
Treading the Borders
for Explicitness, Circuit Factoring, and Identity Testing

A thesis submitted

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

by

Prateek Dwivedi

18111269

Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

September 2024

https://prateekdwivedi.in
https://cse.iitk.ac.in/
http://www.iitk.ac.in

Certificate

It is certified that the work contained in this thesis entitled “Treading the Borders

for Explicitness, Circuit Factoring, and Identity Testing” by Prateek Dwivedi has been

carried out under my supervision and that this work has not been submitted elsewhere

for a degree.

Prof. Nitin Saxena

N.Rama.Rao.Chair Professor and J.C.Bose Fellow

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

September 2024

ii

https://prateekdwivedi.in
https://cse.iitk.ac.in/users/nitin/
https://cse.iitk.ac.in/
http://www.iitk.ac.in

Declaration

This is to certify that the thesis titled “Treading the Borders: for Explicitness, Circuit

Factoring, and Identity Testing” has been authored by me. It presents the research

conducted by me under the supervision of Prof. Nitin Saxena.

To the best of my knowledge, it is an original work, both in terms of research content

and narrative, and has not been submitted elsewhere, in part or in full, for a degree.

Further, due credit has been attributed to the relevant state-of-the-art and collaborations

with appropriate citations and acknowledgments, in line with established norms and

practices.

Prateek Dwivedi

Roll No. 18111269

Program: Doctor of Philosophy

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

September 2024

iii

https://cse.iitk.ac.in/users/nitin/
https://prateekdwivedi.in
https://cse.iitk.ac.in/
http://www.iitk.ac.in

SYNOPSIS

Name of the student: Prateek Dwivedi

Degree for which submitted: PhD

Thesis title: Treading the Borders for Explicitness,

Circuit Factoring, and Identity Testing

Thesis supervisors: Prof. Nitin Saxena

Month and year of thesis submission: September 2024

Roll No: 18111269

Department: CSE

Polynomials are an indispensable mathematical object of study in theoretical computer

science, where many computational problems can be formulated using them. Algebraic

complexity theory focuses on understanding these computations using standard opera-

tions such as additions and multiplications. In this doctoral thesis, we study approximate

(border) computation of polynomials to address some unresolved questions in classical al-

gebraic complexity theory. In this thesis, we de-border and de-randomize some problems

using newly introduced paradigms. Additionally, the work proposes a presentable model

for approximate computation and motivates its study with applications to problems in

polynomial factoring.

Algebraic circuits are a natural and structured computational model pioneered by Leslie

G. Valiant in 1979 to study the complexity of polynomials. In the seminal research, Valiant

posed one of the most central questions of algebraic complexity: can a small-size algebraic

circuit compute the permanent polynomial? It is conjectured to be false and is famously

formulated as VP ≠ VNP. Mulmuley and Sohoni introduced Geometric Complexity

Theory to use algebraic geometry and representation theory to solve big conjectures of

computational complexity including P vs. NP. In the process, they strengthened the

Valiant’s conjecture to VP ≠ VNP. For an algebraic complexity class 𝒞 , we say that a

iv

https://prateekdwivedi.in
https://cse.iitk.ac.in/users/nitin/

Synopsis v

polynomial f over a field F is in the border class 𝒞 , if there is a polynomial g over F(ε) such

that g = f + ε ·Q, where Q is over F[ε] and g ∈ 𝒞 over F(ε). The notion of approximating

f stems from observing that g comes arbitrarily close to f as ε→ 0. The primary theme

of our work is to upper bound the circuit size complexity of f given the size complexity

of its approximating polynomial g. Within this framework, such questions cannot be

immediately answered a priori.

Explicitness of Border Classes

The first part of the thesis studies the approximation of polynomials using algebraic circuits.

The interest in border complexity and its connection to classical algebraic complexity has

gained popularity in recent years. Motivated by the universality of border depth-3 circuit

of constant top fan-in due to Mrinal Kumar, we study the border of restricted depth-4

circuits. In the first part of the thesis, we develop a de-bordering paradigm called DiDIL—

Divide, Derive, Induct, with Limits, to de-border restricted depth-4 circuit Σ[k]ΠΣ∧ and

prove that when the top fan-in is constant, there are small Algebraic Branching Program

(ABP) which can compute these polynomials. Before this work, it was not clear whether

these polynomials were even in a believably larger class of explicit polynomials called

VNP.

Most of the known de-bordering techniques, including the one we develop in this

thesis, are designed to work on specific models, and they do not scale to general circuits.

One of the reasons for the limited understanding of border circuits is their inherent non-

constructive definition. In the thesis, we develop a constructive, or a presentable version

of border circuits, and over finite fields prove that presentable border classes like VPε and

VNPε lie in VNP. Such strong de-bordering results are currently open for classical border

classes.

Synopsis vi

Circuit Factoring

In a series of works from the 1980s, Kaltofen proved that the complexity class VP is closed

under factoring, which initiated the study of factor closure of algebraic complexity classes.

It is believed that almost all the natural algebraic classes of multivariate polynomials are

‘well behaved’ if they are closed under factoring. It was a long-time conjecture of Bürgisser

that the class VNP is closed under factoring over all fields, which was resolved in 2018 by

Chou, Kumar, and Solomon over fields of large characteristics. In this thesis, we make

progress on the open problem by proving that for all finite fields, and all factors, VNP is

closed under factoring. Consequently, the factors of VP are also in VNP in fields of small

characteristics. The prime characteristic cases were open before due to the inseparability

obstruction, that is, when the multiplicity is not co-prime to the field characteristic.

The study of presentable border classes in the first part of the thesis helped us make

significant progress on the quarter-century old factor conjecture of Bürgisser. In this thesis,

we prove that the irreducible, separable, and polynomial degree factors of a polynomial-

size circuit are in VNP. The conjecture posits that small circuits can compute these

low-degree factors, that is, they are in VP. Before this work, these factors were proved to

be in VP by Bürgisser. Moreover, it is open whether VP is in VNP.

Identity Testing

A natural and fundamental computational problem is to ask if the circuit computes an

identically zero polynomial. The problem has a simple randomized algorithms due to the

PIT Lemma, and de-randomization of it is closely related to algebraic and boolean circuit

lower bounds. The input to the algorithm is an algebraic circuit computing a multivariate

polynomial, and the problem is studied in two settings—blackbox and whitebox. While in

the former, we decide only from circuit evaluation, in the latter, we have complete access to

the internals of the circuit. For a long time, in the deterministic world, nothing better than

an exponential time brute force algorithm was known for even constant depth circuits.

Synopsis vii

Agrawal and Vinay proved that an efficient PIT algorithm for the depth-4 circuit ΣΠΣΠ

would almost solve the general case, highlighting the significance of the constant depth

regime.

In a breakthrough work by Limaye, Tavenas, and Srinivasan in 2021, a subexponential

time algorithm for general constant depth circuits, including ΣΠΣΠ, was obtained from

the hardness vs. randomness trade-off. In this thesis, we give the first polynomial-time

whitebox algorithm to solve the PIT on restricted depth-4 circuits Σ[k]ΠΣ∧ when k is

constant. These circuits compute polynomials of the form — sum of k-many products of

sum of univariates. In addition, we extend our algorithms to solve PIT on border classes

Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ] in quasi-polynomial time when the top fan-in is constant.

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to my advisor, Prof. Nitin Saxena, for his unwavering
guidance throughout my Ph.D. journey. When I first started as his student, he asked me
“Why do you want to work in theory?" and I answered, “Because it’s exciting". Now, as I
reflect on all these years, I realize that he turned that simple response into the best possible
answer. Since then, he has taught me countless lessons, from tackling complex problems to
making consistent progress week by week. He instilled in me the importance of discipline
in research, even emphasizing the value of negative results as progress. I am especially
grateful for his encouragement to participate in workshops and conferences, significantly
enriching my academic experience. If it were not for his support and understanding during
the various family medical emergencies that I faced during my Ph.D., I would not have
been able to finish my dissertation. In addition to research, you also taught me to be a good
teacher. Thank you for entrusting me with multiple teaching assistant responsibilities.
Especially for the last experience, where, in addition to imparting knowledge, we worked
together to ensure fairness for everyone and restoring the students’ faith in the system.
Thank you, Prof. Saxena, for being a constant source of inspiration and encouragement.

The work in this thesis is based on joint research with Pranjal Dutta, C.S. Bhargav, and
my advisor. I want to express my gratitude to Pranjal Dutta, with whom I embarked on
my PhD journey. We started working together on a monumental project that, despite the
challenges of the pandemic, materialised well. Your patience in teaching me ‘fundamental’
topics of complexity theory and algebra have been invaluable. I have learned a lot from
you, both in research and beyond. I truly enjoyed our endless debates on academics, life,
and politics. Although we were on opposite ends of the spectrum most of the time, our
long and intense discussions were always insightful and enriching. Thanks to my other
collaborator, C.S. Bhargav, with whom I have had countless deep and engaging discussions
on research problems. These discussions helped solidify so many of my ideas and were
instrumental in our progress. Our endless conversations, whether about old papers or
new results, were always engaging and productive. We tirelessly debated, found errors
in the proofs, and enthusiastically worked to fix it, always pushing the boundaries of our
work. I truly cherish our association, both as researchers and as friends.

I would like to extend my gratitude to several people who have supported me through-
out my PhD journey. Mahesh, thank you for helping me overcome academic chal-
lenges—your grit and determination have been truly inspiring. I am grateful to Rajendra

viii

Acknowledgements ix

and Priyanka for advice on how to drive my academic career forward; I have fond memo-
ries of our time together. My seniors Sumanta, Amit, Ashish, and Pranav thank you for
guiding me in the early days of my research. Sharing the lab with Muzafar has been a de-
light. Our discussions have taught me so much, especially about Kashmir, and your joyful
nature has brought so much energy to the lab. Thank you, Akhil, for all the philosophical
discussions on the deepest meta-questions. I truly admire the clarity and purity of your
thoughts. I also thank my other lab buddies, Foram, Tufan, Anindya, Ras, and Rizwan.

Outside academia, I owe so much to Anurag, who has been by my side since our school
days, always encouraging me to be the best version of myself. I am grateful for keeping a
check on me when it all became tough for me. Govind and Ankit, without your push, I
might never have found the courage to sit for GATE and eventually discover my passion
for research. The joy, laughter and endless roasting sessions we shared made everything
lighter. I am thankful to have stayed connected through it all, making even the hardest
moments easier to bear.

Lastly, I want to thank my fiancée, Shweta, for countless things that could fill pages.
You stood by me through long nights, tough moments, and endless drafts, always being
my companion. Your love gave me strength and dispelled the fear of failure. Meeting you
on that trip to Lucknow for the IPL match was nothing short of a blessing. Your honesty
made me humble and a better person. Thank you for being my anchor, my partner, and
my biggest supporter. This achievement is as much yours as it is mine.

Contents

Acknowledgements viii

Contents x

List of Publications xiii

List of Tables xiii

1 Introduction 1

1.1 Algebraic Computation and Classes . 2

1.2 Border Complexity . 5

1.2.1 Importance of De-bordering . 6

1.3 Circuit Factoring . 7

1.3.1 Significance of Factor Closure . 9

1.4 Polynomial Identity Testing . 9

1.4.1 Prominence of Identity Testing . 11

1.5 Contribution of Thesis . 13

1.5.1 Demystifying the Border with Explicitness 13

1.5.2 Demonstrating Factor Closure . 14

x

Contents xi

1.5.3 Derandomising Polynomial Identity Testing 15

1.6 Preliminaries . 17

1.7 Structure of the thesis . 25

I Explicitness of Border Classes 26

2 De-bordering Depth 4 Circuits 27

2.1 Border Complexity Preliminaries . 27

2.2 Current Status of De-bordering . 28

2.3 Gentle Introduction to DiDIL . 32

2.4 Debordering Σ[k]ΠΣ∧ using DiDIL . 35

3 De-bordering Presentable Border Classes 43

3.1 Presentable Border and its Efficacy . 44

3.2 Presentable is Explicit . 46

3.2.1 Exponential interpolation technique 47

3.2.2 Transfer algebraic complexity to boolean 50

II Circuit Factoring 53

4 Factor Closure of VNP over Finite Fields 54

4.1 VNP is factor closed . 56

4.1.1 Factoring prime powers using Valiant’s converse 57

4.1.2 Factoring co-prime factors . 59

5 Explicitness of Low-Degree Factors 63

5.1 Low degree factors are easy to approximate 64

Contents xii

III Identity Testing 68

6 Whitebox Identity Testing of Depth-4 Circuits 69

6.1 State of Affairs . 69

6.2 Gentle Introduction to DiDI . 72

6.3 De-randomizing PIT of Σ[k]ΠΣ∧ using DiDI 74

7 Identity Testing of Depth-4 Circuits 82

7.1 Introduction to Border PIT . 82

7.2 Identity Testing Σ∧ΣΠ[δ] Circuits . 83

7.3 De-randomizing PIT using DiDIL . 85

8 Conclusion 90

8.1 Explicitness . 90

8.2 Circuit Factoring . 91

8.3 Identity Testing . 91

Bibliography 93

List of Publications

The thesis is based on the following list of publications in chronological order. The names
of the authors are in alphabetical order.

1. Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Cir-
cuits.
Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena.
In 36th Computational Complexity Conference (CCC 2021).

2. Demystifying the border of depth-3 algebraic circuits.
Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena.
In 62nd Annual Symposium on Foundations of Computer Science (FOCS), 2021.
Invited in the special issue of SIAM Journal on Computing (SICOMP).

3. Learning the coefficients: A presentable version of border complexity and appli-
cations to circuit factoring.
C.S. Bhargav, Prateek Dwivedi, and Nitin Saxena.
In 56th Annual ACM Symposium on Theory of Computing (STOC), 2024.

The following list of publications is not included in the thesis.

1. Lower Bounds for the Sum of Small-Size Algebraic Branching Programs.
Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena.
In 19th Annual Conference of Theory and Applications of Models of Computation (TAMC),
2024.
Invited in the special issue of Theoretical Computer Science(Theor. Comput. Sci.)

xiii

https://doi.org/10.4230/LIPIcs.CCC.2021.11
https://doi.org/10.4230/LIPIcs.CCC.2021.11
https://doi.org/10.1109/FOCS52979.2021.00018
https://doi.org/10.1145/3618260.3649743
https://doi.org/10.1145/3618260.3649743
https://doi.org/10.1007/978-981-97-2340-9_30

List of Tables

1.1 Factor Closure Results on Restricted Algebraic Circuits 8

6.1 Time complexity comparision of PIT algorithms related to ΣΠΣΠ circuits . 71

xiv

Dedicated to Mummy Papa.

xv

Chapter 1

Introduction

Theoretical Computer Science has formed the mathematical backbone of computation
long before computers came into existence. For much of its history, the thirst for solving
problems of interest efficiently has been quenched by an ever-growing understanding
of computational models, aided by mathematical constructs. In hindsight, it was only
natural to study these problems collectively, where they were classified based on the
various notions of efficiency – for instance, time and space. Developing the mathematical
machinery necessary to formally explore the differences between these classes constitutes
the area we call Computational Complexity Theory.

The work in this thesis pertains to a subfield of Computation Complexity where the
object of our interest is Polynomials. These algebraic objects defined over a field F using
variables {x1, . . . , xn} are expressed as follows in the fully expanded form:

f(x) B
∑
a∈Nn

ca · xa1
1 · · · xan

n ,

where a = (a1, . . . ,an) is a tuple of non-negative integers representing exponents of
variables, and ca is constant from the field F. The summation in the above polynomial
expression is finite, where in each term x

a1
1 · · · xan

n is called a monomial. The expanded
form in some cases may not be the most efficient way to express it — for example,
f = x1x2 − 5x1 − 3x2 + 15 = (x1 − 3) · (x2 − 5). Traditional computational models cannot
capture such structural properties so well, so we will work with a more abstract and
succinct model called Algebraic Circuits.

Definition 1.1 (Algebraic Circuits and Formula). An algebraic circuit is a directed acyclic
graph comprising alternating layers of addition gates (+) and multiplication gates (×). The leaves

1

Introduction 2

of the circuit are input variables or constants from the field F. The circuit computes an n-variate
polynomial in F[x1, . . . , xn] at the output node of the graph. A circuit is called a formula if the
out-degree of every gate is at most one.

Computing a polynomial by a circuit always refers to computing a family of polyno-
mials {fn}, one for each n ∈ N. The measure of efficiency of computation by a circuit is
the number of vertices and edges of the graph, which we refer to as the size of the circuit.

Definition 1.2 (Efficiency Measures of Circuits). The size of the smallest circuit over F

computing the polynomial f is denotes by sizeF (f). The number of edges in the longest path from
the root to the leaf is called depth(f).

This thesis is divided into three parts: explicitness, circuit factoring, and identity testing.
In each part, we will delve into a problem in algebraic complexity of a different flavor. We
will discuss the work of this thesis formally after fixing a few notations in the next section.
We will also state some results with relevant references that will be essential in our proofs
later. The section additionally provides a brief overview of algebraic complexity theory.

1.1 Algebraic Computation and Classes

We start with fixing some helpful notations for this thesis. We use [n] to denote the set
{1, . . . ,n}, and x = (x1, . . . , xn) for n variables. We use F[x] to denote ring of polynomials
with coefficients from the field F on the variables x. The fraction field consisting of
rational polynomials of the form g/h where g,h ∈ F[x] such that h ≠ 0, is denoted by
F(x). For vectors a = (a1, . . . ,an),b = (b1, . . . ,bn) ∈ Fn, and a variable t, we define
a + t · b B (a1 + t · b1, · · · ,an + t · bn). For a mathematical object a, we denote its boolean
encoding by ⟨a⟩. Finally, in the upcoming chapters we will frequently use formal power
series rings and use F[[x]] to denote them.

As discussed in the previous section, polynomials can be classified on the basis of the
efficiency parameters of the algebraic circuit. We formally define some of these classes
that are relevant for this thesis. Formally defined by Valiant, we start with the class of
efficiently computable polynomials [Val79].

Definition 1.3 (Valiant’s P). The class VP is the set of all polynomials f ∈ F[x1, . . . , xn] of degree
poly(n) that can be computed by algebraic circuits of size poly(n).

Introduction 3

Similarly, we can define the class VF using algebraic formulas instead. An algebraic
analogue of NP is defined using an exponential sum of VP polynomials.

Definition 1.4 (Valiant’s NP). The class VNP is the set of all polynomials f ∈ F[x1, . . . , xn] such
that there exists a polynomial g ∈ F[x1, . . . , xn,y1, . . . ,ym] in VP withm = poly(n) and

f(x) =
∑

a∈{0,1}m
g(x,a).

We call y1, . . . ,ym the witness (or hypercube) variables and g(x,y) as the verifier circuit. It is
clear from the definitions that VP is contained in VNP, and Valiant’s conjecture is that the
inclusion is strict. Valiant proved that VNP contains explicit polynomials (also see [Bü00,
Prop. 2.20]), making it a de facto class of interesting polynomials.

Proposition 1.5 (Valiant’s criterion). Let f be a polynomial in n variables of degree poly(n) over
a field F such that f =

∑
e cex

e. Suppose that there exists a string function ϕ : {0, 1}∗ ↦→ {0, 1}∗

in #P/poly such that ϕ(⟨e⟩) = ⟨ce⟩. Then, the polynomial f is in VNP over the field F.

Unlike the usual definition of #P which consists of functions mapping {0, 1}∗ to N,
we find it more convenient to consider functions that output binary strings. Over finite
fields, we use a weaker version of the criterion in our proofs, where instead of assuming
coefficient function ϕ ∈ #P/poly, we assume ϕ ∈ #pP/poly [Bü00, Section 4.3]. Formally
that means, there exists a function ψ ∈ #P/poly such that ϕ(⟨e⟩) = ψ(⟨e⟩) mod p 1. We
omit this subtlety wherever it is clear from the context. For a formal definition, refer to
Section 1.6.

Between algebraic circuits and formulas, another interesting model of polynomial
computation is Algebraic Branching Programs.

Definition 1.6 (Algebraic Branching Programs (ABP)). An algebraic branching program is a
layered and directed graph with a source vertex s and a sink vertex t. All edges connect vertices
from layer i to i + 1. Further, the edges are labeled with linear polynomials over the underlying
field F. For every path γ from s to t, wt(γ) is the product of labels on the edges of the path γ. The
polynomial computed by the ABP is defined as

f B
∑

path γ:s⇝t

wt(γ)

1In a slight abuse of notation, we assume the function ψmaps {0, 1}∗ to N.

Introduction 4

The depth of an ABP is defined as the number of layers in the graph, and the width is
the maximum number of nodes in a layer across the graph. The number of vertices used
in the graph is size of an ABP. It is straightforward to see that the ABP is closed under
addition and multiplication.

Definition 1.7 (Valiant’s Branching Program). The class VBP is the set of all polynomials
f ∈ F[x1, . . . , xn] that can be computed by an algebraic branching program of size poly(n).

It is easy to see that formulas can be simulated by ABPs. However, to see circuits
simulating them, we need to alternatively view ABPs as products of matrices. Structurally,
the connection between an ABP and an algebraic circuit is more apparent when one
realises that they are equivalent to skew circuits — at most one child of every product gate
is not an input gate (see [MV97] and [MR08, Section 5]).

Nisan studied ABPs in a non-commutative setting and proved strong lower bounds
against it using width characterization [Nis91]. Forbes and Shpilka extended that result
to a special ABP which mimics non-commutative operations in the commutative world by
restricting the number of time and the order of reading the variables [FS13b].

Definition 1.8 (Read-once Oblivious Algebraic Branching Program). For a fixed permutation
σ : [n] → [n] on the variables, a RO over σ is an ABP where in the i-th layer the edge labels are
univariate polynomials over xσ(i). ARO(s) defines a class of polynomials that can be computed by
an RO of size at most s in every permutation.

ROABPs are one of the few models that we understand quite well due to the structural
characterization due to Nisan [Nis91]. We will discuss various properties and known
results for polynomials computable by ROABP in later sections. Before moving on to
formally discussing the work presented in the thesis, we will fix some notation to denote
constant-depth circuits.

For constant-depth circuits, we use Σ,Π,∧ to denote the layers of summation, product,
and powering gates, respectively.

1. Depth-2 Circuits. They are denoted by ΣΠ and compute sparse polynomials of the
form Σicix

ei , where ei is the exponent vector.

2. Depth-3 Circuits. ΣΠΣ circuits compute polynomials that are of the form— sum-
mation of products of linear polynomials. When the number of product gates is
restricted to k, then we use the notation Σ[k]Π[d]Σ, where d denotes the degree.

Introduction 5

Σ∧Σ compute sum of powers of linear polynomials and historically called depth-3
diagonal circuits.

3. Depth-4 Circuits. In general, we use ΣΠΣΠ to denote the sum of product of sparse
polynomials. In this thesis, we will be mostly interested in Σ[k]ΠΣ∧ which computes
the polynomial of the form

f =

k∑
i=1

∏
j

(
gij1(x1) + · · · + gijn(xn)

)
,

where gijℓ ∈ F[xℓ]. We use Σ∧ΣΠδ to denote polynomials of the form
∑

i fi(x)ei

where deg(fi) ⩽ δ. Similar to diagonal depth-3 circuits, a diagonal depth-4 circuit is
denoted by Σ∧Σ∧. Finally, a bounded depth-4 circuit of the form

∑
i∈[k]

∏
j gij(x)

where deg(gij) ⩽ δ is denoted by Σ[k]ΠΣΠ[δ].

The surveys of [SY10, CKW11, Mah14, Sap13] provide an excellent overview of alge-
braic complexity theory and the current state of lower bounds. For a more extensive but
slightly dated review, see [BCS97, Bü00].

1.2 Border Complexity

The notion of approximation is known to be useful in algorithms and in the wider spectrum
of complexity theory, where the output is mildly corrupted with an error. There is a natural
way to associate a Euclidean (or Zariski) topology with the polynomial ring. This confers
a notion of limit and, thereby, a way of approximating a polynomial by a sequence of
polynomials (see, e.g., [BIZ18, Section 2.3]). The topological notion of definition has been
extensively explored to design algorithms for matrix multiplication [Str74, BCRL79, Bin80,
CW90, LO15a]. However, in Valiant’s framework, the simplest definition for algebraic
approximation and border complexity was given by Búrgisser[Bür04].

We say that a polynomial g(x, ε) ∈ F(ε)[x1, . . . , xn] approximates a polynomial f(x) ∈
F[x1, . . . , xn] if g = f + εQ, where Q(x, ε) ∈ F[ε][x1, . . . , xn]. Refer to Definitions 2.1
and 3.1 for formal statements. The size of the smallest circuit that computes g and thereby
approximates f, defines the border complexity of f, which is denoted by size(f). In an
algebraically closed field, like C, the topological notion of approximation is known to be
equivalent to the algebraic notion [Bür04, Theorem 2.4].

Introduction 6

Mulmuley and Sohoni introduced Geometric Complexity Theory (GCT) to settle major
open problems in complexity theory [MS01], and initiated the study of border complexity
to settle Valiant’s conjecture and strengthened it to VNP ⊈ VBP. The philosophy of the
GCT program is to employ advanced concepts of Algebraic Geometry and Representation
Theory to prove strong lower bound results. The increasing popularity of GCT since
its inception is due to its strong connection to computational invariant theory [FS13a,
Mul12a, GGdOW16, BGdO+18, IQS18], algebraic natural proofs [GKSS17, BIL+21, CKR+20,
KRST22], lower bounds [BI13, Gro15a, LO15b], optimization [AGL+18, BFG+19] and many
more. We encourage the reader to refer to [BLMW11, Sec. 9] and [Mul12a, Mul17] for
expository references.

The algebraic notion of an approximation gives rise to multitudes of natural questions.
Understanding the relationship of classical circuit size complexity with its border counter-
parts is one such question, called De-bordering, that has gained lot of interests in recent
years (refer Question 2.2). At the core of it, the problem asks whether the auxiliary variable
ε is essential in the approximation, or it can always be eliminated to obtain f effectively.

1.2.1 Importance of De-bordering

Historically, de-bordering of matrix tensors helped Bini in designing faster matrix multi-
plication algorithm [Bin80]. In algebraic complexity, the biggest motivation comes from a
fundamental conjecture from GCT program [Bür04, Problem 4.3].

Conjecture 1.9 (De-bordering Small Circuits). VP = VP

If the conjecture is proven to be true, then any proof that separates VP from VNP will
also prove the Mulmuley-Sohoni conjecture VNP ⊈ VP. Moreover, if VP ≠ VP, then any
proof of VP ≠ VNP using continuous lower bounds would have to separate VNP from
VP \VP [Gro15b, BIZ18]. Mulmuley takes it further to motivate de-bordering using its
significance in flip — an approach to prove stronger lower bounds from the theory and
understanding of upper bounds [Mul07, Mul12b].

In its nascent history, border complexity has demonstrated immense potential in
helping us understand complexity classes better and thereby motivate us to explore
them further. For example, recently it was proved that VBP2 = VF [BIZ18], a relation
that does not hold in classical complexity, where it is known that VBP2 ⊊ VBP3 = VF
[BC92, AW16]. Furthermore, in a rather surprising result Mrinal Kumar proved that over

Introduction 7

C, VF ⊆ Σ[2]Π[D]Σ when the degree is inevitably exponential, and proved the universality
of a seemingly simple model in the classical setting [Kum20].

It is extremely challenging and non-trivial to de-border classes using known tools
and techniques. The problem gained traction from an expository seminar by Michael
Forbes, where it was demonstrated that Σ∧Σ ⊆ VBP and conjectured that the class can be
completely debordered [For16].

