all r ∈ [i]. In other words, for any

e ∈ B with the preimage size of π(e) is i, the coordinate be = 0.

(i = `): Since A` = A, the output of Find-Cone-closed(B,n), using our invariant at

the end of `-th iteration we deduce that T
(n)
A,B · b = 0 implies b = 0. Thus, T

(n)
A,B has full

rank.

Claim 7.2.6. Let i ∈ [`] and u ∈ F|Bi|. Let T
(n)
Wi,Bi

· u be zero vector. Then, for every

f ∈ Fi, ∑
(f ,k)∈π−1(f)

(
k

i− 1

)
u(f ,k) = 0.

Proof. Let e ∈ Bi, and e = (f , k) for f ∈ Fi and k ∈ N. Then T
(n)
Wi,e

, the column of T
(n)
Wi,Bi

indexed by e, is same as
(
k
i−1

)
T

(n−1)
Si,f

. Now the vector T
(n)
Wi,Bi

· u can be written as follows.

T
(n)
Wi,Bi

· u =
∑
e∈Bi

ueT
(n)
Wi,e

=
∑
f∈Fi

T
(n−1)
Si,f

 ∑
(f ,k)∈π−1(f)

(
k

i− 1

)
u(f ,k)


= T

(n−1)
Si,Fi

· v,

where v ∈ F|Fi| and vf =
∑

(f ,k)∈π−1(f)

(
k
i−1

)
u(f ,k). Therefore, if T

(n)
Wi,Bi

· u is a zero vector,

then T
(n−1)
Si,Fi

· v is also a zero vector. Now from the induction hypothesis, we know that

106

T
(n−1)
Si,Fi

has full rank. Hence, v is a zero vector, which implies that for every f ∈ Fi,

vf =
∑

(f ,k)∈π−1(f)

(
k

i− 1

)
u(f ,k) = 0.

Now we prove our main theorem using the transfer matrix equation.

Theorem 7.1.3 (restated). Let P (x) be an n-variate degree d polynomial over Fk, and

char(F) = 0 or > d. Let w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment for

P (x). Then, P (x + tw) := P (x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).

Proof. As we mentioned in Equation 7.1, the shifted polynomial P (x + tw) yields a matrix

equation F ′ = D−1T (n)D ·F . Let k′ be the rank of F . We consider the following two cases.

Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Let S be a

subset of k′ columns such that FM,S has rank k′, where M = Mn,d. The matrix FM,S

denotes the polynomial PS(x) ∈ Fk′ [x], where for every monomial m, coefm(PS) is the

projection of coefm(P) on the coordinates indexed by S. Therefore, any linear dependence

relation among the coefficients of P (x) is also valid for PS(x). This implies w is also a

basis isolating weight assignment for PS(x). Now from our Case 2, there exists a set of

monomials A such that A is a cone-closed basis of PS(x+ tw). Thus, A is also a cone-closed

basis of P (x). This implies that P (x + tw) has a cone-closed basis.

Case 2 (k′ = k): Let B be the least basis of P (x) with respect to w, and A = Find-

Cone-closed(B,n). We prove that A is a basis for P (x + tw). To prove this, we show

that det(F ′A,[k]) 6= 0. Define T ′ := T (n)DF . Hence, F ′ = D−1T ′. Using Cauchy-Binet

formula (Lemma 2.3.17), we get that

det(F ′A,[k]) =
∑

C∈(Mk)

det(D−1
A,C) · det(T ′C,[k]) .

Since for all C ∈
(
M
k

)
\ {A}, the determinant of D−1

A,C is zero, we have det(F ′A,[k]) =

107

det(D−1
A,A) · det(T ′A,[k]). Again applying Cauchy-Binet formula for det(T ′A,[k]), we get

det(F ′A,[k]) = det(D−1
A,A) ·

∑
C∈(Mk)

tw(C) det(T
(n)
A,C) · det(FC,[k]) .

From Lemma 7.2.2, we have that for all basis C ∈
(
M
k

)
\ {B} of P , w(C) > w(B). The

determinant of T
(n)
A,B is nonzero by Lemma 7.2.5, and the other one FB,[k] has nonzero

determinant since B is a basis of P . Hence, the sum is a nonzero polynomial in t. In par-

ticular, det(F ′A,[k]) 6= 0, which ensures that the coefficients of the monomials corresponding

to A form a basis of spF(t)(P (x + tw)). Since Lemma 7.2.4 says that A is also cone-closed,

we get that P (x + tw) has a cone-closed basis.