Conjecture 1.10 (De-bordering Waring Rank). Σ∧Σ = Σ∧Σ

As we will later see in Chapter 2, resolving the above conjecture has far reaching conse-
quences in improving de-bordering results of depth restricted circuits. However, most the
known techniques to de-border are tailor made for restricted models and they do not scale
to resolve big conjectures.

1.3 Circuit Factoring

Polynomial factorisation is one of the most natural problems in algebraic complexity,
which has led to foundational insights in understanding polynomials. Although integer
factorisation is believed to be a difficult problem on the classical computational models,
various efficient algorithms for its algebraic analogue have been discovered in the last
half a century. The problem requires non-trivial ideas even in the dense representation,
where the input is given as a list of monomials respecting a fixed ordering. However, we
are interested in studying the problem over a more succinct representation of Algebraic
Circuits.

Question 1.11 (Factor Closure). Let F be a field. Consider a polynomial f ∈ F[x1, . . . , xn] in a
circuit class 𝒞 , and let u be its arbitrary factor. Then show that u is 𝒞 .

A complexity class is called uniformly factor closed if there is an efficient algorithm to
output the factors. The factor of a polynomial could be of a much bigger size complexity
than that of the polynomial itself, making it a highly non-trivial problem where each class
offers a different challenge. Consider the following example, the number of monomials of
f =

∏
i∈[n](xdi − 1) = g · h is s ≔ 2n such that

g =

n∏
i=1

(
1 + xi + · · · + xd−1

i

)
, h =

n∏
i=1

(xi − 1),

Introduction 8

meanwhile the number of monomials of g is slogd [FS15].

In a series of highly influential papers, Kaltofen showed that over fields of characteristic
zero, the class VP is closed under factoring [Kal85, Kal86, Kal87, Kal89, KT90]. In fact, if
a polynomial factorizes as f = uev with u and v co-prime, then Kaltofen [Kal87] showed
that size(u) is at most poly(e, deg(u), size(f)). For the exponential degree polynomial f,
one might expect that the size of u depends only on its degree and the size of f, and that
the dependence on multiplicity e can be completely removed. Búrgisser formulated it as
the Factor Conjecture [Bü00, Conjecture 8.3].

Conjecture 1.12 (Factor Conjecture). Let F be a field. Consider a polynomial f ∈ F[x1, . . . , xn],
and let u be its arbitrary factor. Then

size(u) ⩽
(
size(f) + deg(u) + n

)O(1) .

In other words, we expect that any poly(n)-degree factor of a poly(n)-size circuit (with no
restrictions on the degree) is in VP. In case f = ue, Kaltofen [Kal87] showed that it is true
and u is VP.

In the last few decades, fascinating progress has been made in restricted algebraic
classes. We summarise them in the table below in a natural order of restriction.

Table 1.1: Factor Closure Results on Restricted Algebraic Circuits

Model Main Idea Ref.

VNP Hensel Lifting with VNP
composition

[CKS19b]

VP Hensel Lifting [KT90]

VBP Hensel Lifting and solving
Linear System

[ST21]

Quasi–VF Newton Iteration (All
Roots)

[DSS22]

Constant depth and con-
stant individual degree

Newton Iteration [Oli20]

There have been many proofs of the original VP closure result itself. See [Bü00, KSS15,
Oli16, CKS19a, DSS22] for some alternate ones. From the earlier example, we know that
the sparse polynomials ΣΠ are not closed under factoring. However, in a breakthrough
work Bhargava, Saraf, and Volkovich studied the problem on sparse polynomials and

Introduction 9

gave a near polynomial bound on the sparsity, when the individual degree is constant
[BSV20a] (see also [vzGK85, Len99, Gre16]). Then a quasi-polynomial time deterministic
algorithm was presented to output all constant degree factors of sparse polynomials in the
work of Kumar, Ramanathan, and Saptharishi [KRS24]. Lastly, most of the closure results
discussed in Table 1.1 continue to hold for analogous border classes (see [DSS22, Section
6.1]).

1.3.1 Significance of Factor Closure

An algebraic complexity class which is closed under factorisation is in some sense resilient
to nonzero multiplication, which crucially helps to prove lower bound for certain algebraic
proof systems [FSTW21].

The proofs and techniques developed in proving factor closure results have found
profound applications in various areas of computer science and have gained a lot of
independent interest in the past few decades. For example, factorisation is helpful
in Hardness versus Randomness trade-off which establishes strong connections between
lower bounds and deterministic algorithms for problems that have efficient randomised
algorithms [KI04, DSY10, AGS19, CKS19b, KST19a, KS19, GKSS22].Other application of it
includes coding theory [Sud97, GS99], cryptography [CR88], convex optimisation [Oli20],
de-randomisation of the Noether Normalization Lemma [Mul17], circuit reconstruction
[Sin16, KS09, BSV20b] and more.

Polynomial factorisation has deep-rooted links to deterministic identity testing, since
the two problems are known to be equivalent in a certain sense [SV10, KSS15]. Thus
factorisation becomes a helpful tool to prove strong circuit lower bounds [KI04]. We will
discuss the problem of identity testing at length in the upcoming section together with its
applications.

1.4 Polynomial Identity Testing

On a compact and an abstract model like an algebraic circuit, we can ask several algorithmic
questions pertaining to polynomials — adding or multiplying two circuits, evaluating it
at certain point, testing equivalence, etc. In a similar spirit, it is natural to ask whether
all the coefficients of an input polynomial are zero, formally known as an identically zero
polynomial.

Introduction 10

Question 1.13 (Polynomial Identity Testing). Given an algebraic circuit C over a field F as
input, test if C computes an identically zero polynomial.

Broadly, there are two categories in which the problem is studied — whitebox and
blackbox. In the whitebox PIT, we can look inside the circuit and access internal com-
putations of a circuit. A blackbox PIT algorithm decides if the input circuit computes
a zero polynomial using only evaluations, and has no access to the internal structure
of the circuit. Naturally, from the definitions, blackbox PIT is a stronger notion since it
immediately implies whitebox testing. A simple randomised blackbox algorithm for PIT
is known for a long time and runs in polynomial time due to the following PIT lemma
[Ore22, DL78, Zip79, Sch80].

Lemma 1.14 (PIT Lemma). Let f(x) ∈ F[x1, . . . , xn] be a non-zero polynomial of degree d. Then
for any set S ⊆ F,

Pr
ai∈S

[f(a1, . . . ,an) = 0] ⩽
d

|S| .

The algorithm evaluates the input circuit at a randomly chosen point to test the polynomial.
The size of the set S governs the one-sided error probability of the algorithm. It is
worthwhile to note that there have been several attempts to improve the lemma [CK00,
LV98, KS01, AB03, BHS08, BP20]. However, the most intriguing question is if the algorithm
can be de-randomised.

Question 1.15 (Determinisitc PIT). Design a deterministic algorithm to test whether any n
variate, degree d polynomial computed by a size s circuit is identically zero in time poly(n,d, s)?

Lemma 1.14 reveals that if we consider a set ℋ of size (d + 1)n, then with non-zero
probability, there exists a point a = (a1, . . . ,an) ∈ ℋ which hits the polynomial, that is
f(a) ≠ 0. This set is called the Hitting Set, which is defined formally as follows.

Definition 1.16 (Hitting Set). Let 𝒞 be a class of n-variate polynomials. A set ℋ ⊆ Fn is called
a hitting-set for 𝒞 , if for all non-zero f ∈ 𝒞 , there exists a non-zeroness certificate point a ∈ ℋ
such that f(a) ≠ 0. If the hitting set can be generated in time T (n), then we call it a T (n)-time
hitting set.

A hitting set is called explicit if it can be efficiently generated by an algorithm. In
the blackbox setting, Question 1.15 is equivalent to asking for a poly(n,d, s) size explicit
hitting set [For14, Section 3.2]. Heintz and Schnorr [HS80] showed that a hitting set of
size poly(n,d, s) exists, which was improved in [Mit13, Theorem 2.7.3]. Such existential

Introduction 11

evidences are promising, but to completely answer Question 1.15 in the blackbox setting,
we need an explicit hitting set in time poly(n,d, s).

For general algebraic circuits, we do not know anything better than an exponential
time brute-force algorithm for PIT. Even with years of effort, it was not until recently that
the first subexponential time PIT algorithm was obtained for constant-depth circuits via
the Hardness vs. Randomness tradeoff [LST21]. Over the past two decades, significant
advances have been made in PIT for restricted classes, ranging from bounded-depth
circuits to read-once oblivious algebraic branching programs. Refer to Section 6.1 for a
comprehensive discussion on the current state of affairs of PIT on models that are relevant
to this thesis. For a more broader overview on the topic, refer to extensive surveys filled
with exposition of various PIT results [Sax09a, AS09, SY10, Sax14b].

By reducing the problem of checking if a set is not a hitting set to the satisfiability of
a set of polynomials, Mulmuley observed that the problem of constructing hitting set for
VP is in PSPACE. Assuming the generalised Riemann hypothesis, Koiran brought it down
to PH [Koi96]. Refer to [Mul17, Proposition 2.9] for more details. Mulmuley asked if the
same is true for the hitting sets of the border class VP, and showed that the problem is
in EXPSPACE using the Gröbner basis. In a subsequent work, the problem was placed in
PSPACE over all fields [FS18, GSS19]. It initiated the quest to construct the hitting set for
border classes, which is seemingly a different avenue for exploration.

Definition 1.17. Let 𝒞 be a border class of n-variate polynomials. A set ℋ ⊆ Fn is called a robust
hitting set for 𝒞 , if for all non-zero f ∈ 𝒞 there exists a non-zeroness certificate point a ∈ ℋ such
that f(a) ≠ 0. In other words, if g ∈ 𝒞F(ε) approximates f, then g(x = a, ε) ∉ ε · F[ε].

We emphasise that a ∈ Fn such that g(x = a, ε) ≠ 0, may not hit the polynomial f,
since g(a, ε) might be in ε · F[ε]. Intrinsically, this property makes it harder to construct
an explicit hitting set for border classes. The existential nature of the definition of border
complexity invalidates a whitebox identity test of border classes. Although our newly
introduced presentable border classes open up a new avenue to study border PIT in the
whitebox setting as well.

1.4.1 Prominence of Identity Testing

Polynomial Identity Testing has found numerous applications and connections to various
algorithmic problems. Some notable examples include algorithms for finding perfect
matchings in graphs [Lov79, MVV87, FGT21, GT20, ST17], primality testing [AKS04],

Introduction 12

polynomial factoring [KSS15, DSS22], polynomial equivalence [DOS14], reconstruction
algorithms [KS06, Shp09, KS09] and the existence of algebraic natural proofs [CKR+20,
KRST22]. Remarkably, PIT reoccurs naturally in several key results in complexity theory,
including IP = PSPACE [Sha92], and the PCP theorem [ALM+98, AS98].

Hardness vs Randomness. The theory of using hard objects to derandomise algorithms
is extensively studied in complexity theory. In algebraic complexity, similar strong
connections are known between PIT and circuit lower bounds. Heintz-Shnorr [HS80] and
Agrawal [Agr05] proved that a complete de-randomisation of blackbox PIT algorithm on
circuits imply a exponential circuit lower bounds. In the whitebox setting, Kabanets and
Impagliazzo [KI04] took inspiration from [NW94] to prove that a subexponential time
white-box PIT algorithm for circuits over integers would imply either VP ≠ VNP (algebraic
lower bound) or NEXP ⊈ #P/poly (boolean lower bound).

In the other direction, Kabanets and Impagliazzo showed that a polynomial family
which requires super-polynomial circuit size gives a sub-exponential size explicit hitting
set. Their framework can derandomise PIT up to quasi-polynomial time. Dvir, Shpilka,
and Yehudayoff proved that hard polynomials of low individual degree on constant depth
circuits give an efficient hitting set for a constant depth circuit [DSY10, CKS19b]. Then
Guo, Kumar, Saptharishi, and Solomon took it further and proved that constant-variate
hard polynomials give efficient hitting sets for general circuits and thereby use hardness
to completely resolve Question 1.15 [GKSS22, And20]. More recently, Andrew showed
that the hardness of matrix multiplication can be used to obtain efficient hitting sets for
circuits [And22].

Border PIT. Mulmuley first asked the question of designing a hitting set for VP for its
application in Noether’s Normalization Lemma (NLL) problem. The paper proved that
constructing explicit normalization maps reduces to constructing small hitting sets for VP,
which can be solved efficiently with randomness, and deterministically, the problem is in
EXPSPACE. Further, it was observed that a certain formulation of NLL is closely connected
to proving circuit lower bounds. In fact, derandomizing a special instance of NLL has
given a deterministic polynomial time black-box PIT algorithm for a class of restricted
depth-4 circuits [Muk16]. Another reason for studying border PIT is to obtain explicit
robust hitting sets — a stronger notion that resolves the discrepancy between hitting sets
of classical and border classes [FS18, MS21].

Introduction 13

1.5 Contribution of Thesis

The central theme of this thesis is to study the border complexity of various relevant
problems in algebraic complexity. Our model of interest throughout the thesis will be
restricted depth-4 circuits. We will now present a summary of the main results of this
thesis informally first, and then provide a more detailed discussion in the corresponding
chapters.

1.5.1 Demystifying the Border with Explicitness

It is believed that the power harnessed from the auxiliary variable to approximate a
polynomial is essential, and removal of it could potentially blow up the size complexity
exponentially. Any non-trivial improvement over the exponential degree upper bound
of ε proved in the seminal work of Búrgisser[Bür04] would give evidence to refute such
a belief. In Section 2.2 we discuss more de-bordering results in detail. However, the
universality of the border depth-3 circuit proved by Kumar [Kum20] makes it imperative
to investigate constant depth circuits. Until recently, we had little reason to believe if
polynomials which can be approximated by Σ[2]Π[d]Σ are explicit, that is, in VNP. Using a
first-of-its-kind proof, we proved that Σ[k]Π[d]Σ ⊆ VBP, for all k = O(1) [DDS22]. We call
our iterative de-bordering technique DiDIL (refer Section 2.3).

It is natural to ask whether the technique introduced to de-border depth-3 circuits is
robust enough to de-border depth-4 circuits. In Chapter 2 we give a detailed introduction
of our novel de-bordering technique DiDIL, followed by applying it to de-border depth-4
circuits Σ[k]ΠΣ∧ and prove the following result:

For any constant k and size s = poly(n), Σ[k]ΠΣ∧(s) ⊆ VBP.

Although we do not improve the upper bound on the degree of ε, we still manage to make
a humble progress towards proving VP = VP.

Main Idea. The novel idea to de-border restricted depth-4 circuits is to use an iterative
application of Division, Derivation, and Integration with Limits (DiDIL) to systematically
reduce the top fan-in. At a very high level, DiDIL reduces the top Π gate to a ∧ gate, and
as a result, it obtains a tractable model that can be de-bordered using known techniques.
We give a more formal overview of our proof technique in Section 2.3.

Introduction 14

Although the philosophy of de-bordering makes us believe that border classes are
perhaps not too much bigger than their classical counterparts, it is far from clear if
that is the case from the definitions. The use of arbitrary functions in the auxiliary
variable for approximation makes the border circuits highly existential, with no compact
representation possible in reality. In fact, we do not know whether polynomials that are
easy to approximate are also explicit, that is, VP contained in VNP. To make the concept of
an approximation constructive, while retaining the core essence, in this thesis, we propose
a natural restriction called presentability. A presentable border class VPε is the same as
the border class VP (Section 1.2), with the additional restriction that all polynomials in ε
used in the approximate circuit are of small size (see Definition 3.3 and 5.1). We use this
definition to prove the following de-bordering results.

Over finite fields, the polynomials in presentable border of VNP are explicit.

This gives us an interesting tower of containment VP ⊆ VPε ⊆ VNP. The first of
its kind, general debordering at this level, makes the presentable border a worthwhile
restriction for further investigation. In addition, we generalise Valiant’s conjecture and
Conjecture 1.9 to a presentable world.

Conjecture 1.18 (Presentable Border Collapse). VP = VPε ≠ VNP

Main Idea. Interpolation, which seemed unhelpful at first, is crucially used to show
a structural modification that de-border the presentable model (see Section 2.2). To
prove that VNPε ⊆ VNP, instead of using the definition, we employ Valiant’s criterion,
which essentially states that low-degree polynomials whose coefficients are effectively
computable in the boolean world are in VNP (refer to Proposition 1.5). By carefully
choosing the evaluation points, interpolation helps obtain the required coefficient function
to invoke Valiant’s criterion.

1.5.2 Demonstrating Factor Closure

Ever since Kaltofen’s closure result of VP [KT90], there was a quest to prove a similar strong
closure result for other algebraic complexity classes. In particular, Búrgisserconjectured
that explicit polynomials are closed under factorisation [Bü00, Conjecture 2.1]. Chou,
Kumar, and Solomon then used their techniques of factor closure of low-degree and
depth-restricted circuits to resolve Búrgisser’s conjecture f fields of large characteristics
[CKS18]. In this thesis, we resolved the conjecture for fields of small characteristic.

Introduction 15

Over any finite field, the class VNP is closed under factorisation.

As a corollary of the above theorem, we find that over finite fields, the factors of
polynomials in VP are explicit. This partially resolved the question whether the class is
factor closed, over fields of positive characteristic as well [Bü00, Problem 2.1].

Main Idea. The key contribution of this thesis is to handle the separable case where the
characteristic of the field does not divide the multiplicity. Over finite fields, it is possible to
obtain the coefficient function of a factor because of its natural relation to the coefficients
of the given polynomial due to simple Frobenius action. Moreover, such a coefficient
function will be efficient because the converse of Valiant’s criterion is true over finite fields.
Although the converse has been remarked in older papers, here we give an independent
proof of it by taking inspiration from our earlier proofs. Refer to Chapter 4 for a more
detailed proof overview.

Among all the reasons for studying the border complexity we discussed in Section 1.2,
its appearance in circuit factoring is perhaps the most organic. In Búrgisser’s attempt
to resolve Conjecture 1.12 it was proved that any poly(n) degree separable factors of a
poly(n)-size circuit are in VP. We observe that these separable factors of low degree are, in
fact, in the presentable border class VPε (see Section 3.1). Although the conjecture was to
show that they are in VP, our presentable de-bordering results prove that they are explicit.

Over finite fields, poly(n) degree separable factors u of an n-variate poly-
nomial f computable by a circuit of poly(n) size are explicit. That is, u is in
VNP.

Main Idea. We first show that Búrgisser in fact proved that u is in VPε. Moreover, our
presentable de-bordering has proved that over finite fields VPε ⊆ VNP.

1.5.3 Derandomising Polynomial Identity Testing

In an astonishing structural result, Agrawal and Vinay proved that the depth of any
algebraic circuit can be squished to a constant with a reasonable increase in the size of the
circuit [AV08, Koi12, Tav15].

In particular, they established that the complete derandomization of PIT for depth-4
circuits implies near-complete derandomization of PIT for general circuits. The bootstrap-
ping phenomenon takes the connection even further and expects an efficient PIT algorithm

Introduction 16

for a very restricted depth-4 circuit to nearly solve Question 1.15 in the blackbox setting
[AGS19, KST19b, GKSS22, And20]. The connections have encouraged us for decades to
pursue an efficient deterministic algorithm for restricted depth-4 circuits. In this thesis,
we will study Σ[k]ΠΣ∧ circuits, defined as follows:

Definition 1.19. A Σ[k]ΠΣ∧ formula computes a polynomial f(x) ∈ F[x1, . . . , xn] of the form:

f =

k∑
i=1

∏
j

(
gij1(x1) + · · · + gijn(xn)

)
,

where gijℓ ∈ F[xℓ].

Saha, Saptharishi, and Saxena were the first to initiate the study on the above model
and solved the PIT completely on it when k = 2 through factoring [SSS13]. The identity
testing of Σ[k]ΠΣ∧ can be viewed as a humble generalisation from PIT on bounded-top
fan-in depth-3 circuits Σ[k]Π[d]Σ [KS07, SS12] towards PIT on depth-4 circuits. In this
thesis, we consider Σ[k]ΠΣ∧ when k is constant and prove the following.

There is a polynomial-time whitebox PIT algorithm for theΣ[k]ΠΣ∧ formula,
when k is constant.

We also give a quasipolynomial time blackbox PIT algorithm for the same model using
a different technique [DDS21]. Refer to [Dut22] for more details.

Main Idea. In our pursuit of designing the PIT algorithm, we discover a technique called
DiDI. Similar to DiDIL discussed earlier for de-bordering, DiDI is an iterative application
of Division and Derivation to reduce the top fan-in. Naturally, these operations distort
the model, but with our careful analysis, it can be established that the non-zeroness is
preserved in the reduced model. In the end, we show that identity testing on the reduced
model suffices, which is possible using known PIT algorithms. At the core of our identity
testing algorithm, the idea is primal: if a bivariate polynomial g(x,y) ≠ 0, then either its
derivative ∂yg is non-zero, or its constant term g(x, 0) is non-zero.

In the blackbox setting, most of the hitting sets are not known to be robust enough to
work for respective border classes. If a class 𝒞 has an efficient hitting set ℋ , then naturally
showing border closure 𝒞 = 𝒞 immediately proves that ℋ is a robust hitting set. Although
known PIT techniques are not known to help, the structural understanding attained from
de-bordering circuit classes helped us in derandomising PIT for the same class.

Introduction 17

There exists an explicit quasi-polynomial time robust hitting set for Σ[k]ΠΣ∧,
when k is constant.

Although we were unable to de-border Σ[k]ΠΣΠ[δ], our technique and structural
understanding scaled well enough for near complete derandomization of PIT for the class.

There exists an explicit quasi-polynomial time robust hitting set for Σ[k]ΠΣΠ[δ],
when k is constant.

Main Idea. We combine the de-bordering and de-randomisation techniques from earlier
discussion to construct an efficient hitting set for Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]. The idea is
once again to reduce the PIT problem to a tractable model which is known to have an
efficient hitting set. Recall that at a very high level DiDI converts the top product gate to a
powering gate. Therefore, all we need in addition to our technique is the hitting set for
Σ∧Σ∧ for Σ[k]ΠΣ∧ and Σ∧ΣΠ[δ] for Σ[k]ΠΣΠ[δ] which are known from earlier results.

1.6 Preliminaries

In this section, we introduce various standard concepts from algebraic complexity theory
and summarize a few past results that help to prove our main theorems. Although we
do not give the complete proof of all of the stated results, we will do our best to provide
relevant references for a comprehensive discussion on them.

Counting and functional complexity classes

We will review some of the computational complexity classes used in our proofs and
discuss some standard closure results. For details refer to [Bür04, Section 4.3] and [KP11,
Section 2.2]. For a more comprehensive discussion refer to [Pap94]. For a natural number
r, ⟨r⟩ ∈ {0, 1}∗ denotes the binary encoding of r.

Definition 1.20 (#P and FP). The complexity class #P is defined as the set of string functions
ψ : {0, 1}∗ → {0, 1}∗ such that there is a language χ ∈ P satisfying ψ(x) = ⟨|S|⟩ where

S =

{
y ∈ {0, 1}poly(|x|) : (x,y) ∈ χ

}
.

Introduction 18

Further, a function ψ is in FP if there exists a Turing machine that computes ψ(x), for all inputs
x ∈ {0, 1}∗, in time poly (|x|).

It is easy to show that FP is contained in #P (refer [SK12, Lemma 8]). Further, any
counting class can be extended to its corresponding non-uniform version where the
functions accept an advice string, in addition to the input string, for computation.

Definition 1.21 (Non-uniform complexity classes). The complexity class C/poly is defined as
the set of functions ϕ : {0, 1}∗ → {0, 1}∗ such that there exists a ψ in class C and a polynomial
length advice function α : N → {0, 1}∗ satisfying ϕ(x) = ψ(x,α(|x|)).

We remark that the advice function α in the definition above only depends on the length
of the input. Moreover, for all n ∈ N, |α(n)| ⩽ poly(n). The following lemma shows that
the complexity classes of our interest are closed under usual operations.

Lemma 1.22 (Closure Properties). For a positive integer r, consider a set of functionsϕ1, . . . ,ϕr

in #P/poly. Consider an input string x ∈ {0, 1}∗. Then the following closure properties can be
shown:

1. Addition and Multiplication: Let ϕ+(x) :=
∑

i∈[r]ϕi(x) and ϕ× :=
∏

i∈[r]ϕi(x). Then,
ϕ+ and ϕ× are also in #P/poly for r ⩽ poly(|x|).

2. Repeated Squaring: For all i ∈ [r], ϕi(x)t is in #P/poly for t ⩽ 2poly(|x|).

3. Projection: LetΦi(x) :=
∑

b∈{0,1}ℓ ϕi(x,b), where ℓ ⩽ poly(|x|). ThenΦi is in #P/poly.

Proof. For every #P/poly function ϕi, let αi be its advice function and χi be its associated
language in P defining the counting set Si, see Theorem 1.20.

1. Addition and Multiplication: Define an advice function α(|x|, ⟨i⟩) = αi(|x|), and two
sets as follows:

S+ :=
{
(i,y) ∈ {0, 1}poly(|x|)+log r : (x,α(|x|, i),y) ∈ χi

}
, and

S× :=
{
(y1, . . . ,yr) ∈ {0, 1}rpoly(|x|) : ∀i ∈ [r], (x,α(|x|, ⟨i⟩),yi) ∈ χi

}
.

Introduction 19

For input x ∈ {0, 1}∗, let ᾱ(|x|) = (α(|x|, ⟨1⟩), . . . ,α(|x|, ⟨r⟩)) be the advice function.
Then, it is easy to verify that

ϕ+(x) = ψ+(x, ᾱ(|x|)) := ⟨|S+|⟩ , and

ϕ×(x) = ψ×(x, ᾱ(|x|)) := ⟨|S×|⟩ .

Due to the upper bound on r, the length of the advice string ᾱ is bounded by poly(|x|).
Moreover, ψ+ and ψ× are in #P by definition. Hence, ϕ+ and ϕ× are in #P/poly.

2. Repeated Squaring: Note that ϕi(x)2 is in #P/poly from the discussion on multiplica-
tion above. Then the claim follows by repeatedly multiplying #P/poly function, log r
many times.

3. Projection: The proof is in the same line as addition, which was discussed earlier.
Since the advice function depends solely on the length of the input x, it will be same
throughout the hypercube-sum. This essentially, lets us add exponentially many
#P/poly function. Let Ψi(x,αi(|x|)) = ⟨|SP|⟩ where

SP :=
{
(b,y) ∈ {0, 1}poly(|x|)+ℓ : (x,αi(|x|),b,y) ∈ χi

}
.

Given the advice string αi(|x|) as input, clearly Ψi is in #P. Observe that Φi(x) =
Ψi(x,αi(|x|)), henceΦi belongs to #P/poly.

□

Structural Results

For a degree-dpolynomial f, we denote its degree-khomogeneous components by Homk(f).
Similarly, we define Hom⩽k(f) equal to

∑
i∈[k] Homk(f).

The following structural theorem proves that, with black-box access to a circuit, it is
feasible to construct a circuit that can compute all its homogeneous components.

Refer [SY10, Theorem 2.2] for the proof.

Lemma 1.23 (Homogenisation). Consider an n-variate polynomial f :=
∑

i∈[d] ci(y)xi com-
putable by a circuit of size s over F. Then size(ci) is at most poly(s,n,d), for all i ∈ [d]. Moreover,
size(Hom⩽d(f)) is at most poly(s,n,d).

Introduction 20

A straight-forward application of the Homogenisation lemma is the elimination of
division gates and taking derivatives of circuits. Refer [SY10, Theorem 2.11] and [DSS22,
Lemma 5] for the proof.

Lemma 1.24 (Division Elimination on Circuits). Consider an n-variate polynomial f(x) ∈
F[x1, . . . , xn] such that sizeF(f) = s. Then

sizeF
(
f mod ⟨x⟩d+1

)
⩽ poly(s,d).

Lemma 1.25 (Derivatives). Consider an n-variate polynomial f ∈ F[y, x1, . . . , xn] such that
sizeF(f) = s. Then for any k,

sizeF
(
∂kyf

)
⩽ poly(s,k).

In a similar way, we can eliminate division in algebraic branching programs as well.
However, to help us in de-bordering restricted depth-4 circuit we the following expression
[Dut22, Lemma 2.6.4].

Lemma 1.26 (Division Elimination on ABPs). Consider polynomials g(x,y),h(x,y) of degree
at most d computable by ABP of size s over F such that h(x, 0) ≠ 0. Then,

g

h
mod yd =

d−1∑
i=0

(
Ci1
Ci2

)
· yi,

where each Cij is computable by an ABP of size at most O(sd2). Moreover, if g/h is a polynomial
then it can be computed by an ABP of size O(sd2).

Hypercube Sum of Formulas

In Section 1.1 we define the class VNP as hypercube sum of small size circuits. In
a subsequent work, Valiant proved that the polynomials in VNP can be equivalently
computed by a hypercube-sum of small size formulas [Val82]. Refer [Bü00, Theorem 2.13]
and [MP08, Theorem 2] for the proof.

Lemma 1.27 (Verifier formula). Consider an n-variate polynomial f of degree d computable by
a circuit of size s over F. Then, there is a verifier polynomial h, withm and the formula size of h
both bounded by poly(s,n,d), satisfying the hypercube-sum expression

∑
a∈{0,1}ℓ

h(x1, . . . , xn,a1, . . . ,aℓ) = f.

Introduction 21

The equivalence from the above lemma helps in proving various closure properties
of polynomial in VNP. Some of these properties are crucially required in our factoring
results in Chapters 4 and 5.

Lemma 1.28 (VNP closure properties). For all i ∈ [t], let fi ∈ F[x1, . . . , xn,y1, . . . ,ym] be
polynomials in VNP over F, where t is at most poly(n,m). Then the following closure properties
hold:

1. Addition and Multiplication: Let f+ :=
∑

i∈[t] fi, and f× :=
∏

i∈[t] fi. Then f+ and f×
are in VNP.

2. Coefficient Extraction: For all i ∈ [t], let fi =
∑

e ce(x) · ye. Then for all exponent
vectors e, the coefficient ce is also a polynomial in VNP.

3. Composition: Let g be a t-variate polynomial in VNP. Then g(f1, . . . , ft) is in VNP.

Proof. The statements can be proved directly from the Definition of VNP Definition 1.4.
For all i ∈ [t], let (mi, size(hi)) be the size parameters for fi in VNP over F, where both the
parameters and deg(fi) are bounded by poly(n,m). Then the properties can be proved as
follows.

Addition and Multiplication: Observe that

f+ =
∑
i∈[t]

fi =
∑
i∈[t]

©«
∑

ai∈{0,1}mi

hi(x,ai)ª®¬
=

∑
(a1,...,at)∈{0,1}ℓ+

h+(x,a1, . . . ,at),

where ℓ+ :=
∑

i∈[t]mi and h+ :=
∑

i∈[t] hi(x,ai). Since both t and mi, are bounded
by poly(n,m), the length of the witness ℓ+ is atmost poly(n,m). Moreover, size(h+) =
3 + t +

∑
i∈[t] size(hi) ⩽ poly(n,m). Similarly for multiplication we have

f× =

∏
i∈[t]

fi =

∏
i∈[t]

©«
∑

ai∈{0,1}mi

hi(x,ai)ª®¬
=

∑
(a1,...,at)∈{0,1}ℓ×

h×(x,a1, . . . ,at).

A similar analysis reveals that VNP size parameters (ℓ×, size(h×)) of f× are bounded by
poly(n,m).

Introduction 22

Coefficient Extraction: The standard interpolation suffices for the proof over large
characteristic. Later in Chapter 3 we give a more robust proof to prove one of our main
results (see Lemma 3.4).

Composition: We will follow the proof sketch of [CKS19b, Claim 8.4]. Suppose that g
is hypercube sum of verifier polynomials v. It is enough to prove the statement for v ∈ VP.
Invoke Lemma 1.27 on the circuit C for the verifier polynomial v to obtain a polynomial h
and ℓ ⩽ poly(t,d) satisfying

C =
∑

a∈{0,1}ℓ
h(z1, . . . , zt,a1, . . . ,aℓ).

Let T be the formula computing h of size poly(t,d). Composing with the VNP polynomials
gives

C(f1, . . . , ft) =
∑

a∈{0,1}ℓ
h(f1, . . . , ft,a1, . . . ,aℓ).

We claim that feeding the verifier circuits hi of the VNP polynomials fi, into the formula
T gives the required hypercube-sum representation.

C(f1, . . . , ft) =
∑

a,ai∈{0,1}ℓ′
T (h1(x,ai), . . . ,ht(x,at),a),

where ℓ′ = ℓ +
∑

imi ⩽ poly(t,d,n,m). Moreover, the size of the circuit computing
T composed with h1, . . . ,ht is at most O(size(T) +

∑
i size(hi)) ⩽ poly(t,d,n,m). The

correctness of the expression above, follows from an easy induction on the depth of the
formula T . Along the layers, from bottom to the top, we repeatedly invoke the additive
and multiplicative closure properties which were discussed earlier. Since T is a formula,
the verifier circuits for each of the hi’s receive their unique copy of the witnesses and
this is preserved throughout the computation. The last part is crucial for the correctness
because simply plugging in the hi’s to the circuit C could result in the same witnesses
being reused and it may not be the intended computation 2. □

Properties of Restricted Circuits

Read-once Oblivious ABPs (Definition 1.8) are among the most well-understood models in
algebraic complexity. Their properties play a key role in our de-bordering results, which

2Consider a pedagogical example, C(z) = z2 from [CKS19b, Footnote 9].

Introduction 23

we will discuss next. We start with defining partial derivative matrix which are helpful in
characterizing the width of ARO.

Definition 1.29 (Partial Derivative Matrix). Consider a polynomial f(x) ∈ F[x1, . . . , xn] of
individual degree d and a partition of variables x into two partsy = (y1, . . . ,yk) and z = x\y. The
nk × nd−k matrixMf whose rows are indexed by monomials pi from y and columns are indexed
by monomials qi from z is called partial derivative matrix if its (i, j)-th entry is coefpi·qi(f).

Partial derivative matrices capture space of coefya(f) for all a ∈ {0, . . . ,d}k, which can
be expressed as partial derivative ∂f/∂ya evaluated at y = 0. The following two lemmas
characterizes the width of an ARO using partial derivative matrix [For14, Lemma 4.5.8].

Lemma 1.30. Let f(x) ∈ F[x1, . . . , xn] be a polynomial of individual degree d which can be
computed by and ARO of width w. For any variable partitioning of variable y = (y1, . . . ,yk) and
z = x\y, consider partial derivative matrixMf. Then rankFMf ⩽ w.

Lemma 1.31. Let f(x) ∈ F[x1, . . . , xn] be a polynomial of individual degree d. For any variable
partitioning of variable y = (y1, . . . ,yk) and z = x\y, consider partial derivative matrixMf such
that rankFMf ⩽ w. Then f is computable by an ARO of width w.

ROABPs are highly restrictive computational model, yet they can capture certain class
of restricted constant depth circuits. In particular depth-3 and depth-4 diagonal circuits
can be computed by ARO due to the duality trick.

Lemma 1.32 (Duality trick). The polynomial f = (x1+. . .+xn)d over a field of large characteristic
can be written as

f =
∑
i∈[t]

fi1(x1) · · · fin(xn),

where t = O(nd), and fij is a univariate polynomial of degree at most d.

The idea is to convert∧Σ∧ intoΣΠΣ∧using the duality trick, which in turn is subsumed
by ARO [Gur15, Section 2.5.2].

Lemma 1.33 (Σ∧Σ∧ as ARO). Let f(x) ∈ F[x1, . . . , xn] be computable by Σ∧Σ∧ circuit of size s
and syntactic degree D. Then f is computable by an ARO of size O(sn2D2).

Several properties of the diagonal depth-4 circuit will help us in our de-bordering
results. We discuss them below.

Introduction 24

Lemma 1.34 (Waring identity for a monomial [CCG12]). Let M = x
b1
1 · · · xbk

k
, where 1 ⩽

b1 ⩽ · · · ⩽ bk, and roots of unity 𝒵(i) := {z ∈ C : zbi+1 = 1}. Then,

M =
∑

ε(i)∈𝒵(i):i=2,··· ,k
γε(2),...,ε(k) · (x1 + ε(2)x2 + . . . + ε(k)xk)d ,

where d := deg(M) = b1 + · · · + bk, and γε(2),··· ,ε(k) are
∏k

i=2 (bi + 1) many scalars.

Remark. For fields other than F = C: We can go to a small extension (at most dk), for a
monomial of degree d, to make sure that ε(i) exists. We use the above lemma to show that
Σ∧Σ∧ is closed under constant many multiplication.

Lemma 1.35 (Σ∧Σ∧ closed under multiplication). Let fi(x) ∈ F[x1, . . . , xn] be a polynomial
of syntactic degree at most di and computed by a Σ∧Σ∧ circuit of size si, for all i ∈ [k]. Then,
f1 · · · fk has Σ∧Σ∧ circuit of size O((d2 + 1) · · · (dk + 1) · s1 · · · sk).

Proof Sketch. Let fi =:
∑

j f
eij

ij
; by assumption eij ⩽ di. Use Lemma 1.34 to express

f
eij1
ij1

· · · feijk

ijk
as Σ∧Σ∧. □

Using standard interpolation the coefficients of polynomials computable by Σ∧Σ∧ can
be extracted. Moreover, then taking derivatives is easy for Σ∧Σ∧ as well.

Lemma 1.36 (Σ∧Σ∧ coefficient extraction). Let f(x,y) ∈ F[x1, . . . , xn][y] be computed by a
Σ∧Σ∧ circuit of size s and degree d. Then, coefye(f) ∈ F[x] is computable by a Σ∧Σ∧ circuit of
size O(sd), over F[x].

Proof sketch. Let f =:
∑

i αi · fei

i
, with ei ⩽ s and degy(f) ⩽ d. Thus, write f =:

∑d
i=0 ci ·yi,

where ci ∈ F[x]. Interpolate using (d+ 1)-many distinct points, and conclude that fi has a
Σ∧Σ∧ circuit of size O(sd). □

Lemma 1.37 (Σ∧Σ∧ differentiation). Let f(x,y) ∈ F[x][y] be computed by a Σ∧Σ∧ circuit of
size s and degree d. Then, ∂y (f) is a Σ∧Σ∧ circuit of size O(sd2), over F[x][y].

Proof sketch. Lemma 1.36 shows that each fe has O(sd) size circuit where f =:
∑

e fe y
e.

Doing this for each e ∈ [0,d] gives a blowup of O(sd2) and the representation:

∂y (f) =
∑
e

fe · e · ye−1.

□

Introduction 25

1.7 Structure of the thesis

In the previous section we have fixed some notations to follow for the rest of the thesis
and discussed some results we need for the proofs. The thesis is divided into three
sections — Explicitness of Border Classes, Circuit Factoring, and Identity Testing. The
de-bordering of restricted depth-4 circuits is discussed in Chapter 2. Presentable border
classes and its explicitness is proved in Chapter 3. The second section of the thesis is
dedicated to factoring results. Chapter 4 proves that VNP is closed under factoring over
finite fields, and in Chapter 5 we make progress on factor conjecture. In the final section,
our thesis gives the identity testing algorithms for restricted depth-4 circuits. Whitebox
identity testing algorithm is given in Chapter 6, and robust hitting sets for border classes is
constructed in Chapter 7. Finally we close it in Chapter 8 with a few concluding remarks,
open problems, and future directions.

Part I

Explicitness of Border Classes

26

Chapter 2

De-bordering Depth 4 Circuits

Border complexity and polynomial approximation play a pivotal role in Geometric Com-
plexity Theory (GCT) program, which aims to resolve P vs. NP. In addition, it has also
found applications in circuit factoring, which we discuss extensively in Section 1.2. It raises
a natural question if approximation is essential, or if it can be inexpensively removed
— de-bordering. In this chapter, we will de-border restricted depth-4 circuit Σ[k]ΠΣ∧.
Formally, by the end of this chapter we will prove the following theorem.

Theorem 2.18 (De-bordering Σ[k]ΠΣ∧). A polynomial f(x) ∈ F[x1, . . . , xn] approximated by a
Σ[k]ΠΣ∧ circuit of size s can be exactly computed by an ABP over F of size sO(k·7k). In particular,
for any constant k,

Σ[k]ΠΣ∧(s) ⊆ VBP.

We call our de-bordering paradigm DiDIL—Divide, Derive, Integrate, with limits. This
inductive process described in Section 6.2, in some sense, converts the top Π gate to ∧ gate.
We start with some necessary background for the proof.

2.1 Border Complexity Preliminaries

Border (approximative) complexity encapsulates the central theme of this thesis. We begin
this chapter by introducing the concept of Border classes and related discussion.

Definition 2.1 (Border Class). For an algebraic complexity class 𝒞 , over a field F, we define the
border class 𝒞 as a set of polynomials f(x) ∈ F[x1, . . . , xn] for which there exists a polynomial
g(x, ε) B f(x) + ε ·Q(x, ε) in class 𝒞 over F(ε), and Q ∈ F[ε, x1, . . . , xn].

27

De-bordering Depth 4 Circuits 28

In the literature, we equivalently say that f ∈ 𝒞 , the border closure of𝒞 , if g belongs to a
circuit class 𝒞 over F(ε). It is important to note that the ε-function used in the computation
of g is treated as constants in the circuit and is not considered in sizeF(ε)(g). When
F = R, under Euclidean topology, we can analytically think of the above approximation as
limε→0 g = f. Although the limit exists, evaluating g at ε = 0 may not be valid because of
possible negative powers of ε in the circuit. Hence, given the circuit computing g, we do not
have any information about the circuit complexity of the polynomial it is approximating.

Recall that size(f) denotes the size of the smallest circuit that computes f. In a similar
spirit, we use size(f) to denote the border size complexity of f , i.e., size(f) = sizeF(ε)(g).
From the previous discussion, it is evident that size(f) ⩽ size(f). A natural question then
is to ask what is the upper bound of size(f) in terms of size(f). The question can be
formulated as follows.

Question 2.2 (De-bordering). Let 𝒞 be the border class of 𝒞F as per the Definition 2.1. Find the
smallest algebraic class of polynomials 𝒟 such that 𝒞 ⊆ 𝒟.

When𝒟 = 𝒞 , we say that𝒞 is closed under the border. The importance of de-bordering
naturally stems from the efforts to improve understanding of border classes, which was
introduced to prove the strengthened separation VP ≠ VNP and resolve Valiant’s original
conjecture VP ≠ VNP. Although at the current nascent stage of study, we do not have
evidence to support the conjecture that VP ≠ VP. As we will see in the upcoming section,
we have partial and complete de-bordering results for various restricted models. Read
more about the importance of de-bordering results in Section 1.2 and [Dut22, Section 6.1]

2.2 Current Status of De-bordering

Although the study of de-bordering classes is at a rudimentary stage, we have seen some
interesting de-bordering results for restricted classes in recent years. We discuss some of
these results in this section to solidify our understanding of the problem and the challenges
of scaling them to general classes.

One interesting property of approximation is that the border distributes over product
and division operations. Note that proving a similar result for addition would almost
trivialise de-bordering depth-restricted circuits. Refer [Dut22, Lemma 6.2.1] for the proof.

Lemma 2.3 (Distributive Property of Border). Let 𝒞 and 𝒟 be class of polynomials in
R[x1, . . . , xn]. Then, C ·D = C ·D and C/D = C /D.

De-bordering Depth 4 Circuits 29

De-bordering using Interpolation. From the previous discussion, we know that the
border complexity of a polynomial does not immediately reveal its exact or vanilla circuit
complexity. Suppose g approximates f such that g(x, ε) = f(x) + ε · Q(x, ε). The natural
idea is to isolate f via interpolation by evaluating g on random values from F with respect
to ε. Given that g is defined over F(ε), the random choice of values for εwould ensure the
denominator of the ε-function remains non-zero upon evaluation. This simple idea seems
hard to execute since, a priori, the degree of ε in g could be arbitrarily large. However,
in a foundational work, Búrgisser[Bür04, Theorem 5.7] proved that the degree of ε in
g is at most exponential in size(f), and gave the first general de-bordering result where
size(f) ⩽ exp

(
size(f)

)
.

Improving the degree bound would significantly improve the de-bordering upper
bound (refer [Bür04, Problem 4.3] and the discussion afterwards). In that spirit, [BIZ18,
Corollary 3.10] considers an alternative measure of approximation called the ‘error degree’
to de-border polynomial-sized formulas using interpolation. Refer to [BIZ18, Figure 8] for
similar results on various algebraic classes and their border closure.

De-bordering in a non-commutative world. To prove strong lower bounds for restricted
classes, Nisan [Nis91] characterised the size of the smallest Algebraic Branching Program
(Definition Definition 1.6) computing a polynomial in the non-commutative setting, using
the rank of the Partial Derivatives Matrix (ref Definition 1.29). Michael Forbes [For16]
observed that such a rank-based characterisation can de-border without any loss in the
size. To see it in action, consider a variant of ABP, which plays a crucial role in the proofs
presented in the upcoming sections: the Read-once Oblivious Algebraic Branching Pro-
gram in any order (ARO) (see Definition 1.8). Although ARO computation is commutative,
their restrictive nature of reading the variables once, in a fixed order, makes them morally
similar to ABP computation in a non-commutative setting. Moreover, they exhibit a similar
rank-based size characterisation (refer Lemma 1.30 and Lemma 1.31). Using it, Forbes
sketched the following de-bordering lemma [For16]. With a slight abuse of notation, let
ARO(s) denote a set of polynomials computable by an ARO of size at most s.

Lemma 2.4 (De-bordering restricted branching programs). ARO(s) = ARO(s).

Proof. One direction is vacuously true from the definition. For the other direction, consider
a polynomial g(x, ε) which is computable by an ARO of size s over F(ε), and approximates

De-bordering Depth 4 Circuits 30

f(x) ∈ F[x1, . . . , xn] such that

g B f + εQ (2.1)

where Q(x, ε) ∈ F[ε][x1, . . . , xn]. Let Mg be the partial derivative matrix with respect to
the variable partition x = y ⊔ z. Note that from the right-hand side of Equation (2.1) and
the definition of the partial derivative matrix (Definition 1.29), the elements of Mg are
coefficients of monomials of g from F[ε].

Lemma 1.30 shows that rankF(ε)Mg ⩽ w, where w ⩽ s is the width of the ARO
computing g. Equivalently, the determinant polynomial of any (w + 1) × (w + 1) minor of
Mg is identically zero. SinceMg has polynomial entries, the determinant of these minors
remains zero under the homomorphism ϕ : F[ε] → F such that ε → 0. Although ϕ(g)
may be undefined, note that ϕ(Mg) = ϕ(Mf+εQ) =Mf. Therefore, we can conclude that
rankFMf ⩽ w. The converse Lemma 1.31 proves that an ARO of width w over F exists,
which computes f exactly. □

De-bordering in the monotone world. Let the underlying field be real, F = R. An
algebraic circuit, formula, or branching program is called monotone if all the constants
used in the computation are positive, and hence, computations performed by them
cannot feature cancellation. The monotone analogue of VP, VBP, and VNP is denoted by
mVP,mVBP, and mVNP, respectively. One of the reasons to believe that approximation
can help in computing polynomials more efficiently is that there could be possibly heavy
cancellation with the help of auxiliary variable ε. In a heavily restricted monotone
computation, where cancellations are not permitted, approximation naturally does not
help. In particular, [BIM+20, Theorem 3] and [CL24, Section 3] proved that mVP =

mVP, mVBP = mVBP, and mVNP = mVNP. Their de-bordering paradigm is explicitly
compared to existential de-bordering for ARO, primarily using structural results that
reduce computation iteratively. The proofs are beyond the scope of this thesis. We
encourage interested readers to find more details in the referred papers.

De-bordering restricted depth circuits. Though de-bordering polynomially-bounded
circuits VP seems distant, for the formulas class VF it suffices to upper bound the border of
width-restricted ABPs, in particular, VBP2 [BIZ18, Corollary 3.9]. Bounded depth circuits
are one of the most interesting restrictions on circuits. They are equivalent to formulas
with at most polynomial increase in size. Depth-2 circuits ΣΠ and ΠΣ can be explicitly

De-bordering Depth 4 Circuits 31

de-bordered easily (refer [BIZ18, Proposition A.12] and [Dut22, Lemma 6.2.2]). LetΠΣ∧(s)
denote a class of polynomials computable by ΠΣ∧ of size at most s.

Lemma 2.5 (De-bordering Product of Sum of Univariates). A polynomial f(x) ∈ F[x1, . . . , xn]
approximated by a ΠΣ∧ circuit of size s can be completely de-bordered. In particular,

ΠΣ∧(s) = ΠΣ∧(s).

Proof Sketch. Use Lemma 2.3 to show that ΠΣ∧(s) = ΠΣ∧(s). The lemma follows from
easy de-bordering of the sum of univariates. □

Restricted depth-3 and depth-4 circuits like Σ∧Σ and Σ∧Σ∧ (respectively), which are
contained in ARO Lemma 1.33, can be partially de-bordered using Lemma 2.4.

Lemma 2.6 (De-bordering Diagonal Circuits). A polynomial f(x) ∈ F[x1, . . . , xn] approxi-
mated by Σ∧Σ∧ circuit of size s and syntactic degree D, can be exactly computed by an ARO of
size O(sn2,D2). In particular,

Σ∧Σ∧(s) ⊆ ARO
(
O(sn2,D2)

)
Until recently, there was no clarity if the polynomials in the border of general depth-3

circuit Σ[k]Π[d]Σ are in VNP even when k = 2. The importance of the model stems from
Kumar’s universality result of depth-4 circuits [Kum20] (Refer [Dut22, Theorem 6.3.1]).

Theorem 2.7 (Universality of Border Depth-3). Let f(x) ∈ C[x1, . . . , xn] be a polynomial of
degree d. Then f ∈ Σ[2]Π[D]Σ, where D = O

((
n+d
d−1

))
.

Such a statement is not true in a strong sense for classical depth-3 circuits, making it
arguably the most intriguing model to study. The strenuous efforts to de-border depth-3
circuits in [DDS22], gave birth to a novel de-bordering paradigm called DiDIL (Di = Divide,
D =Derive, I = Induct, L = Limit). The paradigm proved that the polynomials in Σ[k]Π[d]Σ

are explicit, moreover, they are computable by small ABPs [DDS22, Theorem 1].

Theorem 2.8 (De-bordering Depth-3 Circuit). For any constant k, a polynomial f(x) ∈
F[x1, . . . , xn] approximated by a Σ[k]ΠΣ circuit of size s, can be exactly computed by an ABP of
size poly(s). In particular,

Σ[k]Π[d]Σ(poly(n)) ⊆ VBP.

In the next section, we will discuss our novel de-bordering paradigm in detail, and
prove a similar de-bordering result for depth-4 circuits.

De-bordering Depth 4 Circuits 32

2.3 Gentle Introduction to DiDIL

Most of the known de-bordering techniques are tailor-made for the model of interest,
and they do not easily scale to other models. For instance, consider the de-bordering of
diagonal circuits Σ∧Σ → ARO → ARO, which uses duality to transform it into a model
which we understand fairly well Lemma 1.33. However, the approach is infeasible on a
general depth-3 circuitΣΠΣ because of possibly exponential blow in top fan-in to transform
theΠ-gates to ∧-gates. Refer to our paper for a comprehensive discussion on the limitation
of known de-bordering techniques [DDS22, Section C]. These impediments in extending
the paradigms necessitate a new approach for our model of interest.

Overview We start by giving a high-level working sketch of our paradigm, followed by
some concrete discussion, and finally give the complete proof in the next section. DiDIL is
a culmination of a four-step inductive process which harnesses the power of logarithmic
derivative and power-series to reduce the model inductively to the one we understand better,
specifically to the one we can de-border.

Definition 2.9 (Logarithmic Derivative). Let R be a ring. The logarithmic derivative is a map
dlogy : R[y] → R(y) defined as dlogy(f) = ∂yf/f, where ∂yf denotes the partial derivative of f
with respect to y.

While the derivatives will be primarily used to reduce the fan-in, the logarithms will aid
us with identities for analysis. For instance, dlog linearises the product of two polynomials:
dlogy(f × g) = dlogy(f) + dlogy(g), and similarly, dlogy(f/g) = dlogy(f) − dlogy(g). We
emphasise here that, with some courage, the de-bordering using DiDIL is possible without
logarithms. The second tool that we need for de-bordering is the ring of Formal Power Series,
denoted by R[[x]] [Sin19, Section 2.2.1]. These rings contain infinite series with non-zero
coefficients, such as f =

∑
a∈Nn cax

a. Our paradigm uses this ring for the inverse identity

1
1 − x =

∑
i⩾0

xi, (2.2)

which is unavailable in R[x] (refer [Sin19, Lemma 2.2.2]). While these tools help reduce
the top fan-in, they in a way transform the top Π-gates to ∧-gates.

We first demonstrate DiDIL in a pedagogical setup where suppose g(x, ε) B T1+T2, and
Ti is a product of linear affine forms with non-zero constant terms. Let g approximate f as
per the Definition 2.1. Note that this is the smallest case which seemingly cannot be solved

De-bordering Depth 4 Circuits 33

by known techniques. We have deliberately kept the discussion vague and incomplete to
a certain extent to convey the overall picture, though in principle the idea is correct. DiDIL
heavily distorts the model, so much that we need auxiliary variables to keep track of the
degree of the polynomials. We do that by scaling each variable xi by z · xi. The goal from
here is to reduce the fan-in two case to one (single summand). We do that most naturally
by first dividing g by T1 to get: g/T1 = 1 + T2/T1 and then taking partial derivative with
respect to z to obtain

∂z

(
T2
T1

)
= ∂z

(
f

T1

)
+ ε · ∂z

(
Q

T1

)
. (2.3)

Although the two operations reduced the number of terms, the polynomial looks
complicated and the computational model is completely distorted. Using the logarithmic
derivative identity from Definition 2.9 we write:

∂z

(
T2
T1

)
=
T2
T1

dlog
(
T2
T1

)
=
T2
T1

(
dlog(T2) − dlog(T1)

)
.

Since Ti is the product of linear affine forms, the dlog the operator linearises it further.
Since we assumed that constant terms of Ti are non-zero, we can use the inverse identity
of a formal power series ring. Let Ti be of the form (1 − a · z), then

1
1 − a · z ≡ 1 + a · z + · · · + ad−1zd−1 mod zd.

The algebraic jugglery proves that the left side of Equation (2.3) can be computed by a
small size depth-restricted circuit with powering (∧) gates. We know from our discussion
in Section 2.2, these models can be de-bordered easily using known techniques. We
remark here that the derivative is computable by a more general Bloated model that we
will introduce later.

De-bordering a model has a meaning only when it approximates a polynomial, as
in the Definition 2.1. This constitutes an important part of our proof, where we show
that when ∂z(T2/T1) is truncated to a high enough power of z, it correctly approximates a
polynomial related to f. In particular, there exists a polynomial t ∈ F[x1, . . . , xn], such that
∂z(T2/T1) = ∂z(f/t) + ε ·Q. The de-bordering discussion in the previous paragraph reveals
the exact circuit complexity of ∂z(f/t), together with the complexity of the polynomial t,
we use interpolation to upper bound the size of f. Moreover, our careful analysis proves
that f ∈ VBP.