7.2.1 Models with a cone-closed basis

Consider the polynomials of form D(x) = (1 + a1x1 + . . . + anxn)d in Fk[x], where Fk

is seen as an F-algebra with coordinate-wise multiplication. For any c ∈ Fk, cᵀ · D(x)

becomes a polynomial (over F) of form computed by a special type of depth-3 diagonal

circuits, i.e., each linear polynomial is raised to the same power.

Lemma 7.2.7. If char(F) = 0 or > d, then D(x) has a cone-closed basis

Proof. Consider the n-tuple L := (a1, . . . ,an). Then for every monomial xe of degree ≤ d,

the coefficient of xe in D is Le :=
∏n
i=1 aeii , with some nonzero scalar factor (note that

here we need char(F) zero or large). We ignore this constant factor, since it does not

affect linear dependence relations. Consider deg-lex monomial ordering, i.e., first order the

monomials by lower to higher total degree, then within each degree arrange them according

to lexicographic order. Now we prove that the ‘least basis’ of D(x) with respect to this

monomial ordering is cone-closed.

We incrementally devise a monomial set B as follows: Arrange all the monomials in

ascending order. Starting from the least monomial, put a monomial in B if its coefficient

cannot be written as a linear combination of its previous (thus, smaller) monomials. From

construction, the coefficients of monomials in B form the least basis for the coefficient

space of D(x). Now we show that B is cone-closed. We prove it by contradiction.

108

Let xf ∈ B and let xe be its sub-monomial that is not in B. Then we can write

Le =
∑

xb≺xe

cbL
b,

where cb’s in F and ≺ denotes the deg-lex monomial ordering. Multiplying by Lf−e on

both sides, we get

Lf =
∑

xb≺xe

cbL
b+f−e =

∑
xb′≺xf

c′b′L
b′ .

Note that xb′ ≺ xf holds true by the way a monomial ordering is defined. This equation

contradicts the fact that xf ∈ B, and completes the proof.

7.3 Discussion

In this chapter, we proved that after shifting a polynomial (over Fk) by a basis isolating

weight assignment, the coefficient space of the new polynomial contains a cone-closed basis.

Basis isolating weight assignment is much weaker than the weight assignment induced by

lexicographic monomial ordering. An interesting direction for future work can be to relate

cone closed basis with other new kind of weight assignments (or, in general, polynomial

map1) which are even “weaker” than the basis isolating weight assignment. Till now,

no known blackbox PIT algorithm for ROABPs gives a polynomial time blackbox PIT

algorithm for log-variate ROABPs . Hence, achieving cone-closed basis (in polynomial time)

for log-variate ROABPs is also interesting, since it will also ensure a low-cone monomial in

the support of the transformed polynomial. Then the technique we developed in Chapter 6

can be used to get a polynomial time blackbox PIT algorithm for log-variate ROABPs.

1In polynomial map, we map each variable to a univariate polynomial. It is more general than weight
assignment.

Chapter 8

Conclusion

We studied the phenomenon of bootstrapping which describes how to convert a hitting set

for n(s)-variate size s degree s circuits to a hitting set for s-variate size s degree s circuits

where n(s)� s. We described the bootstrapping in the following cases.

1. Perfect Bootstrapping: n(s) = log◦c s, and get a polynomial size hitting set in the

conclusion.

2. Constant Bootstrapping: n(s) = constant, and get a “slightly” super-polynomial size

hitting set in the conclusion.

3. Shallow Bootstrapping: n(s) = constant with depth-4 circuits in the hypothesis, and get

a quasi-polynomial size hitting set in the conclusion.

A trivial derandomization of [DL78, Zip79, Sch80] gives an (s + 1)n-size hitting set for

n-variate size s degree s circuits. Our goal is to design a poly(s)-size hitting set for s-variate

size s degree s circuits. Our Constant Bootstrapping implies a powerful amplification

of derandomization for PIT, i.e., for some constant δ < 1/2, an sn
δ
-size hitting set for

n-variate size s degree s circuits implies a “slightly” super-polynomial size hitting set for

size s degree s circuits.

Subsequet to our results, [KST18] showed that an even an sn−ε-size hitting set, for

some constant ε > 0, in the hypothesis is sufficient to get the same conclusion. Their proof

also works for the much weaker models than circuits like formulas and algebraic branching

109

110

programs. It is further improved by [GKSS19]. There exists a “trivial” hitting set of size

(s+ 1)n for n-variate polynomials of individual degree s and computable by size s circuits.