De-bordering Depth 4 Circuits 34

The model obtained from a single iteration of DiDIL may appear garbled on the surface,
but exhibits two interesting properties. First, it is closed under the DiDIL operations, and
in effect, the form of the circuit does not change with the iterative application of operations
like division and derivation. For this reason, we define a bloated model for the repeated
application of DiDIL.

Definition 2.10 (DiDIL model). Let R(x) be the ring of rational functions. Denote Gen(k, s)
as a class of circuits 𝒞 over R which computes polynomial f(x) ∈ R(x1, . . . , xn) of the form:
f =

∑k
i=1 Ti such that

Ti =

(
Ui

Vi

)
·
(
Pi

Qi

)
,

whereUi,Vi ∈ ΠΣ∧ and Pi,Qi ∈ Σ∧Σ∧ are polynomials in R[x1, . . . , xn]. The size of the circuit
is defined naturally as size(𝒞) B

∑k
i=1 size(Ti) ⩽ s where

size(Ti) = size(Ui) + size(Vi) + size(Pi) + size(Qi).

Further, the syntactic degree of the circuit is defined as the maximum syntactic degree of the
numerator and denominator.

The second reason for considering a bloated model for DiDIL is that circuits like
Σ[k]Π[d]Σ and Σ[k]ΠΣ∧ of size s are in Gen(k, s). Let us begin by de-bordering this bloated
model in the simplest case. Let R be a commutative ring, which will be suitably fixed later
for our proof.

Lemma 2.11 (De-bordering simple DiDIL model). Consider a polynomial f(x) ∈ R[x1, . . . , xn]
in Gen(1, s) of syntactic degree d. Then f is computable by ratio of two ABP of size O(s · d4 · n)
and syntactic degree O(n · d).

Proof. From Definition 2.10, and invoking Lemma 2.3 we have,

f ∈
(
ΠΣ∧
ΠΣ∧

)
·
(
Σ∧Σ∧
Σ∧Σ∧

)
=

(
ΠΣ∧ · Σ∧Σ∧
ΠΣ∧ · Σ∧Σ∧

)
⊆ ΠΣ∧
ΠΣ∧ · ARO

ARO
.

The last containment and the size claim follows from Lemma 2.5 and Lemma 2.6. The
syntactic degree claim follows from Lemma 1.33. □

In the lemma above, although we can eliminate the division using Lemma 1.26 to
obtain a single ABP computing f exactly, we differ it until the last to avoid the repetitive
expensive overhead.

De-bordering Depth 4 Circuits 35

For safe division, we will use the notion of valuation. The map will help us along the
way to pick the correct summand for division.

Definition 2.12 (Valuation). Let R be a ring. The valuation of a polynomial is a map valy :
R[y] → Z⩾0 defined as the maximum power of y which divides f. Over fraction field R(y),
valy(p/q) = valy(p) − valy(q).

A positive valuation of an element in the fraction field indicates that it belongs to a
power series ring. The following property tells you which term to choose for the division.
Refer [DDS22, Lemma 2.2.2] for the proof.

Proposition 2.13 (Power Series Indicator). Let f ∈ R(x,y) such that valy(f) > 0. Then
f ∈ R[x][[y]] ∩ R(x,y).

The final ingredient of our paradigm is a homomorphism map, which ensures that
terms can be reciprocated, and it aids the proof in derivation.

Definition 2.14 (DiDIL homomorphism). Pick α1, . . . ,αn uniformly at random from F. Define
a map

Φ : F[ε][x1, . . . , xn] → F[ε][z, x1, . . . , xn]

such that for all i ∈ [n], xi ↦→ z · xi + αi.

Choosing α = (α1, . . . ,αn) randomly from Fn will suffice to ensure thatΦ(Ti)(x = 0) =
Ti(x = α) ≠ 0, which is crucial for safe division and inverse identity.

2.4 Debordering Σ[k]ΠΣ∧ using DiDIL

After familiarising ourselves with the preliminaries of our novel paradigm, we are ready
to discuss the proof of our main theorem.

Note that Theorem 2.8 is subsumed in Theorem 2.18. From Definition 2.10 we know
that the polynomial f is in Gen(k, s). We start by applying the DiDIL homomorphism from
Definition 2.14 on f0 B f. Since the upper bound on f can be obtained by applying Φ−1,
we will give the circuit size upper bound onΦ(fo).

Lemma 2.15 (First Reduction). Let Φ(f0) ∈ Σ[k]ΠΣ∧(s0) over R0 B F[z]/⟨zd⟩, where d is
the syntactic degree. Then f1 B ∂z (Φ(f0)/tk,0) ∈ Gen(k − 1, s1) over R1 B F[z]/⟨zd1⟩, where
tk,0 ∈ R0(x), d1 ⩽ d, and s1 = O(d3 · s).

De-bordering Depth 4 Circuits 36

Proof. Let Φ(f0) be approximated by Φ(g0) B
∑

i∈[k]Φ(Ti) ∈ Gen(k, s0) over R0, as per
the Definition 2.1. Define vi B valz(Φ(Ti)), using Definition 2.12. Note that from the
properties of the DiDIL homomorphism, vi ⩾ 0, for all i ∈ [k]. Assume thatΦ(Ti) = εai · T̃i
where T̃i B ti + ε · t̃i(x, z, ε) and ti = T̃i(x, z, ε = 0). Lastly, without loss of generality,
assume that

min
i∈[k]

valz
(
T̃i

)
= vk.

Then we Divide and Derive as discussed in Section 2.3.

k∑
i=1
Φ(Ti) = Φ(f0) + ε ·Φ(S0) (2.4)

εak +
k−1∑
i=1

Φ(Ti)
T̃k

=
Φ(f0)
T̃k

+ ε · Φ(S0)
T̃k

(Divide)

k−1∑
i=1

∂z

(
Φ(Ti)
T̃k

)
= ∂z

(
Φ(f0)
T̃k

)
+ ε · ∂z

(
Φ(S0)
T̃k

)
(Derive)

k−1∑
i=1

(
Φ(Ti)
T̃k

)
· dlog

(
Φ(Ti)
T̃k

)
= ∂z

(
Φ(f0)
T̃k

)
+ ε · ∂z

(
Φ(S0)
T̃k

)

Define d1 B d − vk − 1, and let g1 B
∑

i∈[k−1] Ti,1 where for all i ∈ [k − 1]

Ti,1 B

(
Φ(Ti)
T̃k

)
· dlog

(
Φ(Ti)
T̃k

)
.

Recall that R1 = F[z]/⟨zd1⟩. We will prove that g1 is well-defined in R1(ε, x) and approxi-
mates f1 B ∂z(Φ(f0)/tk).

Division by minimum valuation ensures valz(Φ(Ti) / T̃k ⩾ 0. Then, using Proposi-
tion 2.13 we infer that

Φ(Ti) / T̃k ∈ F(x, ε)[[z]] =⇒ Ti,1 ∈ F(x, ε)[[z]].

On the other side valz(Φ(f0)) ⩾ vk because

valz (Φ(f0) + ε ·Φ(S0)) = valz

(
k∑
i=1
Φ(Ti)

)
⩾ vk.

De-bordering Depth 4 Circuits 37

Once again using Proposition 2.13, we get Φ(f0)/T̃k ∈ F(x, ε)[[z]]. Therefore, both f1 and
Ti,1 are well-defined power series. Moreover, note that Equation (2.4) hold over mod zd.
Then division by minimum valuation and derivation implies that the equation holds over
mod zd1 where d1 = d − vk − 1. Finally, this shows that f1 and Ti,1 are well defined in
R1(x, ε). Finally, since T̃k(x, z, ε = 0) is well-defined, g1 correctly approximates f1 over
R1(x) as required.

Size Blow-up. To prove that g1 is in Gen(k − 1, ·), and thereby conclude that f1 ∈
Gen(k − 1, ·), we have to understand the linearising effect of dlog on (Φ(Ti) / T̃k) (refer
discussion after Definition 2.9). Taking the linearisation of the product into account,
observe that it suffices to study its effect on Σ∧. From the properties of Φ, we know that
such a Σ∧ is of the form A − z · B, where A ∈ F(ε)\{0} and B is a univariate polynomial in
F(ε)[x, z]. Using the power series identity (such as Equation (2.2)) we have the following
in R1(x, ε):

dlog(A − z · B) = −∂z(z · B)
A(1 − z · B /A)

=
−∂z(z · B)

A
·
d1−1∑
j=0

(
z · B
A

)j
=: C1 ·

d1−1∑
j=0

(C2)j (2.5)

Observe that C1 and (C2)j have trivial ∧Σ∧ circuits, of size O(s0) and O(j · s0) respectively.
Using the multiplicative closure of Σ∧Σ∧ circuit (Lemma 1.35), we obtain the final Σ∧Σ∧
circuit computing dlog(A − z · B), of size s1 = O(d3 · s) using the fact that d1 ⩽ d. Clearly,
the syntactic degree blows up to O(d2). □

The First Reduction lemma above formally describes the effect of Division on Derivation
on the Σ[k]ΠΣ∧, which reduces the problem to a bloated model with reduced fan-in. In
the following lemma, we show that the bloated model is closed under these operations
and the fan-in continues to reduce with its repeated application.

Lemma 2.16 (Inductive Reduction). For a positive integer j < k, let fj ∈ Gen(k − j, sj) of
syntactic degree Dj, over Rj B F[z]⟨zdj⟩, where dj ⩽ d.

• (Valuation) Suppose gj =
∑

i Ti,j approximates fj. For all i ∈ [k − j] assume that
vi,j B valz(Ti,j) ⩾ 0.

• (Invertibility) Further, assume that Ui,j(x, z = 0, ε) and Vi,j(x, z = 0, ε) ∈ F(ε)\{0}.

De-bordering Depth 4 Circuits 38

Then, fj+1 B ∂z(fj/tk−j,j) ∈ Gen(k − j − 1, sj+1) over Rj+1 B F[z]/⟨zdj+1⟩, where tk−j,j ∈
Rj(x), dj+1 ⩽ dj ⩽ d, and sj+1 = s7

j
· dO(j). Moreover, the valuation and invertibility properties

above continue to hold with respect to gj+1 approximating fj+1.

Proof. We proceed as earlier with Division and Derivation without applying the DiDIL
homomorphism. Note that the assumption on the valuation with respect to z ensures
safe operations. Once again, without loss of generality, assume mini vi,j = vk−j,j. Let
Tk−j,j = εaj−k,j · T̃k−j,j where T̃k−j,j B tk−j,j + ε · t̃k−j,j(x, z, ε) and tk−j,j = T̃k−j,j(x, z, ε = 0).

k−j∑
i=1
Ti,j = fj + ε · Sj (2.6)

εak−j,j +
k−j−1∑
i=1

Ti,j

T̃k−j,j
=

fj

T̃k−j,j
+ ε ·

Sj

T̃k−j,j
(Divide) (2.7)

k−j−1∑
i=1

∂z

(
Ti,j

T̃k−j,j

)
= ∂z

(
fj

T̃k−j,j

)
+ ε · ∂z

(
Sj

T̃k−j,j

)
(Derive)

k−j−1∑
i=1

(
Ti,j

T̃k−j,j

)
· dlog

(
Ti,j

T̃k−j,j

)
= ∂z

(
fj

T̃k−j,j

)
+ ε · ∂z

(
Sj

T̃k−j,j

)

Define dj+1 B dj − vk−j,j − 1 and let gj+1 =
∑

i∈[k−j−1] Ti,j+1, where for all i ∈ [k− j− 1]

Ti,j+1 B

(
Ti,j

T̃k−j,j

)
· dlog

(
Ti,j

T̃k−j,j

)
Valuation vi,j+1 B valz(Ti,j+1) ⩾ 0 follows trivially. Recall that Rj+1 = F[z]/⟨zdj+1⟩. We
will prove that gj+1 is well-defined in Rj+1(ε, x) and approximates fj+1 B ∂z(fj/tk−j,j).

Note that fj and Ti,j have non-zero valuation and hence belong to F(x, ε)[[z]]. Division
by minimum valuation, and using arguments similar to Lemma 2.15, we can conclude that
fj+1 and Ti,j+1 are elements inF(x, z, ε)∩F(x, ε)[[z]] and hence in Rj+1(x) and Rj+1(x, epsilon)
(respectively). Since T̃k−j(x, z, ε = 0) is well-defined, gj+1 correctly approximates fj+1 over
Rj+1 as required.

Invertibility. To show that gj+1 ∈ Gen(k − j − 1, ·), it remains to show that ΠΣ∧ circuit
in Ti,j+1 are invertible. Note that this was implicit in Lemma 2.15. Borrowing the notations

De-bordering Depth 4 Circuits 39

from Definition 2.10, we simplify Ti,j+1 as follows:

Ti,j

T̃k−j,j
= ε−aj−k,j ·

Ui,j · Vk−j,j
Vi,j ·Uk−j,j

·
Pi,j ·Qk−j,j
Qi,j · Pk−j,j

. (2.8)

Define Ui,j+1 B ε−aj−k,jUi,j · Vk−j,j and Vi,j+1 B Vi,j ·Uk−j,j. Then clearly

Ui,j+1(x, z = 0, ε),Vi,j+1(x, z = 0, ε) ∈ F(ε)\{0}.

The P’s and the Q’s will be analysed with the action of dlog on Equation (2.2) in the
upcoming discussion on the size blow up. We will essentially bring together Σ∧Σ∧/Σ∧Σ∧
to define the final Pi,j+1 and Qi,j+1.

Size Bound. The size analysis is different from Lemma 2.15 for two reasons. First, we
don’t use the DiDIL homomorphism in the inductive reduction, and second, the analysis
of bloated model demands more care. We begin the analysis by considering the overall
expression.

Ti,j+1 =
Ti,j

T̃k−j,j
· dlog

(
Ti,j

T̃k−j,j

)
=
Ui,j+1

Vi,j+1 (1)
·
Pi,j ·Qk−j,j
Qi,j · Pk−j,j

(2)

· dlog
(
Ti,j

T̃k−j,j

)
(3)

(4)

(2.9)

=
Ui,j+1

Vi,j+1
·
Pi,j+1

Qi,j+1

It is easy to note that in the equation above, (1) is computable by ΠΣ∧/ΠΣ∧ with
constant blow up in size. Similarly, (2) is computable by

Π[2](Σ∧Σ∧)
Π[2](Σ∧Σ∧)

⊆ Σ∧Σ∧
Σ∧Σ∧

of size (Dj · s2
j
), using the properties (Lemma 1.35). And finally, because of linearisation,

dlog(·) is computable by:

∑
dlog(Σ∧) ±

∑[4]
dlog(Σ∧Σ∧)

De-bordering Depth 4 Circuits 40

Using analysis similar to Equation (2.5) obtain a single Σ∧Σ∧ circuit of sizeO(D2
j
·dj · sj) ⩽

O(D3
j
· sj) for the first summand. Since Σ∧Σ∧ is closed under derivation (Lemma 1.37),

dlog(Σ∧Σ∧) is computable by Σ∧Σ∧/Σ∧Σ∧ circuit of size O(D2
j
· sj) and syntactic degree

O(Dj). Re-indexing the sum, and using additive closure, we obtain a single Σ∧Σ∧/Σ∧Σ∧
circuit of size O(D1

j
2 · s4

j
). Lastly adding it to Σ∧Σ∧ gives the final Σ∧Σ∧/Σ∧Σ∧ for (3) in

Equation (2.9) of size O(D16
j
· d · s5

j
).

Adding (2) and (3), once again by additive closure, gives Σ∧Σ∧/Σ∧Σ∧ for (4) of size
sj+1 B O(DO(1)

j
· d · s7

j
), and syntactic degree Dj+1 B O(d ·Dj). □

We will use the two previous lemmas to inductively reduce Gen(k, s) to Gen(1, ·), which
we know how to de-border using Lemma 2.11. We observe that Gen(1, ·) will approximate
a derivative polynomial related to f, so we need a way to lift our de-bordering to essentially
reconstruct the original polynomial f. We prove the following claim, which borrows the
notations from the previous two lemmas.

Claim 2.17 (Integration). Let fj+1 = ∂z(fj/tk−j,j) ∈ ABP/ABP over Rj+1 of size Sj+1 and
syntactic degreeD′

j+1. Then, the expressions on the left of the following table are computable by the
respective model.

Model Size Syntactic Degree(
fj

tk−j,j

)
z=0

ABP
ABP

S′
j
B O(sO(k−j)

j
·D′4

j
) O(Dj+1)

fj

dj−1∑
i=0

(
ABP
ABP

· zi
)

Sj = dj+1 · Sj+1D
′2
j+1 + S′j D′

j
= D′

j+1 +O(Dj+1)

Proof. Recall Equation (2.7):

εak−j,j +
k−j−1∑
i=1

Ti,j

T̃k−j,j
=

fj

T̃k−j,j
+ ε ·

Sj

T̃k−j,j
.

The Valuation and Invertibility of Lemma 2.16, together with Proposition 2.13, gives that
the z = 0 evaluation of the expression above is computable by(

k−j∑
i=1

F(ε) · Σ∧Σ∧
Σ∧Σ∧

)
z=0

=
fj

tk−j,j
(x, ε, z = 0) + ε ·Q′

j+1(x, ε, z = 0).

De-bordering Depth 4 Circuits 41

Using arguments similar to the proof of Lemma 2.16 we can conclude that the ex-
pression above is a well-defined approximation. Then using Lemma 2.6 we conclude
that (

fj

tk−j,j

)
z=0

∈ ABP
ABP

.

For the size of the ABP, observe that we take the sum of (k − j)-many Σ∧Σ∧/Σ∧Σ∧,
each of size sj (Lemma 1.35), followed by conversion to ARO (Lemma 1.33).

For the second part of the proof, use division elimination from Lemma 1.26, to express
ABP/ABP computing fj+1 as follows:

fj+1 =

dj+1−1∑
i=0

Ci,j+1 · zi,

where Ci,j+1 ∈ ABP/ABP of size O
(
Sj+1 ·D

′2
j+1

)
. Definite-Integration implies:

fj

tk−j,j
=

(
fj

tk−j,j

)
z=0

+
dj+1∑
i=1

(
Ci,j+1

i

)
· zi ∈

dj+1∑
i=0

(
ABP
ABP

)
· zi. (2.10)

Moreover, recall that

tk−j,j ∈
(
ΠΣ∧
ΠΣ∧

)
·
(
Σ∧Σ∧
Σ∧Σ∧

)
⊆ ABP

ABP

of size sj and degree Dj. Since the valz(tk−j,j) ⩾ vk−j,j = dj − dj+1 − 1, we multiply tk−j,j
in Equation (2.10) and truncate it at dj − 1 to compute fj to required precision. For the size
blow up, note that

Sj = dj+1 · Sj+1D
′2
j+1 + S′j,

moreover, the degree will be D′
j
= D′

j+1 +O(Dj+1). □

We bring all the pieces together to prove the main theorem of the chapter.

Theorem 2.18 (De-bordering Σ[k]ΠΣ∧). A polynomial f(x) ∈ F[x1, . . . , xn] approximated by a
Σ[k]ΠΣ∧ circuit of size s can be exactly computed by an ABP over F of size sO(k·7k). In particular,
for any constant k,

Σ[k]ΠΣ∧(s) ⊆ VBP.

De-bordering Depth 4 Circuits 42

Proof. When k = 1, Lemma 2.11 de-borders and finishes the proof. Assume f0 = f ∈
Gen(k, s0) where s0 = s. We start by applying DiDIL map from Definition 2.14, and
prove upper bound on Φ(f0). Lemma 2.15, followed by Lemma 2.16 gives a sequence of
polynomials f1, f2, . . . , fk−1 such that they are approximated by gi ∈ Gen(k − i, si), for all
i ∈ [k − 1]. Further, we bound the syntactic degree Dk−1 = O(d ·Dk−2) = dO(d), and then
the size

sk−1 = O(dO(k−1) · s7
k−2) ⩽ sO(k·7k).

That implies fk−1 ∈ Gen(1, sk−1) ⊆ ABP/ABP using Lemma 2.11 of size

O(sO(k·7k) ·D4
k−1 · n) ⩽ sO(k·7k),

and syntactic degreen ·D2
k−1 ⩽ d

O(d). Now we will Integrate to lift this quantity to recover
fk−2, fk−3, · · · , f0 using Claim 2.17.

Note that we do not have to do division elimination in each step of integration after
doing it the first time. The ABP/ABP coefficient in the computation of fj are z-free, hence
do not incur a size blow up due to integration. The main blow-up is in the computation
of z = 0 part in the proof of Claim 2.17. First observe that D′

j
= D′

j+1 + O(Dj+1) = dO(j).
Then using the recurrence for S′

j
we obtain the upper bound:

S′j = s
O(k−j)·j·7j ⩽ sO(k·7k),

because maxj∈[k−1] j · (k − j) · 7j = (k − 1) · 7k−1 by differentiating and computing maxima.

Let Sk−1 = sk−1 be the size of ratio of ABP computing fk−1 then f0 is computable
by ABP/ABP of size Sj = dj+1 · Sj+1D

′2
j+1 + S′j ⩽ sO(k·7k). Use the degree bound on z to

eliminate the division to obtain a single ABP computing f0 of size sO(k·7k). ApplyΦ−1 to
obtain the required ABP which exactly computes the polynomial f. □

Chapter 3

De-bordering Presentable Border
Classes

The non-explicit nature of the definition of border complexity makes de-bordering results
strenuous, and it is one of the central reasons for the lack of de-bordering results on
unrestricted algebraic circuits. In this chapter, we will introduce a natural restriction on
approximation which makes the de-bordering a tractable pursuit. We begin with station
an alternative but equivalent definition of approximation (refer Definition 2.1 as well).

Definition 3.1 (Approximation). A polynomial f(x) ∈ F[x1, . . . , xn] is approximated by a
polynomial g(x, ε) ∈ F[ε][x1, . . . , xn] to an order of approximationM if

g(x, ε) = εMf(x) + εM+1Q(x, ε),

for some Q(x, ε) ∈ F[ε][x1, . . . , xn]. The border size of f denoted sizeM(f), is defined as
sizeF[ε](g), the size of the polynomial g over the ring F[ε].

Note that analytically the approximation gives limε→0 ε
−Mg(x, ε) = f(x). Furthermore,

arbitrary polynomials in ε are treated as ‘free constants’ in the circuit of g. It is not hard to
see via scaling arguments (g′ := ε−Mg) that the notions is equivalent to Definition 2.1. For
a discussion of the different notions of approximation and their equivalence, see [Bür04,
Lemma 5.6], [BIZ18, Section 2] and also [Mum76, Theorem 2.33].

Proposition 3.2. Consider a polynomial f(x) ∈ F[x1, . . . , xn]. Then, size(f) = Θ
(
sizeM(f)

)
.

Hence, for the rest of the chapter we can safely drop the subscriptM from sizeM(f), or
use them interchangeably in the subsequent chapters.

43

De-bordering Presentable Border Classes 44

3.1 Presentable Border and its Efficacy

In the definition of approximation, we allow arbitrary polynomials in ε, of arbitrary
complexity to be used as free constants. This arbitrariness makes the definition of
approximation inherently existential and intractable for de-bordering. Read more on this
in Section 2.2. As a way of making approximation more constructive, while retaining
its essence, in this thesis we propose and study a natural restriction on the definition of
approximation, called presentability, that restricts the complexity of ε polynomials used for
approximation.

The presentable class VPε is the same as VP but with the additional condition that
all the polynomials in ε used as ‘constants’ in the approximating circuit g(x, ε), have
polynomial-size circuits themselves (see Definition 5.1). We can extend our concept of
presentable border to VNPε over any field F.

Definition 3.3 (Presentable VNP). The presentable border class VNPε, over F, is defined as
the set of polynomials f ∈ F[x1, . . . , xn] such that there is an approximating polynomial g ∈
F[ε][x1, . . . , xn] expressing

g(x, ε) =: εMf(x) + εM+1Q(x, ε) ,

for some error Q ∈ F[ε][x1, . . . , xn] and order M ∈ N; moreover, there exists a verifier
polynomial h ∈ F[x1, . . . , xn,y1, . . . ,ym, ε], with m, degx,y(h) and sizeF(h) all bounded by
poly(n), satisfying a hypercube-sum expression

∑
a∈{0,1}m

h(x,a, ε) = g(x, ε) .

The pair (m, sizeF(h)) constitutes the size parameters for the polynomial family f = fn
in VNPε. Crucially, although the bound on sizeF(h) (instead of sizeF[ε](h)) constrains the
ε-polynomials to have small circuits, we do not restrict the degree of ε, which could be
exponential in sizeF(h). This makes this new class potentially harder than VNP. It is easy
to see that VNP ⊆ VNPε ⊆ VNP.

Since, presentable border classes allow for an exponential degree in ε, moving to VPε

and VNPε does not lead to any ε-degree loss. Most of the de-bordering and separation
results discussed in Section 2.2 are based on characterizations and properties of restricted
classes that are not known for general classes such as VPε and VNPε. Surprisingly, although

De-bordering Presentable Border Classes 45

interpolation seemed unhelpful on first glance, we show that a structural modification
does indeed help in de-bordering when we move to presentable border classes.

Theorem 3.6 (Presentable is Explicit). Over any finite field, VNPε = VNP.

In the remaining section we briefly discuss the proof of the main theorem of the chapter,
while discussing the obvious challenges which we can overcome due to the properties of
presentibility of approximation.

Over finite fields, we will extract the coefficient of εMxe in approximating polynomial
g by carefully choosing the interpolation points to be roots of unity, whose (multiplicative)
order is ‘only’ exponential. Consequently, we show that the coefficient ce can be obtained
as a hypercube sum of an exponential degree algebraic circuit of polynomial size (Lemma 3.4)
We enumerate two tricky issues that are handled in the proof.

1. It would not be possible to control the size of this extraction circuit (over the
underlying field Fq) if we were to use the usual definition of VNP, mainly because
the ε-constants might truly require exponential size circuits. Working with VNPε lets
us keep the circuit size small while retaining the exponentially large degree of ε.

2. The choice of interpolation points must be careful; otherwise, just to write down
the interpolation formula, we would need to invert an exponentially large matrix of
generic constants, which would again require circuits of exponential size. In addition,
we need the various points to eventually map to a suitable hypercube {0, 1}ℓ, which
places further constraints on the design of the points.

We solve these problems by using the properties of finite fields that allow us to
transfer to a much better-behaved Boolean computation model. In particular, we
use a multiplicative generator ω of an exponentially large field Fq′ to realize the
hypercube points.

Using finite field arithmetic and the closure of the Boolean class #P under exponential
sums, we move from the algebraic world to the Boolean one (Lemma 3.5). Thus, we
show that the algebraic circuit above (from Lemma 3.4) can be simulated by a (multi-
output) Boolean circuit of polynomial size; furthermore, the hypercube sum computing
the coefficient function is demonstrated in #P/poly. Valiant’s criterion (Proposition 1.5)
now implies that the polynomial f is indeed in VNP.

De-bordering Presentable Border Classes 46

3.2 Presentable is Explicit

In this section we will prove that polynomials in VNPε are explicit over finite fields. We
will begin by stating two essential lemmas of our paper which will help us in designing
effective coefficient functions of large degree polynomials. The following lemma shows
that the polynomials computable by the hypercube-sum of small sized circuits are ‘closed’
under coefficient extraction, i.e. there is a similar algebraic expression for each coefficient.
This is like interpolation, but as the degree and number of monomials is exponential, we
desire to achieve an algebraic expression that is well structured.