They showed that even saving a single point over the trivial hitting set (i.e., hitting set of

size (s+ 1)n− 1) gives a polynomial-size hitting set in the conclusion. However, their result

does not work for formulas or algebraic branching programs. As a subsequent development,

one can try to extend [GKSS19] to these weaker models. Another shortcoming of their

work is that it does not work over finite fields. Hence, it will be interesting to generalize

[GKSS19] over all fields.

Another interesting direction would be to study the bootstrapping phenomenon in

lower bound setting, i.e., converting a polynomial with “weak” circuit lower bound to a

polynomial with “strong” circuit lower bound. Recently, [CILM18] showed such result for

non-commutative algebraic circuits. They showed that proving mildly super-linear (for

some ε > 0, n
ω
2

+ε where ω is the exponent of the matrix multiplication) lower bounds for

non-commutative algebraic circuits implies exponential lower bounds for non-commutative

circuits. However, such analogous statement is not available in commutative setting.

Therefore, it would be interesting to prove such a result for commutative circuits.

Our result bootstrapping in PIT motivates to study the circuits with “few” variables,

for example, number of variables is logarithmic with respect to the circuit size. We gave

a poly(s) time blackbox for O(log s)-variate size s circuits computing polynomials with

poly(s) dimensional partial derivative space. As the depth-3 diagonal circuit is a prominent

circuit class which has polynomially large dimensional partial derivative space, our result

gives the first polynomial-size hitting set for log-variate depth-3 diagonal circuits. Moreover,

to design blackbox PIT for those models, we give an efficient blackbox PIT for polynomials

whose support set contains a low-cone monomial. We saw that cone-size was a useful

measure (for monomials) in the log-variate regime. Hence, the cone size measure needs

to be further explored in other log-variate models like log-variate ROABPs, log-variate

depth-3 semi-diagonal circuits (i.e.,
∑k

i=1mi · `dii where mi’s are monomials and `i’s are

linear polynomials).

We studied polynomials over the vector space Fk. We introduced the notion of cone-

111

closed basis for polynomials over Fk. It is a stronger notion of rank concentration compared

to low-support rank concentration and low-cone rank concentration. We showed that if

a polynomial over Fk is shifted by its basis isolating weight assignment, then the new

polynomial becomes cone-closed. It is currently the best known rank concentration result

for polynomials over vector spaces.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edition, 2009. 7, 29, 43,
62

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets
for ROABP and sum of set-multilinear circuits. SIAM Journal on Computing,
44(3):669–697, 2015. 6, 7, 12, 13, 97, 99

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer
Science, 25th International Conference, Hyderabad, India, December 15-18,
2005, Proceedings, pages 92–105, 2005. 5, 26, 45

[AGS18] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables
in algebraic circuits. pages 1166–1179, 2018. Article in Proceedings of the
National Academy of Sciences of the USA (PNAS), 2019. xv, 14, 43, 59, 72, 75

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals
of mathematics, pages 781–793, 2004. 5

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-
set for set-depth-∆ formulas. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 321–330, 2013. 6, 12,
13, 86

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.
Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas
& depth-3 transcendence degree-k circuits. In STOC, pages 599–614, 2012. 7

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 67–75, 2008. 6, 10,
31, 33, 75, 76, 78, 80, 83

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984. 7

[BMS11] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence
and blackbox identity testing. In Automata, Languages and Programming -
38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part II, pages 137–148, 2011. 7

113

114

[BT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse
multivariate polynominal interpolation (extended abstract). In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 301–309, 1988. 6

[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory,
volume 7. Springer Science & Business Media, 2013. 26, 29, 44

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin.
Hardness amplification for non-commutative arithmetic circuits. In 33rd Com-
putational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego,
CA, USA, pages 12:1–12:16, 2018. 110

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness
for bounded depth arithmetic circuits. In 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 13:1–
13:17, 2018. 6

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Alge-
bra. Springer Publishing Company, Incorporated, 4th edition, 2015. 21

[DdOS14] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing Equivalence
of Polynomials under Shifts. In 41st International Colloquium on Automata,
Languages, and Programming, Part I, volume 8572 of Lecture Notes in Computer
Science, pages 417–428, 2014. 5

[DF13] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized
complexity, volume 4. Springer, 2013. 56

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193 – 195, 1978. 4, 5, 8,
24, 60, 109