Lemma 3.4 (Exponential interpolation). Let s B poly(r, logq) and let g =
∑

e cey
e be an

r-variate polynomial over Fq of degree D B exp(s) such that g =
∑

a∈{0,1}m h(y,a) for some
polynomial h withm, size(h) ⩽ s.

Then, taking e as input there exists a polynomial te over a finite field extension Fq′, q′ ⩽
poly(D), such that the coefficient ce =

∑
b∈{0,1}ℓ te(b1, . . . ,bℓ) , where ℓ and size(te) are at most

poly(s).

We will prove the above lemma in Section 3.2.1. In the subsequent lemma we show that
the resulting hypercube sum above can be converted into a boolean function in #P/poly.
The two lemmas together build up the correct setup to invoke Valiant’s criterion. Recall
s = poly(r, logq).

Lemma 3.5 (Algebraic to boolean complexity). For any exponent vector e ∈ {0, . . . ,D}r, let
the coefficient of ye in g ∈ Fq[y1, . . . ,yr], denoted by ce, be computable by a polynomial te over
a finite field extension Fq′, q′ ⩽ poly(D) ⩽ 2O(s), as follows:

ce =
∑

b∈{0,1}ℓ
te(b1, . . . ,bℓ) , (3.1)

where ℓ and size(te) are at most poly(s). Then, with s as the input-size parameter, there exists a
function ϕg in #Pp/poly that computes ϕg(⟨e⟩) = ⟨ce⟩.

We will defer the proof of the lemma until Section 3.2.2. Meanwhile, we will use the
technical lemmas to give the complete proof of our first main result.

Theorem 3.6 (Presentable is Explicit). Over any finite field, VNPε = VNP.

De-bordering Presentable Border Classes 47

Proof. Consider a polynomial (family) f = fn ∈ Fq[x1, . . . , xn] in VNPε of degree d, which
is approximated by g ∈ Fq[ε, x1, . . . , xn] as per Definition 3.3. Let the VNPε size parameters
of g be (s, s), where s := poly(n) and d := degx(g) ⩽ poly(s). The size of the verifier circuit
h from Definition 3.3 is bounded by s, hence the degree D := degε(h) ⩽ 2s (as, w.l.o.g., h
has multiplication-fanin two).

Using Lemma 3.4 on g, followed by applying Lemma 3.5, gives a #P/poly function ϕg

which computes the encoding of coefficients of g. The coefficient of a monomial xe in f is
the coefficient of εM · xe in the approximating polynomial g. Observe that if

f =
∑

e∈{0,...,d}n
ce · xe, (3.2)

then (ce) = ϕg(M, e1, . . . , en). From the definition of VNPε, we know that d, log(M) ⩽
poly(n). So, using Valiant’s criterion (Proposition 1.5) we conclude that f is in VNP. □

3.2.1 Exponential interpolation technique

In this section we will give the proof of Lemma 3.4. We will show that the coefficients
of the polynomial g from the lemma statement can be expressed as a hypercube sum
of evaluation of small size circuits. Recall the size parameter s = poly(r +m, logq) and
q =: pa for prime p. We will induct on the number of variables r.

Consider a positive integer k such that 2s = D < k < Θ(D), and a primitive root of
unity ω of order k. We know that ω ∈ Fq if and only if k divides q − 1 (refer [vzGG13,
Lemma 8.8]). Moreover, if Fq does not contain the particular primitive root of unity,
we can obtain them in the multiplicative group of its finite field extension Fq′, where
k < q′ := pa′

= Θ(D). Interested readers are encouraged to read more details in standard
literature on Finite Fields, for instance refer to [vzGG13, Chapter 8] and [Sho09, Exercise
17.24]. For the rest of the section we will assume for simplicity thatω ∈ Fq; as an identical
proof works over the extension Fq′. Note that 1/k ∈ Fq, as k|(q − 1) implies that p ∤ k.

Base case. Suppose g is a univariate polynomial in y = y1 and consider an exponent
e ⩽ k. To extract the coefficient ce in g, we will interpolate by evaluating g on a set of k
distinct points

{
ω0,ω1, . . . ,ωk−1}, constituting all the powers of this primitive root of unity.

These evaluations of g form a linear system using Vandermonde matrix Vω :=
(
ωij

)
0⩽i,j<k

as follows:

De-bordering Presentable Border Classes 48

©«
1 1 1 · · · 1
1 ω ω2 · · · ωk−1

...
...

...
1 ωk−1 ω2(k−1) · · · ω(k−1)2

ª®®®®®®¬k×k
©«

...
ce
...

ª®®®¬k×1

=

©«
...

g (ωe)
...

ª®®®¬k×1

.

Vandermonde matrices are invertible if and only if its entries are all distinct. It is clear
thatω−1 is also a primitive root of unity; moreover, the inverse matrix (Vω)−1

= (1/k)·V(ω−1)
(refer [vzGG13, Theorem 8.13]). Therefore, we can express the required coefficient with
the following equation:

ce =

k−1∑
j=0

ω−ej

k
· g

(
ωj

)
=

∑
a∈{0,1}m

(
k−1∑
j=0

ω−ej

k
· h

(
ωj,a

))
. (3.3)

A circuit that computes the inner sum in Equation (3.3) trivially, would be exponentially
large in s because k = Θ(D). However, we can write this as a hypercube-sum by carefully
encoding the powers of ω in a single polynomial using binary representation of the
exponent. This encoding will design a verifier circuit, with a relatively small increase in the
witness size. Let wt(k) := ⌈log2 k⌉ and use it to define a polynomial h̄ ∈ Fq[z, z1, . . . , zwt(k)]
as follows:

h̄ :=
wt(k)∏
i=1

(
zi · z2i−1 + (1 − zi) · 1

)
. (3.4)

Let j := (j1, . . . , jwt(k)) be the binary representation of j, then it is easy to verify that
h̄(ω, j) = ωj. Together with h̄, Equation (3.3) can be re-written as follows:

ce =
∑

a∈{0,1}m

∑
j∈{0,1}wt(k)

1
k
· h̄(h̄

(
ω−1, ⟨e⟩), j

)
· h

(
h̄(ω, j),a

)
=:

∑
a,j∈{0,1}ℓ

te(a, j) ,

where ℓ := m + wt(k) ⩽ O(s). Observe that size
(
h̄
)
⩽ O(wt(k)) ⩽ O(s), moreover,

composition and multiplication have additive blow-up on size of the circuit. Since, size(h)
was bounded by s, overall gluing the circuits together shows that size(te) ⩽ O(s).

De-bordering Presentable Border Classes 49

Induction step. Let us assume that the lemma holds for all such r − 1 variate polyno-
mials. Now, suppose g is a r-variate polynomial in Fq[y2, . . . ,yr][y1] such that

g =
∑
i⩽D

gi(y2, . . . ,yn) · yi1,

where gi is (r − 1)-variate polynomial of degree at most D. With respect to the fixed
exponent vector e = (e1, e2, . . . , er) ∈ Nr, define e− := (e2, . . . , er) ∈ Nr−1. From the
equation above, observe that computing the coefficient ce ofye1

1 y
e2
2 · · ·yer

r ing is equivalent
to computing the coefficient ce− of ye2

2 · · ·yer
r in ge1 . To invoke the induction hypothesis

on ge1 , we first need to show that, like g, it can be explicitly expressed as a hypercube-sum
of a small sized circuit.

Once again interpolate on g to obtain the coefficient of ye1
1 . Similar to the base case,

begin by considering the evaluations of g on the set of powers
{
ω0,ω1, . . . ,ωk−1}. The

equivalent linear system obtained using the Vandermonde matrix Vω is as follows:

©«
1 1 1 · · · 1
1 ω ω2 · · · ωk−1

...
...

...
1 ωk−1 ω2(k−1) · · · ω(k−1)2

ª®®®®®®¬k×k
©«

...
ge1

...

ª®®®¬k×1

=

©«
...

g (ωe1 ,y)
...

ª®®®¬k×1

.

As argued earlier, the matrix is invertible; more importantly, its elements are easily obtained
from (Vω)−1

= (1/k) ·V(ω−1). This results in the following expression for the (r−1)-variate
coefficient polynomial:

ge1 =

k−1∑
j=0

ω−e1j

k
· g

(
ωj,y2, . . . ,yr

)
=

∑
a∈{0,1}m

(
k−1∑
j=0

ω−e1j

k
· h

(
ωj,y2, . . . ,yr,a

))
. (3.5)

To show that the inner summation has small size circuit, we encode the powers of root of
unity using the polynomial h̄ defined in Equation (3.4). All together, it gives the following
compact expression:

De-bordering Presentable Border Classes 50

ge1 =
∑

a∈{0,1}m

∑
j∈{0,1}wt(k)

1
k
· h̄(h̄(ω−1, ⟨e1⟩), j) · h

(
h̄(ω, j),y2, . . . ,yr,a

)
(3.6)

=:
∑

a,j∈{0,1}ℓ
he1(y2, . . . ,yr,a, j) ,

where ℓ := m + wt(k) ⩽ O(s). Further, size(he1) ⩽ s + 2 × size(h̄) ⩽ O(s).

Size analysis. We analyse the size of the verifier-circuit of ce by unfolding the
induction layers. Since ge1 is now a (r− 1)-variate polynomial, using induction hypothesis
we get that there is a polynomial te, that computes the relevant coefficient ce− as follows:

ce− =
∑

b∈{0,1}ℓ
te(b1, . . . ,bℓ) ,

whence we define s(r) := size(te). Building on the insights from Equation (3.6), observe
that in each iteration of the interpolation, the verifier is only evaluated and multiplied
by the polynomial h̄. This stems from the nature of interpolation, which extracts the
coefficients as a linear combination of polynomial evaluations. So, we get a simple
recurrence: s(r) ⩽ s(r − 1) + 2 · size(h̄), which implies that the final verifier-circuit size
s(r) ⩽ O(rs). Analogously, the witness length increases by wt(k) in each iteration, hence
ℓ(r) ⩽ m + r · wt(k) ⩽ O(rs). That concludes the proof of Lemma 3.4. □

3.2.2 Transfer algebraic complexity to boolean

In this section, we will show that the hypercube-sum of the evaluations of a small-size
circuit can be transformed into a #P/poly function, which will prove Lemma 3.5. As
described earlier, the proof goes via booleanisation of the algebraic circuit. Recall that
q = pa, and for a field element b ∈ Fq, ⟨b⟩ ∈ {0, 1}s denotes the binary encoding of b. For
a point b ∈ Fℓq, denote ⟨b⟩ := (⟨b1⟩ , . . . , ⟨bℓ⟩) ∈ {0, 1}ℓs.

Claim 3.7 (Booleanisation). Consider a polynomial t ∈ Fq[y1, . . . ,yℓ] such that size(t) ⩽ s.
There exists an equivalent (multi-output) boolean circuit T of bitsize ⩽ s · poly(logq), such that
for all inputs b ∈ Fℓq we have T (⟨b⟩) = ⟨t(b)⟩.

Proof. Let C be an algebraic circuit of size at most s which computes the polynomial t.
Without loss of generality. we assume that the circuit has fan-in two. The idea is to build

De-bordering Presentable Border Classes 51

a Boolean circuit from the Algebraic circuit by replacing each of its field operation gates
with equivalent Boolean gadgets. Following is a formal proof of it using induction on the
depth of C.

In the base case, we have variables and constants at the input level. To construct the
equivalent Boolean circuit T , split every input variable yi into logq many gates which
takes ⟨bi⟩ as input. Similarly, every constant β in Fq can be split into logq many gates
based on ⟨β⟩. Therefore bitsize(T) ⩽ O(s · logq).

Let C1,C2 be sub-circuits of C, connected to an internal node C12. From the induction
hypothesis, there are equivalent Boolean circuits T1, T2 of bitsize at most s ·poly(logq) such
that for all inputs b ∈ Fℓq we get Ti(⟨b⟩) = ⟨Ci(b)⟩, for i ∈ [2]. Arithmetic operations in a
finite field, for instance, addition and multiplication, can be efficiently simulated by Boolean
circuits (that have input and output as binary strings). In particular, there are poly(logq)
size Boolean circuits T+ and T× such that for all b1,b2 ∈ Fq, ⟨b1 + b2⟩ = T+(⟨b1⟩ , ⟨b2⟩)
and ⟨b1 × b2⟩ = T×(⟨b1⟩ , ⟨b2⟩)1. For a detailed discussion on computational complexity of
finite field arithmetic refer [GS11, Section 2] and [AB09, Section A.4].

Based on the gate C12, use either T+ or T× with T1 and T2 as inputs to obtain the
circuit T12 such that for all inputs b ∈ Fℓq we have T12(⟨b⟩) = ⟨C12(b)⟩. Notice that
bitsize(T12) = bitsize(T1) + bitsize(T2) + max(bitsize(T+), bitsize(T×)). Proceeding this way
in a level-by-level fashion, we obtain the complete Boolean circuit T which computes ⟨t(b)⟩.
Finally, for the bitsize claim we observe that every gate is replaced by either T+ or T× and
thus bitsize(T) ⩽ s · max(bitsize(T+), bitsize(T×)) ⩽ s · poly(logq). □

We will use the above claim to convert the algebraic circuit in the hypercube sum of
the coefficient into an efficiently computable Boolean function. Recall the hypercube-sum
expression for coefficients from Lemma 3.5:

ce =
∑

b∈{0,1}ℓ
te(b1, . . . ,bℓ)

where ℓ and size(te) are at most poly(s). Since ce and te(b) are elements of Fq, their
binary representation is an encoding of tuple of Fp elements. Refer the remark following
Proposition 1.5.

1The Boolean encoding and the output of Boolean circuit are compared coordinate-wise.

De-bordering Presentable Border Classes 52

Lemma 3.5 (restated.) For any exponent vector e ∈ {0, . . . ,D}r, let the coefficient of ye in
g ∈ Fq[y1, . . . ,yr], denoted by ce, be computable by a polynomial te over a finite field extension
Fq′, q′ ⩽ poly(D) ⩽ 2O(s), as follows:

ce =
∑

b∈{0,1}ℓ
te(b1, . . . ,bℓ) ,

where ℓ and size(te) are at most poly(s). Then, with s as the input-size parameter, there exists a
function ϕg in #Pp/poly that computes ϕg(⟨e⟩) = ⟨ce⟩.

Proof. Consider the Fp-basis representation of Fq element te(b) =
∑

i<a te,iα
i, where

te,i ∈ Fp. Apply Claim 3.7 to the algebraic circuit that computes te to obtain a multi-
output equivalent Boolean circuit Te satisfying ⟨te(b)⟩ = Te(⟨b⟩), for all b ∈ {0, 1}ℓ. The
Boolean circuit Te computes the encoding of Fq element as a tuple (⟨te,0⟩ , . . . , ⟨te,a−1⟩).
Let Te,i denote a sub-circuit of Te computing the string ⟨te,i⟩.

We claim that Te,i is in the complexity class FP/poly (refer Section 1.6 for definitions).
Define a Turing Machine M that takes ⟨Te⟩ as advice, and evaluates Te at the input ⟨b⟩
in time poly(s), for any b ∈ {0, 1}ℓ. The size of the advice string ⟨Te⟩ is independent of
the input and depends only on the input length ℓ ⩽ poly(s). Finally, the Turing machine
outputs the i-th block of the evaluation. Clearly, the function computed by M is in FP,
and hence Te,i is in FP/poly.

Let the Fp-basis representation of the coefficient be ce =
∑

i<a ce,iα
i, where ce,i ∈ Fp.

To design the coefficient function ϕg that computes the encoding of ce, it suffices to prove
that there is a function ϕg,i(⟨e⟩) in #Pp/poly that computes ⟨ce,i⟩, for all i < a. From
Equation (3.1), we see that ce,i =

∑
b∈{0,1}ℓ te,i, where the sum is over Fp. Therefore, we

can express ⟨ce,i⟩ as a hypercube sum of ⟨te,i⟩ reduced modulo p, and thus, also as a
hypercube-sum of Te,i(⟨b⟩), modulo prime p.

Recall that FP ⊆ #P (Definition 1.20). Now, invoke Lemma 1.22(3) to obtain a #Pp/poly
function that computes the hypercube-sum. □

Part II

Circuit Factoring

53

Chapter 4

Factor Closure of VNP over Finite
Fields

It is a natural question to ask if an algebraic complexity class is closed under factorization.
Over any field F, consider a polynomial family fn ∈ VNP, and its arbitrary factor gn. Can
we say that gn ∈ VNP. Over fields of characteristic zero, Chou, Kumar and Solomon
[CKS19b] showed that this is indeed true.

Theorem 4.1. Let F be a field of zero characteristic. Consider a polynomial f ∈ F[x1, . . . , xn] in
the class VNP and let u be its arbitrary factor. Then, we have u in VNP.

Chou, Kumar and Solomon resolved a long-standing conjecture by Búrgisser[Bü00,
Conjecture 2.1] over fields of large characteristic.Inspired by the proof technique of Theo-
rem 3.6, we prove that VNP closure under factoring holds over finite fields as well, thus
settling Bürgisser’s conjecture in an important regime.

Theorem 4.2 (Factor closure). Over any finite field, the class VNP is closed under factorization.

Remark 4.3. As a corollary of the above theorem, we find that over finite fields, the factors
of polynomials in VP are in VNP. This partially answers the question [Bü00, Problem 2.1]
whether VP is closed under taking factors over fields of positive characteristic. Recall
that over fields of characteristic zero, we already know this to be true from the works of
Kaltofen; but those methods fail in finite fields.

Overview. The two classical paradigms involved in factoring multivariate polynomials
are Hensel lifting and Newton iteration (see, e.g. [vzG84, vzGG13]), which have historical

54

Factor Closure of VNP over Finite Fields 55

origins in complex analysis. A crucial step in the proof of Theorem 4.1, which involves
approximating a root of a polynomial to increasingly higher precision using Newton
iteration, fails to work over finite fields (a more important case in computer science
applications). To prove that the class VNP is closed under factoring over fields of positive
characteristic p, we reduce the problem to two cases. Let f be a polynomial in VNP.
Following [CKS19a], we have one of the following:

1. The polynomial f = ue is a power of a factor u.

2. The polynomial f = u · v is a product of co-prime polynomials u and v.

We would like to show that the factor u is in VNP in both cases. The proof of Case 2
(Lemma 4.5) uses slight modifications of standard techniques developed over the years
[Kal87, KSS15, CKS19b]. We first transform the polynomial so that it is monic and bi-
variate. We start the Hensel lifting process with two coprime univariate factors and lift
them to high enough precision (with respect to a degree measure). We use a version of
the lift that automatically gives us the factors at the end. To finally show that the factor
we obtain is in VNP, we use a one-shot analysis as in [CKS19b].

Over fields of characteristic zero, it can be shown that proving Case 2 is sufficient (see
proof of [CKS19a, Lemma 1.3]). However, in a finite field Fq, this reduction only works if
the characteristic p of the field does not divide the exponent e (we can call this the separable
case). Our main contribution is showing that if f = upk for some k ⩾ 1, then u is in VNP
(Lemma 4.4). Using this result, we can then handle all powers (Lemma 4.6).

All previous known techniques fail in the case where the exponent e is a prime power.
Inspired by the proof of Theorem 3.6, we take a completely different approach. Consider
the simple case where f = up. The coefficients of u and coefficients of f are related by
a simple Frobenius action. It turns out that Valiant’s criterion (Proposition 1.5) for a
polynomial being in VNP also has a converse (Lemma 4.7). It was remarked in [MP08,
Section 6] that the fact has been observed before in [Pé04], though we could not find a
written reference 1. We give an independent proof for finite fields in this paper by first
noting that any coefficient of a VNP polynomial can be obtained as a hypercube-sum
of evaluations of a VP circuit. As in the proof of Theorem 3.6 we similarly convert the
algebraic expression thus obtained to a Boolean #P/poly circuit.

1Perifel communicated to us a proof that over Q, the coefficients of constant-free VNP families (see [Mal03])
are in GapP/poly.

Factor Closure of VNP over Finite Fields 56

Since f ∈ VNP, the inverse of Valiant’s criterion gives us that its coefficient function is in
#P/poly. We obtain the coefficients ofu by performing an inverse Frobenius transformation,
which we demonstrate in #P/poly. Finally, using Valiant’s criterion in the forward direction,
we see that the factor u is in VNP.

4.1 VNP is factor closed

Meanwhile we state the three technical lemmas that help us main result, specifically for
the case of polynomial factoring in small characteristic fields. The first lemma is our main
contribution that handles the ‘pure’ inseparable case of factoring.

Lemma 4.4 (Prime power). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there is a
polynomial u and a positive integer i such that f = upi , then the factor u is in VNP.

Lemma 4.5 (Coprime factors). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there are
co-prime polynomials u and v such that f = u · v, then the factor u is in VNP.

We defer the proof of the above fundamental lemmas to the subsequent two sub-
sections. For now, we use them to prove an essential lemma that deals with the ‘radical’
computation in VNP.

Lemma 4.6 (Any power). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there is a polynomial
u and an arbitrary positive integer e such that f = ue, then the factor u is in VNP.

Proof. Let e := pi · ê, and u1 := upi , such that p does not divide ê. Note that, when ê = 1
then Lemma 4.4 finishes the proof. When ê > 1, we associate a polynomial f̂ with a new
variable z as follows:

f̂ := zê − f = zê − uê1
= (z − u1) ·

(
zê−1 + zê−2u1 + · · · + uê−1

1

)
=: u2(z) · u3(z) .

For contradiction sake, assume that u2 and u3 share a factor, and hence are not co-prime.
This implies that u1 must be a root of u3, which gives u3(u1) = ê ·uê−1

1 = 0. However, since
ê > 1 and u1 is non-zero, it follows that the characteristic p divides ê, which contradicts
our choice of ê.

Factor Closure of VNP over Finite Fields 57

Observe that zê is trivially in VNP, hence we obtain that f̂ is in VNP. Since u2 and u3

are co-prime, we invoke Lemma 4.5 to shows that u2 is in VNP, and therefore u1 is in VNP.
We finish the proof by using Lemma 4.4 on u1 to finally prove that u is in VNP. □

With all the essential ingredients in place, we are now ready to prove the second main
result of our paper. We will restate Theorem 4.2 formally, which proves the closure of VNP
under factoring over all fields.

Theorem 4.2 (Formally restated). Let F be a field of any characteristic. Consider a polynomial
f ∈ F[x1, . . . , xn] in the class VNP and let u be its arbitrary factor. Then, we have u in VNP.

Proof. Over fields of characteristic zero, [CKS19b, Theorem 2.8] proved that u is in VNP.
Here we consider the hitherto unsolved case of small prime characteristic. In particular,
when F = Fq, where q =: pa for some prime p < deg(f).

Pick the largest integer e ⩾ 1 and the polynomial v ∈ Fq[x1, . . . , xn] satisfying f =: uev.
If v = 1, then Lemma 4.6 proves that u is in VNP.

If u and v are coprime, then we conclude the proof using Lemma 4.5 and Lemma 4.6.

In the last case, there exists an irreducible polynomial w ∈ Fq[x1, . . . , xn] that divides
both u and v. Consider u1 := we′ and v1 := (f/u1) such that u1, v1 are coprime factors
of f. Again, using Lemma 4.5 and Lemma 4.6 we get that w is in VNP. Repeat this for
all the irreducible factors of u, and use the fact that VNP is closed under multiplication
(Lemma 1.28); this concludes the proof of u being in VNP. □

4.1.1 Factoring prime powers using Valiant’s converse

To prove Lemma 4.4, we show that the coefficients of the factor polynomial u can be
computed effectively, and thus use Valiant’s criterion to prove the claim. We will argue
that coefficients of u can be obtained from the coefficient function of f. Therefore, it would
suffice to design an effectively computable coefficient function for f, give that it is in VNP.
To that effect, we prove the converse of Valiant’s criterion, over finite fields.

Lemma 4.7 (Converse of Valiant’s criterion). Let f =
∑

e ce · xe be a polynomial in VNP over
Fq. Then, there exists a function ϕf in #Pp/poly such that for all e, ϕf(⟨e⟩) = ⟨ce⟩.

Proof. Let D := deg(f) and the VNP size parameters of f be (s, s) where s := poly(n, logq).
Using the exponential-interpolation in Lemma 3.4, with D = poly(s), we can prove that

Factor Closure of VNP over Finite Fields 58

each coefficient ce of f is a hypercube-sum of small-circuit evaluations, with parameters
(poly(s), poly(s)) 2. That is, there is a polynomial te over a finite field extension Fq′,
q′ ⩽ poly(s), such that

ce =
∑

b∈{0,1}ℓ
te(b1, . . . ,bℓ),

where ℓ and size(te) are at most poly(s). Next, moving to the boolean world, Lemma 3.5
shows that such an algebraic representation can be transformed to obtain the coefficient
function ϕf ∈ #Pp/poly such that ϕf(e) = ⟨ce⟩. □

As mentioned earlier, with the coefficient function of f in place, we need a way to map
the coefficients of f to u. Following is a well-known claim from Algebra, that will help us
map the coefficients.

Claim 4.8 (Frobenius Homomorphism). Let R be a commutative ring of characteristic p. Define
a map ρ : R → R as ρ(u) = upi . Then, ρ is a ring homomorphism. Moreover, when R is a finite
field Fq, then ρ is an automorphism that fixes Fpi .

We now have all the necessary tools needed to prove the lemma.

Proof. Proof of Lemma 4.4 Given that f = upi , let u =:
∑

a∈L cax
a, where the support L

represents the set of exponent vectors associated to u. Essentially, Claim 4.8 allows us to
distribute the prime power over addition as follows:

f = up
i

=

(∑
a∈L

ca · xa
)pi

=
∑
a∈L

(ca)p
i

xp
i·a .

The last expression above clearly associates the coefficients of xpi·a in f to coefficients of
xa in u. Since f is in VNP, Lemma 4.7 guarantees a #P/poly function ϕf such that the
following congruence, in the finite field Fq, is true for all a ∈ L:

(
ϕf

(
pi · a

))1/pi

= ϕf(pi · a)q/p
i

= ϕf(pi · a)p
a−i

=: ϕu(a) = ⟨ca⟩ .
2The same conclusion can be made from VNP closure properties stated in Lemma 1.28.

Factor Closure of VNP over Finite Fields 59

In Lemma 1.22 it was proved that #P/poly functions are closed under repeated-squaring,
hence we conclude that ϕu ∈ #P/poly. Invoking Proposition 1.5 on ϕu proves that the
factor u ∈ VNP. □

4.1.2 Factoring co-prime factors

The proof of Lemma 4.5 adheres to the conventional template of factoring, pioneered
by Kaltofen, using Hensel’s lifting lemma. We will follow the presentation of [KSS15,
ST21, Sud98]. It commences with a series of preprocessing procedures that brings the
polynomial in the right setup to invoke the lifting lemma, which uniquely gives the factor.
We will elucidate all the steps, and along the way analyse the VNP size parameters to
ultimately conclude the proof.

Transformation to monic polynomial. Let α := (α1, . . . ,αn) ∈ Fnq . Define a homoge-
neous shift map τα : Fq[x1, . . . , xn] → Fq[x, x1, . . . , xn] such that for all i ∈ [n], it maps
xi ↦→ xi + αi · x. Let fα := τα(f) and observe that deg(fα) = deg(f) =: d. Isolating the
coefficient ce of the leading term xd of fα gives

ce =:
∑
|e|=d

ĉe · αe1
1 . . .αen

n .

PIT lemma guarantees that with high probability, a random choice of α ensures ce is a
non-zero field element (refer to [SY10, Lemma 4.2]). Then, fα/ce is a monic polynomial
in x. Further, if (s, s) is the VNP size parameters of f, then the parameters for fα are
(s, s +O(n)). When the field is too small, to pick the right α, we can obtain it from a field
extension K of degree at most poly(deg(f)). Since arithmetic operations over K can be
efficiently simulated in F (refer to [Bü00, Proposition 4.1]), we will assume K = Fq without
loss of generality.

Multivariate to bi-variate factoring. We can reduce the problem of multivariate
factoring to the bi-variate case. For notational convenience, we redefine fα/ce as fα and
associate a polynomial f̄ ∈ Fq[x1, . . . , xn][x,y] as follows: f̄(x,y) := fα(x,yx1 + a1,yx2 +
a2, . . . ,yxn + an), where a ∈ Fnq is a point.

If fα is monic anduα is its monic irreducible factor, then ū := u(x,yx1+a1, . . . ,yxn+an)
is a monic irreducible factor of f̄, see [ST21, Lemma 3.10]. In addition to this bi-variate
transformation, the scaling and shifting of variables sets up the starting point for the lifting
lemma. Refer to [DDS22, Section 2.2] and [ST21, Section 3.5].

Factor Closure of VNP over Finite Fields 60

Claim 4.9 (Initialize Hensel lifting). Let f = u · v be such that u, v are co-prime polynomials.
Then the associated univariate factors ū(x, 0) and v̄(x, 0) of f̄(x, 0) are co-prime.

Note that, the factor u can be recovered easily from ū by performing an inverse linear-
transformation of the coordinate shift. Further, the polynomial f̄(x,y) remains monic in x
and is in VNP with size parameters (s, s +O(n)).

Hensel’s Lifting. Let us re-assign f = f̄ for notational simplicity. Recall that f(x,y) is
monic in x, therefore f0 := f(x, 0) ∈ Fq[x] is a univariate polynomial of degree d. Since
f0 can have at most d factors, u0 := u(x, 0) and v0 := v(x, 0) are in VNP with parameters
(1,O(d)). We will use the following ever-famous Hensel’s Lifting lemma from number
theory to lift the roots uniquely (mod y). For a detailed discussion on the specific monic
version of the Lifting lemma required for our proof, we encourage the readers to refer
[KSS15, Lemma 3.4]. For the rest of the section we assume K := Fq[x1, . . . , xn] as the base
ring of the bivariate polynomials in x,y.

Lemma 4.10 (Monic Hensel’s Lifting). Let f = u · v ∈ K[x,y] be such that u, v are co-prime,
and u is monic in x. Additionally, we are given u0 ≡ u mod y and vo ≡ v mod y such that
a0u0 + b0v0 ≡ 1 mod y. Then for all natural numbers k ⩾ 1 there exist uk, vk,ak,bk ∈ K[x,y]
satisfying the following:

1. uk ≡ uk−1 mod y2k−1 and vk ≡ vk−1 mod y2k−1 .

2. f ≡ uk · vk mod y2k such that akuk + bkvk ≡ 1 mod y2k and uk is monic in x.

3. uk ≡ u mod y2k and vk ≡ v mod y2k .

Moreover, for every k, the lifted factors uk and vk are unique polynomials mody2k .

Hensel’s Lifting is a technical, but a very powerful, tool which gives explicit formulas
for the lifted factors. Its basic idea is to take the error of the previous step and feed it
back to the next step. Consider the difference polynomial mk := f − uk−1vk−1. Then the
polynomials ūk := uk−1 + bk−1mk and v̄k := vk−1 + ak−1mk are valid lifts of the factors u
and v. However, to obtain monic, and therefore unique lifts, we need some correction. Let
qk, rk ∈ K[x,y] be such that

(ūk − uk−1) =: y2k−1 · (qkuk−1 + rk) ,

Factor Closure of VNP over Finite Fields 61

where degx(rk) ⩽ degx(uk−1). The existence of these polynomials is guaranteed by
Euclid’s division algorithm. Then the unique, and monic, lifts are defined as follows:

uk := uk−1 + y2k−1
rk (4.1)

vk := v̄k
(
1 + y2k−1

qk

)
. (4.2)

It is easy to verify that they are the valid lifts as per Lemma 4.10. Refer [KSS15, Lemma 3.4]
for rigorous calculations. In addition, let wk := ak−1uk + bk−1vk, then the lifted factors
remain (pseudo-)co-prime (mod y2k) with Bézout identity holding using the following
polynomials:

ak := ak−1(1 −wk)
bk := bk−1(1 −wk) .

Size analysis. We choose an integer t ⩾ log(degy(u)) + 1 and repeatedly use the Lifting
lemma t times to obtain the factor ut ≡ u mod y2t . Since the lifted factors are unique,
u can be obtained from ut by truncating it to degy(u). Given that f ∈ VNP, the factor
u ∈ VNP can be proved using the following technical lemma. It proves that given the
coefficients of polynomial f in variables x1, . . . , xn, there is a small circuit which computes
the lifted factor u.

Lemma 4.11 (Hensel in circuits). Let f = u · v ∈ K[x,y] be a degree d polynomial such that u, v
are co-prime and u is monic in x. The polynomials u0, v0,a0,b0 are defined as before. Let L be the
set of exponent vectors of f such that f =:

∑
ei∈L cei(x1, . . . , xn) · xei1yei2 .

Given the coefficients ce1 , . . . , ce|L| as input, there exists a circuit C(t)
u over Fq which computes

Hom⩽d(ut)3. Further, there is a constant β ⩾ 2 such that the size of the circuit C(t)
u is at most

poly(d,βt), and intermediate degrees at most (dβt).

Proof. Given all the coefficients of the polynomial f, observe that we can construct a sub-
circuit Cf of size sf := poly(d) that computes f. Then, the proof is an easy consequence of
the following inductive analysis on t.

The base case is easy to analyse. Let C(t−1)
u ,C(t−1)

v ,C(t−1)
a , and C(t−1)

b
be the circuits that

compute ut−1, vt−1,at−1 and bt−1 respectively, as described in Hensel’s lifting Lemma 4.10.
Let the size of all the circuits be at most st−1 := poly(d,βt−1). Together with Cf, the
difference polynomialmk can be easily computed in size sf +O(st−1) 4. Then observe that

3This is the sum of the homogeneous parts of ut up to degree d.
4For notations, refer to the discussion proceeding Lemma 4.10.

Factor Closure of VNP over Finite Fields 62

size(ūt) and size(v̄t) is at most sf +O(st−1). To facilitate the lifting process, the quotient
qk and remainder rk can be computed with additional poly(d) size (refer [KSS15, Lemma
2.8] and [vzGG13, Lemma 9.6]). Using these as sub-circuits, we obtain Ct

u and Ct
v with

additional constant number of gates from Equations 4.1 and 4.2. Overall, the size of the
lifted polynomials grows by a constant factor and, hence, the overall size of both the
circuits is at most st := sf + O(st−1) + poly(d) + O(β) ⩽ poly(d,βt). Almost the same
argument works for circuits C(t)

a and C(t)
b

computing at and bt.

Lastly, we homogenize Ct
u using Lemma 1.23, to obtain the desired circuit which

computes Hom⩽d(ut). The degree with respect to the lifting variable y is at most βt due
to constant growth in each iteration, moreover, with respect to x it is at most d due to the
homogenization. Hence, the degree claim follows. □

We are now ready to give the complete proof of the following Lemma 4.5.

Lemma 4.5 (restated). Let f ∈ Fq[x1, . . . , xn] be a polynomial in VNP. If there are co-prime
polynomials u and v such that f = u · v, then the factor u is in VNP.

Proof. Proof of Lemma 4.5 Assume that f ∈ K[x,y] after all the necessary invertible
transformations discussed earlier in the section to apply Lemma 4.10. Let L be the support
set of f such that f =:

∑
ei∈L cei(x1, . . . , xn) · xei1yei2 .

Using Lemma 4.11 with t ⩾ log(deg(f)) + 1 gives a circuit C(t)
u that take the coefficients

of f as input and outputs a circuit for the factor u. Moreover, the size of the circuit is at
most poly(deg(f)) and degree is at most O(deg(f)).

Since f ∈ VNP, Lemma 1.28(2) shows that the coefficients cei ∈ VNP. Moreover,
Lemma 1.28(3) will prove that C(t)

u composed with VNP polynomials, remains in VNP.
Therefore, the factor u is in VNP. □

Chapter 5

Explicitness of Low-Degree Factors

In an ambitious program to resolve the P ?
= NP question using methods from algebraic

geometry and representation theory, Mulmuley and Sohoni [MS01] strengthened Valiant’s
conjecture by postulating that VNP is not contained in VP.

Completely independently and almost at the same time, Bürgisser [Bür04] (also see
[Bü20]) introduced and used border complexity to factor multivariate polynomials. Bür-
gisser showed that for border complexity, the factor conjecture is indeed true – the factor
u above, is in VP (refer Conjecture 1.12). This makes factor conjecture an important
stepping-stone towards understanding algebraic computation. We observe that it is in fact
in a smaller presentable border class VPε (refer Chapter 3). We formally define the class
below.

Definition 5.1 (Presentable VP). The presentable border class VPε is defined as the set of
polynomials f ∈ F[x1, . . . , xn] such that there is an approximating polynomial g ∈ F[ε][x1, . . . , xn]
satisfying

g(x, ε) = εMf(x) + εM+1Q(x, ε),

for some Q ∈ F[ε][x1, . . . , xn] and M ∈ N. Moreover, sizeF(g) and degx(g) is bounded by
poly(n).

Although, g has a small size circuit, we emphasise that the degree of ε-polynomials in g is
unrestricted. Further, it is apparent from the definitions that VP ⊆ VPε ⊆ VNPε. Búrgisser

63

Explicitness of Low-Degree Factors 64

in [Bür04, Theorem 1.3] proved that the class VPε contains all the low-degree separable
factors1 of circuits of small size.

Lemma 5.2. Let q := pa and e be a positive integer coprime to p. Consider a polynomial (family)
f ∈ Fq[x1, . . . , xn] satisfying f = uev, where u is irreducible and coprime to v, such that size(f)
and deg(u) is at most s := poly(n, logq). Then we have u in VPε.

Remark 5.3. We make a few observations.

1. In case f = ue, Kaltofen [Kal87] showed that u is VP.

2. Búrgisser [Bür04] proved thatu (in the lemma above) is in VP. Moreover, he remarked
that, in his proof, the required polynomials in F[ε] do have small circuit-complexity
(refer the remark following [Bür04, Definition 2.1]). For the sake of completeness,
we will sketch the proof for u ∈ VPε in the subsequent section.

As an application of the debordering result over finite fields in Theorem 3.6, we prove that
the low-degree separable factors of small size circuits are explicit.

Corollary 5.4. Let q := pa and e be a positive integer coprime to p. Consider a polynomial
(family) f ∈ Fq[x1, . . . , xn] and its irreducible factor u satisfying f = uev, u coprime to v, such
that size(f) and deg(u) is poly(n, logq). Then, the polynomial (family) u is in VNP.

Proof. We learn from Lemma 5.2 that the polynomial family u ∈ VPε. Moreover, VPε is
contained in VNPε by definition. As over Fq, Theorem 3.6 proves VNPε = VNP, hence
u ∈ VNP.

□

5.1 Low degree factors are easy to approximate

In this section we will sketch the proof of Lemma 5.2. Consider a polynomial f ∈
Fq[x1, . . . , xn] of degree df from the lemma statement. For all i ∈ [n], randomly pick field
elements αi,βi ∈r Fq and define a map τ : xi ↦→ xi + αiy + βi, where y is a new variable.
Under such a random invertible transformation, the polynomial completely splits over

1i.e. factor uwhich is irreducible and has multiplicity coprime to the characteristic p. This isn’t an issue in
characteristic zero fields.

Explicitness of Low-Degree Factors 65

power series ring, see [DSS22, Theorem 17]. In particular, there exists k ∈ F∗q,γi > 0 and
hi ∈ K[[x1, . . . , xn]] satisfying

τ(f) = k ·
∏

i∈ [df]
(y − hi)γi ,

where K is a field extension of Fq of degree at most df. Refer [DSS22, Section 3 and 6.2] for
details. Further, µi B hi

(
0
)

are all distinct nonzero field elements. We assume K = Fq
without loss of generality (refer [Bü00, Proposition 4.1]). An immediate corollary of such
a power series split is the following lemma (refer [DSS22, Corollary 18])

Lemma 5.5. Let u be a factor of f of degree du, and τ(f) splits as before. Since τ(u) divides τ(f),
we deduce that

τ(u) = k′ ·
∏

i∈ [du]
(y − hi)ci ,

where 0 ⩽ ci ⩽ γi, k′ ∈ F∗q, and hi ∈ Fq[[x1, . . . , xn]].

Recall the definition of Hom⩽du(hi) from Section 1.6. Observe that

τ(u) ≡ k′ ·
∏

i∈ [du]
(y − Hom⩽du(hi))ci mod ⟨x1, . . . , xn⟩du+1 .

Later we will show that due to the expression above it would suffice to give a complexity
bound of the power series roots of τ(f) to uniquely recover the factor τ(u). The following
proposition proves that all the power series roots can be easily approximated, see [Bür04,
Proposition 3.4].

Proposition 5.6. For all i ∈ [df], there is an approximating polynomial gi ∈ Fq[ε][x1, . . . , xn]
satisfying gi = εM Hom⩽du(hi)+εM+1Qi(x, ε), for some errorQi ∈ F[ε][x1, . . . , xn] and order
M ∈ N. Moreover degx(gi) ⩽ du and sizeF(gi) ⩽ poly(du, size(f)).

Proof-Sketch Let f̃ B τ(f) ∈ Fq[x,y] and µi B hi(0). Define a perturbed polynomial
F B f̃(x,y + µi + ε) − f̃(x = 0,y = µi + ε) over the ring Fq[ε]. Since e is coprime to p, with
appropriate coordinate shift it can be ensured that

F(x,y, ε = 0) = f̃, and F(0, 0) = 0, but ∂yF(0, 0) ≠ 0,

Explicitness of Low-Degree Factors 66

see [Bür04, Equation 5]. Then the power series root Hj of the perturbed polynomial F can
be obtained by classical Newton Iteration (refer [DSS22, Lemma 15]) as follows:

y0 = 0, yt+1 B yt −
F(x,yt)
∂yF(x,yt)

(5.1)

where yt ≡ Hj mod ⟨x⟩2t . The quadratic convergence of degree in Newton iteration
implies that it suffices to assume t ⩽ logdu + 1. An easy induction on t proves that
yt, and therefore Hj, is well defined over Fq[[ε]]. Hence, Hj(x,y, ε = 0) = hi, moreover
Hom⩽du(Hj)(x,y, ε = 0) = Hom⩽du(hi).

Let R be the subring of F(ε) consisting of rational functions defined at ε = 0. The
preceding discussion then proves that an approximating polynomial g̃i ∈ R[x] computes
At/Bt ≡ yt mod ⟨x⟩2t and satisfies the following:

g̃i = Hom⩽du(hi) + ε Q̃i(ε, x,y),

for some error Q̃i ∈ R[x1, . . . , xn]. Equivalently, there exists an approximating polyno-
mial gi ∈ F[ε][x1, . . . , xn], order M ∈ N, and error Qi, such that gi = εM Hom⩽du(hi) +
εM+1Qi(ε, x,y) (refer discussion following Definition 3.1 and [Bür04, Lemma 5.6]). More-
over, gi = εM g̃i. Therefore, the proposition follows from showing

sizeF(g̃i) ⩽ poly(du, size(f̃)),

and M ⩽ 2poly(du). In case, degx(gi) is greater than du, homogenise and truncate the
higher degree terms ([Bür04, Proposition 3.1]).

Size analysis. The circuit computing At/Bt is build iteratively using division gates
following Equation (5.1). Treating ε as a variable, observe that sizeF(F) ⩽ s0 B size(f̃) + 2.
Homogenise the circuit computing F using Lemma 1.23 with respect to y to obtain
Hom⩽du(F) of size poly(du, s0). Use this homogenised circuit to obatin the circuit comput-
ing ∂yF of size poly(du, s0). Using division and subtraction gates, compute A1/B1 and let
its size be s1 B max(sizeF(A1), sizeF(B1)) ⩽ poly(du, s0). Let t = logdu + 1, then Newton
iteration gives an easy recurrence on the size st ⩽ c + st−1 + poly(du, s0), where c is a
small constant. Solving the recurrence gives st ⩽ poly(du, s0) ⩽ poly(du, size(f̃)). Finally,
eliminate the division with respect to x,y variables using Lemma 1.24 to obtain the circuit
computing g̃i of size at most poly(du, size(f̃)). The upper bound is preserved after the
inverse transformation τ−1.

Explicitness of Low-Degree Factors 67

Order analysis. Let the εdegree inA1/B1 be denoted byd1 B max(degε(A1), degε(B1)).
Observe that in each iteration the degree blows-up by a factor of du because of homogeni-
sation in preprocessing. Thus, we get the recurrence dt ⩽ du · dt−1, solving which gives
dt ⩽ (du)logdu ⩽ 2poly(du). Then to obtain gi, setM = dt ⩽ 2poly(du). □

We are now ready to prove Lemma 5.2. For two arbitrary polynomials u and h, let
size(u |h) denote the size of the circuit that computes u given h for free. The definition
can be extended to size(u |h) naturally.

Lemma 5.2 (restated). Let q := pa and e be a positive integer coprime to p. Consider a
polynomial f ∈ Fq[x1, . . . , xn] satisfying f = uev, where u is irreducible and coprime to v, such
that size(f) and deg(u) is at most s := poly(n, logq). Then we have u in VPε.

Proof. Using the map τ defined earlier, Lemma 5.5 proves that τ(u) = k′ ·∏i∈ [du] (y − hi)ci

where hi ∈ Fq[[x1, . . . , xn]] and du B deg(u). Suppose

H B k′ ·
∏

i∈ [du]
(y − Hom⩽du(hi))ci ,

then observe that τ(u) ≡ H mod ⟨x⟩du+1. The idea is to show that H can be easily
approximated, hence the factor can be obtained accurately by eliminating division.

It is easy to verify that

size(H) ⩽ size (H | Hom⩽du(hi)) + size (Hom⩽du(hi)) ,

see [Bür04, Lemma 2.3(3)]. Since du ⩽ s, Proposition 5.6 proves that size (Hom⩽du(hi))
is at most poly(s). Then, clearly presentable border complexity size(H) ⩽ poly(s). Sup-
pose G approximates H, in the usual sense. Eliminate division in G mod ⟨x⟩du+1 using
Lemma 1.24 to obtain the approximation of τ(u), moreover almost immediately we get
that size(τ(u)) ⩽ poly(s,du). Since shifting and scaling do not change the size complexity,
apply the inverse transformation to conclude that u ∈ VPε. □

Part III

Identity Testing

68

Chapter 6

Whitebox Identity Testing of Depth-4
Circuits

Polynomial Identity Testing (PIT) is one of central problems of Algebraic Complexity,
which asks: given an algebraic circuit 𝒞 over a field F and input variables x1, . . . , xn,
determine whether 𝒞 computes the identically zero polynomial.

Theorem 6.1 (ΣkΠΣ∧ Whitebox PIT). There is a deterministic, whitebox PIT algorithm for
Σ[k]ΠΣ∧ circuits of size s over F[x] running in time sO(k 7k).

Remark 6.2.

1. Case k ⩽ 2 can be solved by invoking [SSS13, Theorem 5.2]; but k ⩾ 3 was open.

2. Our technique necessarily blows up the exponent exponentially in k. In particular, it
would be interesting to design an efficient time algorithm when k = Θ(log s).

3. It is not clear if the current technique gives PIT for Σ[k]ΠΣM2 circuits, where ΣM2

denotes sum of bivariate monomials computed and fed into the top product gate.

6.1 State of Affairs

A very simple randomized algorithm for PIT is known for decades — evaluate the
polynomial at a random point from a large enough domain. Due to the Polynomial
Identity Lemma [Ore22, DL78, Zip79, Sch80], it is highly likely that a nonzero polynomial

69

Whitebox Identity Testing of Depth-4 Circuits 70

will have a nonzero evaluation. De-randomizing the algorithm has been an open problem
for a long time, but a crude de-randomization gives the simplest PIT algorithm for any
general circuit. When the number of variables is small, say constant, then this algorithm
is very efficient. Refer to [Sap13, Corollary 2.2].

Lemma 6.3 (Trivial PIT). For a class of n-variate, individual degree at most d polynomial
f ∈ F[x1, . . . , xn] there exists a deterministic PIT algorithm which runs in time O(dn).

Bounded Depth PIT. For a long time the exponential-time algorithm from Lemma 6.3
was the fastest known algorithm for constant depth circuits. This changed with the
breakthrough result of Limaye, Srinivasan, and Tavenas [LST21], which gave the first
sub-exponential algorithm for small-depth circuits. They achieved it by proving super-
polynomial lower bounds for bounded depth circuits and invoking hardness vs random-
ness trade-off result [CKS18].

Sparse PIT. A sparse polynomial has bounded number of monomials. For a long time,
the only polynomial time algorithm for PIT was known for sparse polynomial due to
Klivans and Spielman [KS01]. Refer [Sap13, Section 2.2.3] for the proof.

Theorem 6.4 (Sparse-PIT Map). Let p(x) ∈ F[x] with individual degree at most d and sparsity
at mostm. Then, there exists 1 ⩽ r ⩽ (mn logd)2, such that

p(y,yd, . . . ,ydn−1) ≠ 0, mod yr − 1.

If p is computable by a size-s ΣΠ circuit, then there is a deterministic algorithm to test its identity
which runs in time poly(s,m).

The algorithm can be easily extended for identity testing product of sparse polynomials,
as described in [Sap13, Lemma 2.3]. See also [Dut22, Lemma 2.7.6].

Lemma 6.5 (Product of Sparse PIT). For a class of n-variate, degree d polynomial f ∈
F[x1, . . . , xn] computable by ΠΣΠ of size s, there is a deterministic PIT algorithm which runs in
time poly(s,d).

Depth-3 PIT. These circuits, denoted by Σ[k]Π[d]Σ, compute polynomial of the form
C = T1 + · · · + Tk, where Ti is a product of linear terms. A deterministic whitebox PIT
algorithm was given by Kayal and Saxena which runs in time poly(n,dk) [KS07]. And

Whitebox Identity Testing of Depth-4 Circuits 71

after a series of results, Saxena and Seshadhri [SS12] gave the blackbox algorithm with
the same running time. For the Diagonal Depth-3 circuit Σ[k]∧Σ, Saxena [Sax08] gave a
poly-time whitebox algorithm using the duality trick, and later Agrawal, Saha, and Saxena
[ASS13] introduced a blackbox algorithm which runs in time poly(knd)log(knd).

Depth-4 PIT. In a surprising result, Agrawal and Vinay [AV08] showed that a complete
derandomization of blackbox identity testing for just depth-4 algebraic circuits (ΣΠΣΠ)
already implies a near complete derandomization for the general PIT problem. The
bootstrapping phenomenon [AGS19, KST19a, GKSS22, And20] showed that achieving
PIT for the restricted depth-4 circuits would have significant implications for PIT of
general circuits. These results accentuate the importance and relevance of focusing on
identity testing for depth-4 circuits. Although nothing better than sub-exponential is
known in general, under various restrictions insightful and efficient algorithms have been
discovered.

Table 6.1: Time complexity comparision of PIT algorithms related to ΣΠΣΠ circuits

Model Time Ref.

Multilinear Σ[k]ΠΣΠ poly(nO(k2)) [SV18, ASSS16]

ΣΠΣΠ of bounded trdeg poly(strdeg) [BMS13]

Σ(k)ΠΣΠ[d] of bounded local trdeg QP(n) [KS18]

Σ[3]ΠΣΠ[2] poly(n,d) [PS21]

ΣΠΣΠ SUBEXP(n) [LST21]

Σ[k]ΠΣ∧ sO(k log logs) [DDS22]

Σ[k]ΠΣΠ[]δ sO(δ2 k logs) [DDS22]

Whitebox Σ[k]ΠΣ∧ sO(k 7k) This chapter.

The table above is not an exhaustive list of all the depth restricted PIT results. We
encourage interested readers to find more detailed discussions in surveys [SY10, Sax09b,
Sax14a, AS09, DG24]. One PIT algorithm that we crucially need in our algorithm is that
of Diagonal Depth-4 circuits Σ∧Σ∧. These circuits compute polynomials of the form
f(x) =

∑
i∈[s] f

ei

i
where fi is a sum of univariate polynomials. Using the duality trick

Lemma 1.32 and the PIT results from [RS05, GKS17], an efficient PIT algorithm can be
designed for Σ∧Σ∧ circuits.

Lemma 6.6 (PIT for Σ∧Σ∧). There exists a poly(s) time whitebox PIT algorithm for polynomials
computable by Σ∧Σ∧ circuit of size s.

Whitebox Identity Testing of Depth-4 Circuits 72

Proof sketch. We show that any g(x)e = (g1(x1) + . . . + gn(xn))e, where deg(gi) ⩽ s can
be written as

∑
j hj1(x1) · · ·hjn(xn), for some hjℓ ∈ F[xℓ] of degree at most es. Define,

G := (y + g1) · · · (y + gn) − yn. In its e-th power, notice that the leading-coefficient is
coefye(n−1)(Ge) = ge. So, interpolate on e(n − 1) + 1 many points (y = βi ∈ F) to get

coefye(n−1)(Ge) =

e(n−1)+1∑
i=1

αiG
e(βi) .

Now, expand Ge(βi) = ((βi + g1) · · · (βi + gn) − βn
i
)e, by binomial expansion (without

expanding the inner n-fold product). The top-fanin can be atmost s · (e+1) · (e(n−1)+1) =
O(se2n). The individual degrees of the intermediate univariates can be at most es. Thus,
it can be computed by an ARO of size at most O(s2e3n).

Now, if f =
∑

j∈[s] f
ej

j
is computed by a Σ∧Σ∧ circuit of size s, then clearly, f can also

be computed by an RARO of size at most O(s6). Thn the whitebox PIT follows from
[RS05]. □

For a more comprehensive discussion refer to [For14, Section 8.6, and Corollary 8.6.9].

6.2 Gentle Introduction to DiDI

Techniques for de-randomizing PIT are mostly tailor-made for specific models, making
them inextensible and with restricted applicability. We observed a similar limitation in the
techniques of de-bordering results in Section 2.2, and we will later make a few comparative
comments on why we believe de-bordering is perhaps harder than de-randomization. For
instance, consider Kayal-Saxena whitebox identity testing algorithm for Σ[k]ΠΣ circuits
[KS01]. Although Σ[k]ΠΣ is a restricted version of the model of our interest ΣkΠΣ∧, their
Chinese Remaindering over local rings loses applicability for a slightly general model (refer
[SSS13] as well). Refer our paper for a more comprehensive discussion on limitation of
known techniques [DDS21, Section 1.2]. In the rest of the section we introduce our novel
technique to de-randomize whitebox PIT for depth-restricted circuit.

The de-bordering paradigm DiDIL, discussed in Section 2.3, and the upcoming discus-
sion on the de-randomizing PIT technique DiDI, share the same underlying philosophy—
reduce the problem to a well-understood powering model (∧). Consider a pedagogical
example, where we want to test the identity of f B T1 + T2, and Ti is a product of sum of
univariates (ΠΣ∧). The goal is to reduce the fan-in while preserving the non-zeroness, so

Whitebox Identity Testing of Depth-4 Circuits 73

that it suffices to test the reduced model. To achieve this, we Divide the expression by T2

and take the derivative. Naturally, these operations pushes us to work with the fractional
ring, further it also distorts the model as 𝒯i’s are no longer computable by simple ΠΣ∧
circuits. However, with careful analytically analysis we establish that the non-zeroness is
preserved in the reduced model.