[dOSV15] Rafael Mendes de Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential
size hitting sets for bounded depth multilinear formulas. In 30th Conference on
Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon,
USA, pages 304–322, 2015. 6

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and
polynomial identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–
1434, 2007. 6

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs
for bounded depth arithmetic circuits. SIAM J. Comput., 39(4):1279–1293,
2009. 6

[FGS13] Michael A. Forbes, Ankit Gupta, and Amir Shpilka. private communication,
2013. 36, 86

115

[FGS18] Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox
identity testing of log-variate circuits. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 54:1–54:16, 2018. xv, 85, 95

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect
matching is in quasi-NC. In 48th Annual ACM Symposium on Theory of
Computing, pages 754–763, 2016. 5

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics
Magazine, 67(1):59–61, 1994. 37

[For14] Michael A. Forbes. Polynomial Identity Testing of Read-Once Oblivious Alge-
braic Branching Programs. PhD thesis, Massachusetts Institute of Technology,
2014. 7, 24, 38, 88

[For15] Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives.
In 56th Annual Symposium on Foundations of Computer Science, pages 451–465,
2015. 7

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank
recovery and compressed sensing. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 163–172, 2012. 86

[FS13a] Michael A Forbes and Amir Shpilka. Explicit noether normalization for si-
multaneous conjugation via polynomial identity testing. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 527–542. Springer, 2013. 38, 86, 87, 88

[FS13b] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing
of non-commutative and read-once oblivious algebraic branching programs. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 243–252, 2013. 6, 7, 11

[FSS13] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Pseudoran-
domness for multilinear read-once algebraic branching programs, in any order.
Electronic Colloquium on Computational Complexity (ECCC), 20:132, 2013. 14,
100, 101

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for
multilinear read-once algebraic branching programs, in any order. In Symposium
on Theory of Computing (STOC), New York, NY, USA, May 31 - June 03,
2014, pages 867–875, 2014. 6, 7, 11, 12, 13, 14, 86, 87, 100

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.
Arithmetic circuits: A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079,
2016. 6, 33, 35, 76, 80, 83, 86

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-
width, and any-order, read-once oblivious arithmetic branching programs. The-
ory of Computing, 13(2):1–21, 2017. 7, 12, 13, 14, 41

116

[GKSS19] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Deran-
domization from algebraic hardness. Electronic Colloquium on Computational
Complexity (ECCC), 26:65, 2019. Preliminary version in FOCS 2019. 14, 57,
72, 74, 110

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deter-
ministic identity testing for sum of read-once oblivious arithmetic branching
programs. In 30th Conference on Computational Complexity, CCC 2015, June
17-19, 2015, Portland, Oregon, USA, pages 323–346, 2015. 7, 12, 13, 14, 100,
101

[GR98] Dima Grigoriev and Alexander A. Razborov. Exponential complexity lower
bounds for depth 3 arithmetic circuits in algebras of functions over finite fields.
In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98,
November 8-11, 1998, Palo Alto, California, USA, pages 269–278, 1998. 11

[GR08] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over
large fields. Combinatorica, 28(4):415–440, 2008. Preliminary version in 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2005.
93

[GT17] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc.
In 49th Annual ACM Symposium on Theory of Computing, pages 821–830,
2017. 5

[GTV18] Rohit Gurjar, Thomas Thierauf, and Nisheeth K. Vishnoi. Isolating a vertex
via lattices: Polytopes with totally unimodular faces. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, pages 74:1–74:14, 2018. 5

[Gur15] Rohit Gurjar. Derandomizing PIT for ROABP and Isolation Lemma for Special
Graphs. PhD thesis, Indian Institute of Technology Kanpur, 2015. 7

[GV16] Ira M. Gessel and X. G. Viennot. Determinants, paths, and plane partitions.
2016. 42

[Her06] Israel N Herstein. Topics in algebra. John Wiley & Sons, 2006. 18, 19

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy
to compute (extended abstract). In Proceedings of the 12th Annual ACM
Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California,
USA, pages 262–272, 1980. 5, 26, 44

[IW97] Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential
circuits: Derandomizing the xor lemma. In Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 220–229,
New York, NY, USA, 1997. ACM. 7, 44

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs.
Advances in Computing Research, 5:375–412, 1989. 26

117

[Kay10] Neeraj Kayal. Algorithms for arithmetic circuits. Electronic Colloquium on
Computational Complexity (ECCC), 17:73, 2010. 11, 86

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial iden-
tity tests means proving circuit lower bounds. Computational Complexity,
13(1-2):1–46, 2004. Preliminary version in the 35th Annual ACM Symposium
on Theory of Computing (STOC), 2003. 5, 6, 29, 31, 45, 47, 82

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider.
Theoretical Computer Science, 448:56–65, 2012. 33, 75

[KP09] Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the
reals. Computational Complexity, 18(4):551–575, 2009. 28, 29

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing
of multivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223,
2001. 6

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits.
Computational Complexity, 16(2):115–138, 2007. 6

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing
for depth 3 circuits. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,
pages 198–207, 2009. 6

[KS11] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of
generalized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica,
31(3):333–364, 2011. 6

[KS17] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low
algebraic rank. Theory of Computing, 13(1):1–33, 2017. Preliminary version in
the 31st Conference on Computational Complexity (CCC), 2016. 7

[KSS14] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polyno-
mial identity testing and deterministic multivariate polynomial factorization. In
IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver,
BC, Canada, June 11-13, 2014, pages 169–180, 2014. 5

[KST18] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal
bootstrapping of hitting sets for algebraic models. Electronic Colloquium
on Computational Complexity (ECCC), 25:132, 2018. Preliminary version in
the Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2019. 14, 72, 74, 109

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT,
volume 79, pages 565–574, 1979. 5

[Mul12] Ketan D. Mulmuley. Geometric complexity theory V: Equivalence between
blackbox derandomization of polynomial identity testing and derandomization
of Noether’s normalization lemma. In FOCS, pages 629–638, 2012. 86

118

[Mul17] Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms
for Noether normalization. Journal of the American Mathematical Society,
30(1):225–309, 2017. 5, 86

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is
as easy as matrix inversion. In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, STOC ’87, pages 345–354, 1987. 5

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994. 7, 29, 44

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via
partial derivatives. Computational Complexity, 6(3):217–234, 1997. Preliminary
version in the 36th Annual Symposium on Foundations of Computer Science
(FOCS), 1995. 10, 86

[PSS18] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence
over positive characteristic: New criterion and applications to locally low-
algebraic-rank circuits. Computational Complexity, 27(4):617–670, 2018. Prelim-
inary version in the 41st International Symposium on Mathematical Foundations
of Computer Science (MFCS), 2016. 7

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2):8:1–8:17, 2009. 11

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in
non-commutative models. Computational Complexity, 14(1):1–19, 2005. 7, 12

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant
depth multilinear circuits. Computational Complexity, 18(2):171–207, 2009. 11

[Rys63] H.J. Ryser. Combinatorial Mathematics. Carus mathematical monographs.
Mathematical Association of America, 1963. 37

[Sap13a] Ramprasad Saptharishi. personal communication, 2013. 91

[Sap13b] Ramprasad Saptharishi. Unified Approaches to Polynomial Identity Testing
and Lower Bounds. PhD thesis, Chennai Mathematical Institute, 2013. 7, 86

[Sap16] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit com-
plexity. Technical report, https://github.com/dasarpmar/lowerbounds-survey/,
2016. 32

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP,
volume 5125 of Lecture Notes in Computer Science, pages 60–71. Springer, 2008.
6, 36

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS,
99:49–79, 2009. 7, 86

[Sax13] Nitin Saxena. Progress on polynomial identity testing - II. Electronic Colloquium
on Computational Complexity (ECCC), 20:186, 2013. 7

119

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980. 4, 5, 8, 24, 60, 109

[Sha90] Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 11–15,
1990. 5

[SS11] Nitin Saxena and C. Seshadhri. An almost optimal rank bound for depth-3
identities. SIAM J. Comput., 40(1):200–224, 2011. 6

[SS12] Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-
fanin depth-3 circuits: The field doesn’t matter. SIAM Journal on Computing,
41(5):1285–1298, 2012. 6

[SS13] Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank
bounds: Improved blackbox identity test for depth-3 circuits. J. ACM,
60(5):33:1–33:33, 2013. 6

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3
identity testing, sparse factorization and duality. Computational Complexity,
22(1):39–69, 2013. 6

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs
is in quasi-nc. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707,
2017. 5

[Str73] Volker Strassen. Vermeidung von divisionen. Journal fr die reine und ange-
wandte Mathematik, 264:184–202, 1973. 35

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators
without the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001. 7

[SV11] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4
multilinear circuits. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 421–430,
2011. 7

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity, 10(1):1–27, 2001. 11

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical Computer
Science, 5(3-4):207–388, 2010. 7