The garbled model obtained from single iteration of DiDI is useful and closed under
subsequent iterations of DiDI. We reuse the bloated computation mode Gen(k, s) from
Section 2.3 for repeated application of DiDI.

Definition 2.10 (Restated). Let R(x) be the ring of rational functions. Denote Gen(k, s)
as a class of circuits 𝒞 over R which computes polynomial f(x) ∈ R(x1, . . . , xn) of the form:
f =

∑k
i=1 Ti such that

Ti =

(
Ui

Vi

)
·
(
Pi

Qi

)
,

where Ui,Vi ∈ ΠΣ∧ and Pi,Qi ∈ Σ∧Σ∧ are polynomials in R[x1, . . . , xn].

The size of the circuit is defined naturally as size(𝒞) B
∑k

i=1 size(Ti) ⩽ s where

size(Ti) = size(Ui) + size(Vi) + size(Pi) + size(Qi).

The syntactic degree of the circuit is defined as the maximum syntactic degree of the numerator
and denominator.

We cannot directly perform identity testing on the simplest bloated model Gen(1, ·)
because the denominator may not be invertible in the function field. While it may seem
counterintuitive, given that the initial idea was to reduce the problem of testing ΣkΠΣ∧
to testing Gen(1, ·), additional essential properties are required to provide a complete
algorithm.

Finally we need a homomorphism similar to Definition 2.14 to perform safe division.
Given the constructive nature of the algorithm, we cannot use random point for shifting
and scaling as before. We will use the hitting set of product of sparse polynomials (refer
Lemma 6.5) to obtain a point a = (a1, . . . ,an) ∈ Fn such that Ti,0(x = a) ≠ 0, for all
i ∈ [k]. Eventually this evaluation point will help in maintaining the invertibility of ΠΣ∧.
Consider

g :=
∏
i∈[k]

Ti,0 =

∏
i∈[k]

Ti,0 =

∏
i∈[ℓ]

∑
j∈[n]

fij(xj) ,

Whitebox Identity Testing of Depth-4 Circuits 74

where fij(xj) are univariate polynomials of degree at most d and ℓ ⩽ k · s. Note that
deg(g) ⩽ d · k · s and g is computable by a ΠΣ∧ circuit of size O(s). Invoke Lemma 6.5 to
obtain a hitting set ℋ , then evaluate g on every point of ℋ to find an element a ∈ ℋ such
that g(x = a) ≠ 0.

Definition 6.7 (DiDI homomorphism). Pick a = (a1, . . . ,an) from Fn using Sparse PIT as
described above. Define a map

Φ : F[x1, . . . , xn] → F[z, x1, . . . , xn]

such that for all i ∈ [n], xi ↦→ z · xi + ai.

We emphasise that in whitebox setting all Ti,0, are readily available for evaluation.
Since, the size of the set is poly(s) and each evaluation takes poly(s) time, this preliminary
step will add poly(s) time to the overall time complexity. Moreover, we obtain the a ∈ Fn

which possess the non-zeroness preserving property.

6.3 De-randomizing PIT of Σ[k]ΠΣ∧ using DiDI

In this section, we develop the tools needed to give the complete poly-time algorithm
for whitebox PIT of ΣkΠΣ∧, when k is constant. We start by considering a polynomial
f(x) ∈ F[x1, . . . , xn] that is computed by theΣ[k]ΠΣ∧(s) ⊆ Gen(k, s) circuit (Definition 2.10).
Begin with defining f0 B f and Ti,0 B Ti where Ti,0 ∈ ΠΣ∧ such that

∑
i

Ti,0 = f0,

and size(f0) ⩽ s. Assume deg(f) < d ⩽ s, where we keep the parameter d separately to
aid us later in complexity optimization. In every recursive call we work with Gen(·)(·)
circuits. We start by applying DiDI homomorphism from Definition 6.7 on f0. Invertibility
implies that

f0 = 0 ⇐⇒ Φ(f0) = 0.

Lemma 6.8 (First Reduction). Let Φ(f0) be computable by Σ[k]ΠΣ∧ circuit of size s0 over F[z].
Then

f1 B ∂z

(
Φ(f0)
Φ(Tk,0)

)
∈ Gen(k − 1, s1)

Whitebox Identity Testing of Depth-4 Circuits 75

over R1 B F[z]/⟨zd⟩, and s1 = O(d3 · s). Moreover,

Φ(f0) ≠ 0 over F[x] ⇐⇒ f1 ≠ 0 over R1(x), or Φ(f0)(x, z = 0) ≠ 0 ∈ F .

Proof. We assume that
∑k

i=1 Ti,0 = f0 and Tk,0 ≠ 0. Start with division and derivation as
follows:

∑
i∈[k]

Φ(Ti,0) = Φ(f0) ⇐⇒
∑

i∈[k−1]

Φ(Ti,0)
Φ(Tk,0)

+ 1 =
Φ(f0)
Φ(Tk,0)

=⇒
∑

i∈[k−1]
∂z

(
Φ(Ti,0)
Φ(Tk,0)

)
= ∂z

(
Φ(f0)
Φ(Tk,0)

)
⇐⇒

k−1∑
i=1

Φ(Ti,0)
Φ(Tk,0)

· dlogz

(
Φ(Ti,0)
Φ(Tk,0)

)
= ∂z

(
Φ(f0)
Φ(Tk,0)

)
. (6.1)

Here onwards we use dlog to denote dlogz, unless stated otherwise. Note that,
Equation (6.1) holds over R1(x). For all i ∈ [k − 1], define Ti,1 ∈ F(x, z) such that

Ti,1 =

(
Φ(Ti,0)
Φ(Tk,0)

)
· dlog

(
Φ(Ti,0)
Φ(Tk,0)

)
over R1(x).

Further, f1 B
∑

i∈[k−1] Ti,1 over R1(x). Due the the safe non-zero division, the expressions
are well-defined.

Size Blow-up. To prove that f1 is in Gen(k−1, ·), we have to understand the linearising
effect of dlog on (Φ(Ti,0) / Tk,0) (refer discussion after Definition 2.9). Taking the linearisa-
tion of the product into account, observe that it suffices to study its effect on Σ∧. From the
properties ofΦ, we know that such a Σ∧ is of the formA− z ·B, whereA ∈ F\{0} and B is
a univariate polynomial in R1[x]. Using the power series identity (such as Equation (2.2))
we have the following in R1(x):

dlog(A − z · B) = −∂z(z · B)
A(1 − z · B /A)

=
−∂z(z · B)

A
·
d1−1∑
j=0

(
z · B
A

)j
=: C1 ·

d1−1∑
j=0

(C2)j (6.2)

Whitebox Identity Testing of Depth-4 Circuits 76

Observe that C1 and (C2)j have trivial ∧Σ∧ circuits, of size O(s0) and O(j · s0) respectively.
Using the multiplicative closure of Σ∧Σ∧ circuit (Lemma 1.35), we obtain the final Σ∧Σ∧
circuit computing dlog(A − z · B), of size s1 = O(d3 · s) using the fact that d1 = d. Clearly,
the syntactic degree blows up to O(d2).

Non-zeroness Preservation. We now prove that a single step of DiDI reduces the
identity testing problem to Gen(k − 1, ·). Note that f1 ≠ 0 implies valz(f1) < d =: d1. By
assumption, Φ(Tk,0) is invertible over R1(x). If f1 = 0 over R1(x), it implies –

1. Either, Φ(f0)/Φ(Tk,0) is z-free. Then Φ(f0)/Φ(Tk,0) ∈ F(x), which further implies it
is in F, because of the mapΦ (z-free implies x-free, by substituting z = 0). Also, note
that f0, Tk,0 ≠ 0 implies Φ(f0)/Φ(Tk,0) is a nonzero element in F. Thus, it suffices to
test non-zeroness of Φ(f0)(x, z = 0).

2. Or, ∂z(Φ(f0)/Φ(Tk,0)) = zd1 · p where p ∈ F(z, x) s.t. valz(p) ⩾ 0. Using Proposi-
tion 2.13 we get thatp ∈ F(x)[[z]]. Hence,Φ(f0)/Φ(Tk,0) = zd1+1 ·qwhereq ∈ F(x)[[z]],
i.e.

Φ(f0)
Φ(Tk,0)

∈ ⟨zd1+1⟩F(x)[[z]] =⇒ valz(Φ(f0)) ⩾ d + 1,

a contradiction.

Conversely, it is obvious that f0 = 0 implies f1 = 0. Thus, we have proved the following

Φ(f0) ≠ 0 over F[x] ⇐⇒ f1 ≠ 0 over R1(x), or Φ(f0)(x, z = 0) ≠ 0 ∈ F .

□

In Lemma 6.8 formally describes the effect of single Division and Derivation on the
model. It further establishes the non-zeroness preserving property of DiDI, which is
essential for reducing the identity testing problem on reduced fan-in. In the following
lemma we show that it continues to hold with subsequent application of division and
derivation.

Lemma 6.9 (Inductive Reduction). For a positive integer j < k, let fj ∈ Gen(k − j, sj) of
syntactic degree Dj, over Rj B F[z]⟨zdj⟩, where dj ⩽ d.

• (Valuation) Suppose fj =
∑

i Ti,j. For all i ∈ [k − j] assume that Ti,j ≠ 0, and vi,j B
valz(Ti,j) ⩾ 0. Without loss of generality assume valz(Tk−j,j) is the minimal valuation.

Whitebox Identity Testing of Depth-4 Circuits 77

• (Invertibility) Further, assume that Ui,j(x, z = 0) and Vi,j(x, z = 0) ∈ F\{0}.

Then, fj+1 B ∂z(fj/Tk−j,j) ∈ Gen(k − j − 1, sj+1) of syntactic degree Dj+1 = O(d ·Dj) over
Rj+1 B F[z]/⟨zdj+1⟩, dj+1 ⩽ dj ⩽ d, and sj+1 = s7

j
· dO(j). The valuation and invertibility

properties above continue to hold with respect to fj+1 =
∑

i Ti,j+1. Moreover,

fj ≠ 0 over R(x) ⇐⇒ fj+1 ≠ 0 over Rj+1(x), or , 0 ≠

(
fj

Tk−j,j

) ����
z=0

∈ F(x) .

Proof. We proceed as earlier by applying DiDI, without the map. We effectively reduce
from top fan-in (k − j) to (k − j − 1) using division and derivation. For all i ∈ [k − j], let
vi,j B valz(Ti,j). Note that, since valz(Ui,j) = valz(Vi,j) = 0, without loss of generality we
assume that

min
i
vi,j = min

i
valz

(
Pi,j

Qi,j

)
= vk−j,j.

Further, for all i ∈ [k − j], 0 ⩽ vi,j < dj, because vi,j = dj would imply that Ti,j = 0 over
Rj(x). We divide by Tk−j,j which has the minimum valuation and then derive as before:

∑
i∈[k−j]

Ti,j = fj ⇐⇒
∑

i∈[k−j−1]

Ti,j

Tk−j,j
+ 1 =

fj

Tk−j,j

=⇒
∑

i∈[k−j−1]
∂z

(
Ti,j

Tk−j,j

)
= ∂z

(
fj

Tk−j,j

)
⇐⇒

k−j−1∑
i=1

Ti,j

Tk−j,j
· dlog

(
Ti,j

Tk−j,j

)
= ∂z

(
fj

Tk−j,j

)
(6.3)

Define dj+1 := dj − vk−j,j − 1. For all i ∈ [k − 1], define Ti,j+1 ∈ F(x, z) such that

Ti,j+1 =

(
Ti,j

Tk−j,j

)
· dlog

(
Ti,j

Tk−j,j

)
over Rj+1(x).

Definability. Division by minimum valuation implies that val(fj) ⩾ vk−j,j, and thus
Ti,j+1 and fj+1 are all well-defined over Rj+1(x). When an identity holds over mod zdj ,
then it must hold over mod zdj+1 as well, since dj+1 ⩽ dj. Therefore, Equation (6.3) holds
over Rj+1(x) and

k−j−1∑
i=1

Ti,j+1 = fj+1 over Rj+1(x).

Valuation. Since we divide by the min val, by definition it implies valz(Ti,j+1) ⩾ 0.
Further, we claim that min val computation in DiDI is easy. Recall from the definition of

Whitebox Identity Testing of Depth-4 Circuits 78

valuation
min
i

valz
(
Pi,j

Qi,j

)
= min

i
(valz(Pi,j) − valz(Pi,j)).

Therefore, for min val we compute valz(Pi,j) and valz(Qi,j) for all i ∈ [k − j]. Using
Lemma 1.36 we known coefze(Pi,j) and coefze(Qi,j) are in Σ∧Σ∧ over F[x]. We keep track
of degree of z and thus interpolate to find the minimum e < dj such that the computed
coefficients are non-zero, giving the respective valuations.

Invertibility. To show that fj+1 ∈ Gen(k − j − 1, ·), it remains to show that ΠΣ∧ circuit
in Ti,j+1 are invertible. Note that this was implicit in Lemma 6.8. Borrowing the notations
from Definition 2.10, we simplify Ti,j+1 as follows:

Ti,j

Tk−j,j
=
Ui,j · Vk−j,j
Vi,j ·Uk−j,j

·
Pi,j ·Qk−j,j
Qi,j · Pk−j,j

. (6.4)

Define Ui,j+1 B Ui,j · Vk−j,j and Vi,j+1 B Vi,j ·Uk−j,j. Then clearly

Ui,j+1(x, z = 0),Vi,j+1(x, z = 0) ∈ F\{0}.

The P’s and the Q’s will be analysed with the action of dlog on Equation (6.4) in the
upcoming discussion on the size blow up. We will essentially bring together Σ∧Σ∧/Σ∧Σ∧
to define the final Pi,j+1 and Qi,j+1.

Size Bound. The size analysis is different from Lemma 6.8 for two reasons. First, we
don’t use the DiDI homomorphism in the inductive reduction, and second, the analysis
of bloated model demands more care. We begin the analysis by considering the overall
expression.

Ti,j+1 =
Ti,j

Tk−j,j
· dlog

(
Ti,j

Tk−j,j

)
=
Ui,j+1

Vi,j+1 (1)
·
Pi,j ·Qk−j,j
Qi,j · Pk−j,j

(2)

· dlog
(
Ti,j

Tk−j,j

)
3

(4)

(6.5)

=
Ui,j+1

Vi,j+1
·
Pi,j+1

Qi,j+1

Whitebox Identity Testing of Depth-4 Circuits 79

It is easy to note that in the equation above (1) is computable by ΠΣ∧/ΠΣ∧ with
constant blow up in size. Similarly, (2) is computable by

Π[2](Σ∧Σ∧)
Π[2](Σ∧Σ∧)

⊆ Σ∧Σ∧
Σ∧Σ∧

of size (Dj · s2
j
), using the properties. And finally, because of linearisation, dlog(·) is

computable by:

∑
dlog(Σ∧) ±

∑[4]
dlog(Σ∧Σ∧)

Using analysis similar to Equation (6.2) obtain a single Σ∧Σ∧ circuit of sizeO(D2
j
·dj · sj) ⩽

O(D3
j
· sj) for the first summand. Since Σ∧Σ∧ is closed under derivation (Lemma 1.37),

dlog(Σ∧Σ∧) is computable by Σ∧Σ∧/Σ∧Σ∧ circuit of size O(D2
j
· sj) and syntactic degree

O(Dj). Re-indexing the sum, and using additive closure, we obtain a single Σ∧Σ∧/Σ∧Σ∧
circuit of size O(D1

j
2 · s4

j
). Lastly adding it to Σ∧Σ∧ gives the final Σ∧Σ∧/Σ∧Σ∧ for (3) in

Equation (6.5) of size O(D16
j
· d · s5

j
).

Adding (2) and (3), once again by additive closure, gives Σ∧Σ∧/Σ∧Σ∧ for (4) of size
sj+1 B O(DO(1)

j
· d · s7

j
), and syntactic degree Dj+1 B O(d ·Dj). □

We are now ready to bring the pieces together for the PIT algorithm and prove our
theorem of this chapter.

Theorem 6.1 (Restated). There is a deterministic, whitebox PIT algorithm for Σ[k]ΠΣ ∧ (s)
over F[x] running in time sO(k 7k).

Proof. We initiate by defining f0 B f as before, such that Ti,0 B Ti where Ti ∈ ΠΣ∧
and f0 =

∑
i Ti,0. Apply non-zeroness preserving DiDI map from Definition 6.7. We

proceed with recursively reducing the identity testing from top fan-in k to k − 1 using
Lemma 6.8. Note: k = 1 is trivial. Followed by repeatedly using Lemma 6.9, k − 1 times,
gives fk−1 = T1,k−1 ∈ Gen(1, sk−1) where

sk−1 = O(dO(k−1) · s7
k−2) ⩽ sO(k·7k).

The degree of z in the numerator and denominator can be bounded by

Dk−1 = O(d ·Dk−1) = dO(k).

Whitebox Identity Testing of Depth-4 Circuits 80

As remarked earlier, even after reducing the identity testing to top fan-in 1, we cannot
directly perform identity testing on constituent circuits of Gen(1, ·) because of rational
ring Rk−1(x). However, note that val(T1,k−1) ⩾ 0, then using Proposition 2.13 we know
that T1,k−1 ∈ F(x)[[z]]. Therefore, it suffices to do identity testing on the first term of the
power-series: T1,k−1(x, z = 0), over F(x).

The invertibility of Lemma 6.9 guarantees thatΠΣ∧ part of Gen(1, sk−1), when evaluated
at z = 0, computing T1,k−1(x, z = 0), is a non-zero field element. Therefore, it suffices to
test identity of Σ∧Σ∧/Σ∧Σ∧, which perhaps could be undefined. Given that we keep
track of degree of z in numerator and denominator, we extract the appropriate power of
z from each to make Σ∧Σ∧/Σ∧Σ∧ well-defined. Using Lemma 1.36, find the minimum
ẽ < dk−1, such that coefze(P1,k−1) and coefze(Q1,k−1) is non-zero (Recall the notations from
Definition 2.10). Moreover, the coefficients are computable by Σ∧Σ∧ of size sO(k·7k) over
F[x]. Cancelling the power of z from the numerator and the denominator will leave a
well-defined expression for identity testing of the form ze · (Σ∧Σ∧/Σ∧Σ∧), where e < ẽ.
Therefore, it suffices to test ze · (Σ∧Σ∧) over F[x]. Use poly-time whitebox PIT algorithm
from Lemma 6.6 to test Σ∧Σ∧, and the trivial PIT algorithm from Lemma 6.3 to test ze

using the degree bound.

The non-zeroness preserving reduction in Lemma 6.9 shows that:

f ≠ 0, over F[x] ⇐⇒ fk−1 ≠ 0, over Rk−1(x),

or ∃ 0 ⩽ i ⩽ j − 1 such that
(
fi

Tk−i,i

)
x,z=0

≠ 0, over F(x)

Our algorithm constructively computes fk−1 iteratively, together with it’s constituent
terms. In the preceding paragraph we have described our approach of testing fk−1.
However, the the z = 0 evaluation above could short-circuit the algorithm much before it
reaches the final j = k − 1 in the top fan-in reduction. At a certain step 1 ⩽ j ⩽ k − 1, we
know that:

fj

Tk−j,j
∈

(
Σ∧Σ∧
Σ∧Σ∧

)
.

However, the z = 0 evaluation of it may not be well-defined. Once again, as before, we
interpolate using the degree bound of z to make the identity testing work on Σ∧Σ∧ of size
s
O(k−j)
j

⩽ (sd)O(j(k−j)7j) using Lemma 6.6. To bound the final time complexity, we need to
consider the jwhich maximizes the exponent. Since maxj∈[k−1] j ·(k−j)·7j = (k−1)·7k−1 by
differentiating and computing maxima, the final complexity of whitebox identity testing
is sO(k·7k). □

Whitebox Identity Testing of Depth-4 Circuits 81

Remark 6.10. 1. Bit Complexity. It is routine to show that the bit-complexity is bounded.
The blowup due to dlog is bounded polynomially. While using Lemma 1.35 (using
Lemma 1.34), we may need to go to a field extension of at most sO(k). Also,
Theorem 6.4 and Lemma 6.6 computations blowup bit-complexity polynomially.

2. The above method does not give whitebox PIT (in poly-time) for Σ[[k]]ΠΣΠ[][δ], as
we donot know poly-time whitebox PIT for Σ∧ΣΠ[δ]. However, the above methods
do show that whitebox PIT for Σ[[k]]ΠΣΠ[][δ] polynomially reduces to whitebox PIT
for Σ∧ΣΠ[δ].

3. The above proof works when the characteristic is greater than d. This is because the
non-zeroness remains preserved after derivation with respect to z.

Chapter 7

Identity Testing of Depth-4 Circuits

7.1 Introduction to Border PIT

Very few hitting sets are known for border classes, meanwhile most of the hitting sets
for classical complexity classes do not directly work for their respective border classes.
Mulmuley [Mul17] asked the question of constructing an efficient hitting set for VP. Forbes
and Shpilka [FS18] gave a PSPACE algorithm over the field C. In [GSS19], the authors
extended this result to any field. Very few better hitting set constructions are known for
the restricted border classes, for example poly-time hitting set for ΠΣ = ΠΣ [BT88, KS01],
quasi-poly hitting set for Σ∧Σ ⊆ ARO ⊆ ROABP [FS13b, AGKS15, GKS17] and poly-time
hitting set for the border of a restricted sum of log-variate ROABPs [BS21].

We formally state the best known hitting set for ARO, which is also robust because of
complete de-bordering of model Lemma 2.4.

Theorem 7.1 (Hitting Set for ARO). For a class of n variate and degree d polynomials computable
by size s ARO, there exists an explicit hitting set of size sO(log logs).

The following lemma is useful in combining the hitting sets. When the hitting sets
of classes 𝒞1 and 𝒞2 is known, then the lemma combines the two to give a hitting set for
𝒞1 · 𝒞2.

Lemma 7.2 (Product of Hitting Sets). Let ℋ1,ℋ2 ∈ Fn of size s1 and s2 respectively be the
hitting set of a class of n variate and degree d polynomials C1 and C2 respectively. Then there is
an explicit hitting set ℋ of size s1 · s2 ·O(d) for the class of polynomials in 𝒞1 · 𝒞2.

82

Identity Testing Border Circuits 83

7.2 Identity Testing Σ∧ΣΠ[δ] Circuits

Forbes used rank based methods to give a quasipolynomial-time algorithm for blackbox
PIT of Σ∧ΣΠ[δ] circuits [For15]. Due to the algebraic nature of approximation, most
of the rank based results extend and continue to hold over border classes [Gro15b]. In
this section we will make observations to extend Forbes PIT algorithm to border PIT of
Σ∧ΣΠ[δ] circuits. We encourage interested readers to refer [For15] for details. We need
some definitions and properties to describe the rank approach to PIT.

Shifted Partial Derivative measure x⩽ℓ · ∂⩽m is a linear operator first introduced in
[Kay12, GKKS14] as:

x⩽ℓ · ∂⩽m(g) B (xc · ∂xb (g))degxc⩽ℓ,degxb⩽m .

It was shown in [For15] that the rank of shifted partial derivatives of a polynomial
computed by Σ∧ΣΠ[δ] is small. We state the result formally in the next lemma. Consider
the fractional field ℛ := F(ε).

Lemma 7.3 (Measure upper bound). Let g(ε, x) ∈ ℛ[x1, . . . , xn] be computable by Σ∧ΣΠ[δ]

circuit of size s. Then

rank span x⩽ℓ · ∂⩽m(g) ⩽ s ·m ·
(
n + (δ − 1)m + ℓ
(δ − 1)m + ℓ

)
.

Under any monomial ordering, the trailing monomial of g denoted by TM(g) is the smallest
monomial in the support set supp(g) := {xa : coefxa(g) ≠ 0}. It was observed in [For15]
that, the rank of shifted partials can be lower bounded using the trailing monomial (ref
[CLO15, Section 2]).

Proposition 7.4 (Measure the trailing monomial). Consider g ∈ ℛ[x]. For any ℓ,m ⩾ 0,

rank span x⩽ℓ · ∂⩽m(g) ⩾ rank span x⩽ℓ · ∂⩽m (TM(g)) .

For fields of characteristic zero, a lower bound on a monomial was obtained.

Lemma 7.5 (Monomial lower bound). Consider a monomial xa ∈ ℛ[x1, . . . , xn]. Then,

rank span
(
x⩽ℓ · ∂⩽m (xa)

)
⩾

(
η

m

) (
η −m + ℓ

ℓ

)

Identity Testing Border Circuits 84

where η := |supp (xa)|.

The results above were combined to show that the trailing monomial of polynomials
computed by Σ∧ΣΠ[δ] circuits have logarithmically small support size. Using the same
idea we show that if such a polynomial approximates f (ref Definition 2.1), then the support
of TM(f) is also small. We formalize this in the next lemma.

Lemma 7.6 (Trailing monomial support). Let g(ε, x) ∈ ℛ[x1, . . . , xn] be computable by a
Σ∧ΣΠ[δ] circuit of size s such that g = f + ε · Q where f ∈ F[x] and Q ∈ F[ε, x]. Let
η B | supp(TM(f))|. Then η = O(δ log s).

Proof. Let xa := TM(f) and S := {i |ai ≠ 0}. Define a substitution map ρ such that xi → yi

for i ∈ S and xi → 0 for i ∉ S. It is easy to observe that TM(ρ(f)) = ρ(TM(f)) = ya. Using
Lemma 7.3 we know:

rankℛ y⩽ℓ∂⩽m(ρ(g)) ⩽ s ·m ·
(
η + (δ − 1)m + ℓ
(δ − 1)m + ℓ

)
=: R .

To obtain the upper bound for ρ(f) we use the following claim.

Claim 7.7. rankF y
⩽ℓ∂⩽m(ρ(f)) ⩽ R.

Proof. Define the coefficient matrix N(ρ(g)) with respect to y⩽ℓ∂⩽m(ρ(g)) as follows: the
rows are indexed by the operators y=ℓi ∂y=mi , while the columns are indexed by the terms
present in ρ(g); and the entries are the respective operator-action on the respective term in
ρ(g). Note that rankF(ε)N(ρ(g)) ⩽ R. Similarly defineN(ρ(f))with respect toy⩽ℓ∂⩽m(ρ(f)),
then it suffices to show that rankFN(ρ(f)) ⩽ R.

For any r > R, let 𝒩(ρ(g)) be a r × r sub-matrix of N(ρ(g)). The rank bound ensures:
det𝒩(ρ(g)) = 0. This will remain true under the limit ε = 0; thus, det(𝒩 (ρ(f))) = 0. Since
r > Rwas arbitrary and linear dependence is preserved, we deduce that rankFN(ρ(f)) ⩽
R . □

For lower bound, recall ya = TM(ρ(f)). Then, by Proposition 7.4 and Lemma 7.5, we
get:

rankF y
⩽ℓ∂⩽m(ρ(f)) ⩾

(
η

m

) (
η −m + ℓ

ℓ

)
. (7.1)

Identity Testing Border Circuits 85

Comparing Claim 7.7 and Equation (7.1) we get:

s ⩾
1
m

·
(
η

m

)
·
(
η −m + ℓ

ℓ

)
/

(
η + (δ − 1)m + ℓ
(δ − 1)m + ℓ

)
.

For ℓ := (δ−1)(η+(δ−1)m) andm := ⌊n/e3δ⌋, [For15, Lem.A.6] showed η ⩽ O(δ log s). □

The existence of a small support monomial in a polynomial which is being approxi-
mated, is a structural result which will help in constructing a hitting set for this larger
class. The idea is to use a map that reduces the number of variables to the size of the
support of the trailing monomial, and then invoke Lemma 6.3.