[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In
Mathematical Foundations of Computer Science 2013 - 38th International Sym-
posium, MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings,
pages 813–824, 2013. 33, 75

[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London
Mathematical Society, s1-22(2):107–111, 1947. 5

120

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput.
Syst. Sci., 67(2):419–440, 2003. 7

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979,
Atlanta, Georgia, USA, pages 249–261, 1979. 22, 29

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel
computation of polynomials using few processors. SIAM J. Comput., 12(4):641–
644, 1983. 32, 75

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 80–91, 1982. 7

[Zen93] Jiang Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula.
Linear Algebra and its Applications, 184:79–82, 1993. 41

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceed-
ings of the International Symposium on Symbolic and Algebraic Computation,
EUROSAM ’79, pages 216–226, 1979. 4, 5, 8, 24, 60, 109

Index

#P/poly, 22, 27, 44

algebraic circuit, 2

basis isolating weight assignment, 13, 97, 99,
106

blackbox PIT, 4
bootstrapping, 7, 45

Cauchy-Binet formula, 41, 98, 106
coefficient space, 12, 19, 97, 98
cone of monomial, 13, 20, 38, 88, 89, 91
cone-closed set of monomials, 97, 100, 102
Constant Bootstrapping, 9, 59

depth-2 circuit, 6, 20, 26, 31
depth-3 circuit, 6, 22, 33, 75, 79, 82
depth-3 diagonal circuit, 11, 23, 40, 86, 87,

92, 94
depth-4 circuit, 7, 9, 23, 31, 33, 75, 81
depth-4 diagonal circuit, 77–79
duality trick, 34, 36, 86

E, 22, 27, 44
E-computable polynomial family, 22, 27, 44

Fischer’s trick, 34, 37, 78

hitting set, 4, 20, 25, 26, 37
hitting set generator (HSG), 5, 7, 44, 45

Kaltofen’s factoring algorithm, 26, 30, 49,
56, 67

linear form, 18
linear polynomial, 18

monomial ordering, 21, 38, 107

NW-design
(`, n, d)-design, 29, 30, 49, 55, 61, 66, 72

partial derivative, 19
partial derivative space, 10, 20, 38, 40, 87
partial HSG, 45
Perfect Bootstrapping, 8, 46
polynomial identity tesing (PIT), 2
preprocessed depth-3 circuit, 77, 80
pseudorandom generator (PRG), 7, 43

rank concentration, 13, 20
`-support rank concentration, 21, 98
k-cone rank concentration, 21, 98
cone-closed basis, 13, 96, 98, 106, 107
low-cone rank concentration, 13, 21
low-support rank concentration, 13, 21

read-once oblivious ABP (ROABP), 7, 24,
108

Ryser’s formula, 34, 37, 78

Shallow Bootstrapping, 9, 76
sparsity of polynomial, 18, 34
sub-monomial, 13, 20, 89, 97
super-monomial, 20, 89
support of monomial, 20, 37, 87
support of polynomial, 18

transfer matrix, 97, 100, 103

VNP, 21, 44
VP, 21, 44

weight assignment, 18, 98
whitebox PIT, 4

121

	List of Publications
	List of Figures
	Introduction
	Polynomial Identity Testing Problem
	Contribution of this thesis
	Bootstrapping in PIT
	Blackbox PIT for certain log-variate models
	Cone closed bases: A stronger notion of rank concentration

	Follow up works
	Organization of the thesis

	Preliminaries
	Notations and Definitions
	Models of Computation
	Some known results
	Randomized PIT algorithm
	Polynomial factorization
	PIT vs Lower bound
	Lifting hardness from depth-4 circuits to general circuits
	Reduction from depth-4 circuits to depth-3 circuits
	Reducing the degree of a circuit
	Miscellaneous results

	Perfect Bootstrapping
	Motivation and our result
	Proof of our result
	Bootstrapping of sub-exponential size hitting set
	Discussion

	Constant Bootstrapping
	Our results and proof ideas
	Preliminaries
	Proofs of our results
	Discussion

	Shallow Bootstrapping
	Our results and proof ideas
	Proofs of our results
	Discussion

	Blackbox PIT for certain Log-variate Models
	Our results and proof ideas
	Proofs of our results
	Discussion

	Cone-closed Bases: A stronger notion of rank concentration
	Motivation and our result
	Proof of our result
	Models with a cone-closed basis

	Discussion

	Conclusion
	Bibliography
	Index