Theorem 7.8 (Hitting set for Σ∧ΣΠ[δ]). For the class of n-variate, degree d polynomials
approximated by Σ∧ΣΠ[δ] circuits of size s, there is an explicit hitting set ℋ ⊆ Fn of size
sO(δ logs).

Proof. Let g(ε, x) ∈ ℛ[x1, . . . , xn] be computable by a Σ∧ΣΠ[δ] circuit of size s such that
g =: f + ε ·Q, where f ∈ F[x] and Q ∈ F[ε, x]. Then Lemma 7.6 shows that there exists a
monomial xa of f such that η := | supp(xa)| = O(δ log s).

Let S ∈
([n]
η

)
. Define a substitution map ρS such that xi → yi for i ∈ S and xi → 0

for i ∉ S. Note that, under this substitution non-zeroness of f is preserved for some S;
because monomials of support S ⊇ supp(xa) will survive for instance. Essentially ρS(f) is
an η-variate degree-d polynomial, for which Lemma 6.3 gives a trivial hitting set of size
O(dη). Therefore, with respect to S we get a hitting set ℋS of size O(dη). To finish, we do
this for all such S, to obtain the final hitting set ℋ of size:(

n

η

)
·O (dη) ⩽ O((nd)η) .

□

We obtained this result without de-bordering the circuit. In the upcoming sections we
will another example of such PIT result without de-bordering.

7.3 De-randomizing PIT using DiDIL

In this section we will see an amalgamation of DiDIL (Section 2.3) and DiDI (Section 6.2)
to obtain efficient hitting sets for Σ[k]ΠΣΠ[δ] and Σ[k]ΠΣ∧ circuits.

Identity Testing Border Circuits 86

For brevity, we denote these two types of depth-4 circuits by Σ[k]ΠΣΥwhere Υ denotes
a layer of operator fluid gates. After the analysis, Υ gates will be replaces by ∧ or Πδ gates
for final hitting sets. To invoke DiDIL, for PIT on Σ[k]ΠΣ∧ we can once again use Gen(k)
from Definition 2.10. However, for Σ[k]ΠΣΠ[δ] we need a slightly tweaked bloated model.
We redefine Gen(k) using the operator fluid Υ gates for this section .

Definition 7.9 (DiDIL model for PIT). Let R(x) be the ring of rational functions. Denote
Gen(k, s) as a class of circuits 𝒞 over R which computes polynomial f(x) ∈ R(x1, . . . , xn) of the
form: f =

∑k
i=1 Ti such that

Ti =

(
Ui

Vi

)
·
(
Pi

Qi

)
,

where Ui,Vi ∈ ΠΣΥ and Pi,Qi ∈ Σ∧ΣΥ are polynomials in R[x1, . . . , xn].

The size of the circuit is defined naturally as size(𝒞) B
∑k

i=1 size(Ti) ⩽ s where

size(Ti) = size(Ui) + size(Vi) + size(Pi) + size(Qi).

The syntactic degree of the circuit is defined as the maximum syntactic degree of the numerator
and denominator.

The DiDIL homomorphism from Definition 2.14 suffices for Σ[k]ΠΣ∧, however for
Σ[k]ΠΣΠ[δ] we obtain the shift a ∈ Fn for the map using the hitting set of product of sparse
polynomials from Lemma 6.5. We start with First Reduction similar to Lemma 2.15 and
Lemma 6.8.

Lemma 7.10 (First Reduction). Let Φ(f0) ∈ Σ[k]ΠΣΥ(s0) over R0 B F[z]/⟨zd⟩, where d is the
syntactic degree. Then

f1 B ∂z

(
Φ(f0)
tk,0

)
∈ Gen(k − 1, s1)

over R1 B F[z]/⟨zd1⟩, where tk,0 ∈ R0(x), d1 ⩽ d, and s1 = O(d3 · s) when Υ = ∧, while
s1 = O(3δ · s) when Υ = Π[δ] . Moreover,

Φ(f0) ≠ 0 over F[x] ⇐⇒ f1 ≠ 0 over R1(x), or Φ(f0)(x, z = 0) ≠ 0 ∈ F .

Proof. We break the proof in two parts based on the choice of operator fluid gates Υ =

{∧,Π[δ]}.

When Υ = ∧. The proof of the first part is same as that of Lemma 2.15. Further,
the proof of second part is similar to that of Lemma 6.8, where Φ(Tk,0) is appropriately
replaced by tk,0.

Identity Testing Border Circuits 87

When Υ = Π[δ]. The proof of both the parts remains the same as earlier. However, the
size analysis changes slightly. Refer the proof of Lemma 2.15 for notations. Observe that,
size(A − z · B) ∈ Σ∧[δ] is no longer poly(s0) because of the shift. Let xa be a monomial
of degree δ, such that

∑
i ai ⩽ δ. Then the number of monomials produced by Φ can be

upper bounded by the AM-GM inequality:∏
i

(ai + 1) ⩽
(∑

i ai + n
n

)n
⩽ (1 + δ/n)n

As δ/n→ 0, we have (1 + δ/n)n → eδ ⩽ 3δ. Hence, appropriately replacing the bound in
the proof of Lemma 2.15 gives required size-blow up. □

Next we prove that the we can continue to reduce top fan-in with repeated application
of Division and Derivation, while preserving the non-zeroness.

Lemma 7.11 (Inductive Reduction). For a positive integer j < k, let fj ∈ Gen(k − j, sj) of
syntactic degree Dj, over Rj B F[z]⟨zdj⟩, where dj ⩽ d.

• (Valuation) Suppose gj =
∑

i Ti,j approximates fj. For all i ∈ [k − j] assume that
vi,j B valz(Ti,j) ⩾ 0.

• (Invertibility) Further, assume that Ui,j(x, z = 0, ε) and Vi,j(x, z = 0, ε) ∈ F(ε)\{0}.

Then, fj+1 B ∂z(fj/tk−j,j) ∈ Gen(k − j − 1, sj+1) over Rj+1 B F[z]/⟨zdj+1⟩, where tk−j,j ∈
Rj(x), dj+1 ⩽ dj ⩽ d, and sj+1 = s7

j
· dO(j). Moreover, the valuation and invertibility properties

above continue to hold with respect to gj+1 approximating fj+1 =
∑

i Ti,j+1. Moreover,

fj ≠ 0 over R(x) ⇐⇒ fj+1 ≠ 0 over Rj+1(x), or , 0 ≠

(
fj

tk−j,j

) ����
z=0

∈ F(x) .

Proof Sketch. In either case of Υ = {∧,Π[δ]}, the proof of first part comes from Lemma 2.16
and the second part from Lemma 6.9. □

In de-bordering we need Induction to finally reconstruct the circuit exactly computing
the polynomial. Moreover, for PIT, DiDI reduces the problem to testing the bloated model
of top fan-in one. When we combine the two ideas to use solve PIT for border classes,
we need a way fuse the hitting sets obtained in each step due to the z = 0 evaluation test.
The following claim will help us achieve it. Borrowing the notations from the proof of
Lemma 2.16, we state the following claim.

Identity Testing Border Circuits 88

Claim 7.12. For b ∈ Fn, if fj+1(x = b, z) ≠ 0, over Rj+1, and valz(T̃k−j,j)(x = b, z)) = vk−j,j.
Then fj(x = b) ≠ 0, over Rj.

Proof. Suppose the hypothesis holds, but fj(x = b) = 0, over Rj. Then,

valz

((
fj

T̃k−j,j

)
x=b

)
⩾ dj − vk−j,j =⇒ valz

(
∂z

((
fj

T̃k−j,j

)
x=b

))
⩾ dj+1..

The last condition implies that ∂z(fj/T̃k−j,j)|x=b = 0, over Rj+1(x). Fixing ε = 0 we
deduce fj+1|x=b = 0. This is a contradiction! □

We are no ready to bring everything together to prove the main theorem of this chapter.

Theorem 7.13 (Hitting set for bounded border depth-4). There exists an explicit sO(k·7k·log logs)-
time hitting set for Σ[k]ΠΣ∧(s). Further, there exists an explicit sO(δ2k7k logs)-time hitting set for
Σ[k]ΠΣΠ[δ](s).

Proof Sketch. We follow on the lines of the proof of Theorem 6.1, while discussing the
required tweaking for it to work for border PIT. Invoke Lemma 7.10 and Lemma 7.11
repeatedly to obtain that:

fk−1 ∈ Gen(1, sk−1) ⊆
ΠΣΥ

ΠΣΥ
· Σ ∧ ΣΥ
Σ ∧ ΣΥ

,

using Lemma 2.3. As seen before, we also need to understand the evaluation at z = 0. By
a similar argument, it will follow that(

fj

tk−j,j

)
z=0

∈ Σ ∧ ΣΥ .

When Υ = ∧. We know from Lemma 2.6 that Σ∧Σ∧ ⊆ ARO and thus Σ∧Σ∧ has a
hitting set of size sO(k·7k·log logs). We also have a hitting set for ΠΣ∧ from Lemma 6.5.
Combining them using Lemma 7.2, we have the final hitting set of size sO(k7k log logs). In
the jth step, the hitting set of ARO suffices to test the z = 0 evaluation part Theorem 7.1.
For all j ∈ [k − 2] let ℋj be that required hitting set of size sO(k7k log logs). We know that
Hk−1 hits both fk−1 and t2,k−2, because they are computable by same bloated model of
same size. We lift these hitting sets using Claim 7.12. Define, the final hitting set in x

variables: ℋ :=
⋃

j∈[k−1] ℋj. We remark that we do not need extra hitting set for each

Identity Testing Border Circuits 89

tk−j,j, because it is already covered by ℋk−1. We have also kept track of deg(z) which is
bounded by sO(k). We use a trivial hitting set for z which does not change the size. Thus,
we have successfully constructed a sO(k7k log logs)-time hitting set for Σ[k]ΠΣ∧.

When Υ = Π[δ]. We do not know the size complexity upper bound of Σ∧ΣΠ[δ].
However, as we still have a hitting set for Σ∧ΣΠ[δ], from Theorem 7.8. Following the
same line of argument as before we obtain our desired hitting set of size sO(δ2k7k logs) for
Σ[k]ΠΣ[δ]Π. □

Chapter 8

Conclusion

In this thesis, we have attempted to advance our understanding of polynomials and
algebraic circuits. The thesis is divided into three parts: Explicitness, Circuit Factoring,
and Identity Testing. In each part, we address a different problem in Algebraic Complexity
Theory. The order of presenting our results is intentionally chosen to highlight that our
de-bordering results help in Circuit Factoring and Identity Testing. In the future, we are
hopeful for more such interesting applications and perhaps direct and general connections
between de-bordering and other naturally compelling problems in Algebraic Complexity
Theory. We now present some open directions for improving our results presented in the
thesis.

8.1 Explicitness

In Chapter 2, we showed that the polynomials in Σ[k]ΠΣ∧ are explicit in a strong sense.
To prove our result, we relied on our novel technique DiDIL, which in turn uses the known
de-bordering results of Σ∧Σ∧ and ARO. Naturally, the next step is to ask if Σ[k]ΠΣΠ[δ] is
explicit. To answer this using DiDIL, we need to first de-border Σ∧ΣΠδ, which to the best
of our knowledge is currently unknown. The multiplicative blow-up in the size in each
step of DiDIL gives exp(k) in the exponent, which makes the result relevant only until the
top fan-in is at most logarithmic in the size of the circuit. Therefore, another direction
to look into is devising new and more robust de-bordering techniques, which give better
upper bound results.

90

Conclusion 91

The non-constructive nature of approximative circuits was discussed in Chapter 3,
where we proposed a more realistic definition called presentability. We also proved that
over finite fields, the presentable border of VNP is explicit. Such a general de-bordering
result was not known until our work. We leave it as an open problem to prove similar de-
bordering results for other fields. Another closely related problem is using presentability to
obtain constructive de-bordering results, as most known techniques are non-constructive.

8.2 Circuit Factoring

In the second section of this thesis we proved that VNP is closed under factorisation over
finite fields (Chapter 4) and the low-degree factors of small circuits are explicit (Chapter 5).
Both of our main results in Chapters 4 and 5 can be viewed as applications of the techniques
used to prove the results in the previous section. This still does not rule out the possibility:
Could the Permanent polynomial be a factor of a small circuit of exponential degree?

Currently, we do not know if the class VP is closed under factorisation over fields
of small characteristic [Bü00, Problem 2.1]. One reason for it is that we do not know a
neat coefficient-based criterion for VP like we do for VNP (see Proposition 1.5). We can
pose similar questions for all known factor closure results for restricted classes. Apart
from resolving Conjecture 1.12, a direction to explore is if there are deeper and direct
connections between de-bordering classes and its factors.

8.3 Identity Testing

Polynomial Identity Testing is one of the most widely studied problems in Algebraic
Complexity Theory. In Chapter 6, we gave the first polynomial time whitebox PIT
algorithm for Σ[k]ΠΣ∧, and in Chapter 7 we designed efficient robust hitting sets for
Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]. The tools used for the PIT results were heavily inspired from
the de-bordering technique DiDIL. Although we were unable to de-border Σ[k]ΠΣΠ[δ], our
technique reduces the problem to a model for which hitting sets are known. In particular,
to completely de-randomise PIT for Σ[k]ΠΣΠ[δ] we first need to obtain an explicit hitting
set for Σ∧ΣΠδ.

The exp(k) in the exponent of the time complexity of our algorithm is inevitable
because of the multiplicative blow-up in our iterative technique. Currently, the algorithm

Conclusion 92

is efficient as long as the top fan-in is logarithmic in the size. An improvement in the
exponent will derandomize PIT for a bigger class of polynomials. Another interesting
class for PIT problem is Σ[k]ΠΣM2 circuits, where ΣM2 denotes bivariate polynomials. Our
current techniques do not give a (robust) hitting set this model.

Bibliography

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via
Chinese remaindering. J. ACM, 50(4):429–443, 2003.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity. Cambridge Uni-
versity Press, Cambridge, 2009.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-
Sets for ROABP and Sum of Set-Multilinear Circuits. SIAM J. Comput.,
44(3):669–697, 2015.

[AGL+18] Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Mendes de Oliveira,
and Avi Wigderson. Operator scaling via geodesically convex optimization,
invariant theory and polynomial identity testing. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 172–
181, 2018.

[Agr05] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators.
In FSTTCS 2005: Foundations of Software Technology and Theoretical Computer
Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, volume 3821 of Lecture Notes in Computer Science, pages 92–105.
Springer, 2005.

[AGS19] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping
variables in algebraic circuits. Proc. Natl. Acad. Sci. USA, 116(17):8107–8118,
2019.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals
of mathematics, pages 781–793, 2004.

93

http://dx.doi.org/10.1145/792538.792540
http://dx.doi.org/10.1145/792538.792540
http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1145/3188745.3188942
http://dx.doi.org/10.1145/3188745.3188942
http://dx.doi.org/10.1007/11590156_6
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.4007/annals.2004.160.781

Bibliography 94

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof Verification and the Hardness of Approximation Problems.
J. ACM, 45(3):501–555, 1998.

[And20] Robert Andrews. Algebraic Hardness Versus Randomness in Low Charac-
teristic. In 35th Computational Complexity Conference, CCC 2020, July 28-31,
2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages
37:1–37:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[And22] Robert Andrews. On Matrix Multiplication and Polynomial Identity Testing.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 356–365. IEEE,
2022.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New
Characterization of NP. J. ACM, 45(1):70–122, 1998.

[AS09] Manindra Agrawal and Ramprasad SaptharishiI. Classifying polynomials
and identity testing. Indian Academy of Sciences, 2009.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial
hitting-set for set-depth-∆ formulas. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA,USA, June 1-4, 2013, pages 321–330. ACM,
2013.

[ASSS16] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Sax-
ena. Jacobian Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k
Formulas and Depth-3 Transcendence Degree-k Circuits. SIAM J. Comput.,
45(4):1533–1562, 2016.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth
Four. In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 67–75. IEEE
Computer Society, 2008.

[AW16] Eric Allender and Fengming Wang. On the power of algebraic branching
programs of width two. Computational Complexity, 25(1):217–253, 2016.

[BC92] Michael Ben-Or and Richard Cleve. Computing Algebraic Formulas Using
a Constant Number of Registers. SIAM J. Comput., 21(1):54–58, 1992.

http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.4230/LIPICS.CCC.2020.37
http://dx.doi.org/10.4230/LIPICS.CCC.2020.37
http://dx.doi.org/10.1109/FOCS54457.2022.00041
http://dx.doi.org/10.1145/273865.273901
http://dx.doi.org/10.1145/273865.273901
https://www.ias.ac.in/public/Resources/Other_Publications/Overview/Current_Trends/149-162.pdf
https://www.ias.ac.in/public/Resources/Other_Publications/Overview/Current_Trends/149-162.pdf
http://dx.doi.org/10.1145/2488608.2488649
http://dx.doi.org/10.1145/2488608.2488649
http://dx.doi.org/10.1137/130910725
http://dx.doi.org/10.1137/130910725
http://dx.doi.org/10.1109/FOCS.2008.32
http://dx.doi.org/10.1109/FOCS.2008.32
http://dx.doi.org/10.1007/s00037-015-0114-7
http://dx.doi.org/10.1007/s00037-015-0114-7
http://dx.doi.org/10.1137/0221006
http://dx.doi.org/10.1137/0221006

Bibliography 95

[BCRL79] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n2.7799)
complexity for n×n approximate matrix multiplication. Information Process-
ing Letters, 8(5):234–235, 1979.

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Al-
gebraic complexity theory, volume 315 of Grundlehren der mathematischen Wis-
senschaften. Springer, 1997.

[BFG+19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael
Walter, and Avi Wigderson. Towards a Theory of Non-Commutative Op-
timization: Geodesic 1st and 2nd Order Methods for Moment Maps and
Polytopes. In 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pages 845–861, 2019.

[BGdO+18] Peter Bürgisser, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter,
and Avi Wigderson. Alternating Minimization, Scaling Algorithms, and the
Null-Cone Problem from Invariant Theory. In 9th Innovations in Theoretical
Computer Science Conference, ITCS, pages 24:1–24:20, 2018.

[BHS08] Markus Bläser, Moritz Hardt, and David Steurer. Asymptotically Optimal
Hitting Sets Against Polynomials. In Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, vol-
ume 5125 of Lecture Notes in Computer Science, pages 345–356. Springer, 2008.

[BI13] Peter Bürgisser and Christian Ikenmeyer. Explicit lower bounds via ge-
ometric complexity theory. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 141–150. ACM, 2013.

[BIL+21] Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and
Frank-Olaf Schreyer. On the Orbit Closure Containment Problem and Slice
Rank of Tensors. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2565–2584, 2021.

[BIM+20] Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, and
Nitin Saurabh. Algebraic Branching Programs, Border Complexity, and
Tangent Spaces. In DROPS-IDN/v2/Document/10.4230/LIPIcs.CCC.2020.21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

http://dx.doi.org/10.1016/0020-0190(79)90113-3
http://dx.doi.org/10.1016/0020-0190(79)90113-3
http://dx.doi.org/https://doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/https://doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1109/FOCS.2019.00055
http://dx.doi.org/10.1109/FOCS.2019.00055
http://dx.doi.org/10.1109/FOCS.2019.00055
http://dx.doi.org/10.4230/LIPICS.ITCS.2018.24
http://dx.doi.org/10.4230/LIPICS.ITCS.2018.24
http://dx.doi.org/10.1007/978-3-540-70575-8_29
http://dx.doi.org/10.1007/978-3-540-70575-8_29
http://dx.doi.org/10.1145/2488608.2488627
http://dx.doi.org/10.1145/2488608.2488627
http://dx.doi.org/10.1137/1.9781611976465.152
http://dx.doi.org/10.1137/1.9781611976465.152
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.21
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.21

Bibliography 96

[Bin80] D. Bini. Relations between exact and approximate bilinear algorithms. Appli-
cations. Calcolo. A Quarterly on Numerical Analysis and Theory of Computation,
17(1):87–97, 1980.

[BIZ18] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On Algebraic
Branching Programs of Small Width. Journal of the ACM, 65(5):32:1–32:29,
August 2018.

[BLMW11] Peter Bürgisser, J. M. Landsberg, Laurent Manivel, and Jerzy Weyman. An
Overview of Mathematical Issues Arising in the Geometric Complexity
Theory Approach to VP ≠ VNP. SIAM J. Comput., 40(4):1179–1209, 2011.

[BMS13] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic indepen-
dence and blackbox identity testing. Inf. Comput., 222:2–19, 2013.

[BP20] Markus Bläser and Anurag Pandey. Polynomial Identity Testing for Low De-
gree Polynomials with Optimal Randomness. In Jaroslaw Byrka and Raghu
Meka, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference, volume 176 of LIPIcs, pages 8:1–8:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[BS21] Pranav Bisht and Nitin Saxena. Blackbox identity testing for sum of special
ROABPs and its border class. Comput. Complex., 30(1):8, 2021.

[BSV20a] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic
Factorization of Sparse Polynomials with Bounded Individual Degree. J.
ACM, 67(2):8:1–8:28, May 2020.

[BSV20b] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of
Depth-4 Multilinear Circuits. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020, pages 2144–2160. SIAM, 2020.

[BT88] Michael Ben-Or and Prasoon Tiwari. A Deterministic Algorithm for Sparse
Multivariate Polynominal Interpolation (Extended Abstract). In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, STOC, pages
301–309. ACM, 1988.

[Bür04] Peter Bürgisser. The Complexity of Factors of Multivariate Polynomials.
Found. Comput. Math., 4(4):369–396, 2004.

http://dx.doi.org/10.1007/BF02575865
http://dx.doi.org/10.1007/BF02575865
http://dx.doi.org/10.1145/3209663
http://dx.doi.org/10.1145/3209663
http://dx.doi.org/10.1137/090765328
http://dx.doi.org/10.1137/090765328
http://dx.doi.org/10.1137/090765328
http://dx.doi.org/10.1016/J.IC.2012.10.004
http://dx.doi.org/10.1016/J.IC.2012.10.004
http://dx.doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.8
http://dx.doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.8
http://dx.doi.org/10.1007/S00037-021-00209-Y
http://dx.doi.org/10.1007/S00037-021-00209-Y
http://dx.doi.org/10.1145/3365667
http://dx.doi.org/10.1145/3365667
http://dx.doi.org/10.1137/1.9781611975994.132
http://dx.doi.org/10.1137/1.9781611975994.132
http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.1007/S10208-002-0059-5

Bibliography 97

[Bü00] Peter Bürgisser. Completeness and reduction in algebraic complexity theory,
volume 7 of Algorithms and computation in mathematics. Springer-Verlag, 2000.

[Bü20] Peter Bürgisser. Correction to: The complexity of factors of multivariate
polynomials. Foundations of Computational Mathematics, 20(6):1667–1668,
2020.

[CCG12] Enrico Carlini, Maria Virginia Catalisano, and Anthony V. Geramita. The
solution to the Waring problem for monomials and the sum of coprime
monomials. Journal of Algebra, 370:5–14, 2012.

[CK00] Zhi-Zhong Chen and Ming-Yang Kao. Reducing Randomness via Irrational
Numbers. SIAM J. Comput., 29(4):1247–1256, 2000.

[CKR+20] Prerona Chatterjee, Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and
Anamay Tengse. On the Existence of Algebraically Natural Proofs. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages
870–880, 2020.

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs Ran-
domness for Bounded Depth Arithmetic Circuits. In 33rd Computational
Complexity Conference, CCC 2018, June 22-24,2018, San Diego, CA, USA, vol-
ume 102 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[CKS19a] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure of VP under
taking factors: a short and simple proof, 2019. Pre-print available at arXiv:
1903.02366.

[CKS19b] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure results for
polynomial factorization. Theory of Computing. An Open Access Journal, 15:Pa-
per No. 13, 34, 2019. Preliminary version in the 33rd Annual Computational
Complexity Conference (CCC 2018).

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic
Complexity and Beyond. Found. Trends Theor. Comput. Sci., 6(1-2):1–138, 2011.

[CL24] Prasad Chaugule and Nutan Limaye. On The Closures of Monotone Alge-
braic Classes and Variants of the Determinant. Algorithmica, 2024.

http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1007/s10208-020-09477-6
http://dx.doi.org/10.1007/s10208-020-09477-6
http://dx.doi.org/10.1016/j.jalgebra.2012.07.028
http://dx.doi.org/10.1016/j.jalgebra.2012.07.028
http://dx.doi.org/10.1016/j.jalgebra.2012.07.028
http://dx.doi.org/10.1137/S0097539798341600
http://dx.doi.org/10.1137/S0097539798341600
http://dx.doi.org/10.1109/FOCS46700.2020.00085
http://dx.doi.org/10.4230/LIPICS.CCC.2018.13
http://dx.doi.org/10.4230/LIPICS.CCC.2018.13
https://arxiv.org/abs/1903.02366
https://arxiv.org/abs/1903.02366
http://arxiv.org/abs/1903.02366
http://arxiv.org/abs/1903.02366
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.1561/0400000043
http://dx.doi.org/10.1561/0400000043
http://dx.doi.org/10.1007/s00453-024-01221-8
http://dx.doi.org/10.1007/s00453-024-01221-8

Bibliography 98

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms
- an introduction to computational algebraic geometry and commutative algebra.
Undergraduate texts in mathematics. Springer, 2015.

[CR88] Benny Chor and Ronald L. Rivest. A knapsack-type public key cryptosystem
based on arithmetic in finite fields. IEEE Trans. Inform. Theory, 34(5, part
1):901–909, 1988.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[DDS21] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity
Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits. In 36th Compu-
tational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario,
Canada (Virtual Conference), volume 200 of LIPIcs, pages 11:1–11:27. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[DDS22] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Demystifying the Border
of Depth-3 Algebraic Circuits. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 92–103, February 2022.

[DG24] Pranjal Dutta and Sumanta Gosh. SIGACT News Complexity Theory Col-
umn 121. SIGACT News, 55(2), jun 2024.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 1978.

[DOS14] Zeev Dvir, Rafael Oliveira, and Amir Shpilka. Testing Equivalence of Poly-
nomials under Shifts. In Automata, Languages, and Programming - 41st In-
ternational Colloquium,ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, PartI, volume 8572 of Lecture Notes in Computer Science, pages
417–428. Springer, 2014.

[DSS22] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the Roots:
Uniform Closure Results for Algebraic Classes Under Factoring. J. ACM,
69(3):18:1–18:39, 2022.

[DSY10] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness
tradeoffs for bounded depth arithmetic circuits. SIAM J. Comput., 39(4):1279–
1293, 2009/10.

http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1109/18.21214
http://dx.doi.org/10.1109/18.21214
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.4230/LIPICS.CCC.2021.11
http://dx.doi.org/10.4230/LIPICS.CCC.2021.11
http://dx.doi.org/10.1109/FOCS52979.2021.00018
http://dx.doi.org/10.1109/FOCS52979.2021.00018
http://dx.doi.org/10.1145/3674159.3674165
http://dx.doi.org/10.1145/3674159.3674165
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1145/3510359
http://dx.doi.org/10.1145/3510359
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850

Bibliography 99

[Dut22] Pranjal Dutta. A Tale of Hardness, De-randomization and De-bordering in Com-
plexity Theory. PhD thesis, Chennai Mathematical Institute, India, 2022.

[FGT21] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite Perfect
Matching is in Quasi-NC. SIAM J. Comput., 50(3), 2021.

[For14] Michael A. Forbes. Polynomial identity testing of read-once oblivious algebraic
branching programs. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 2014.

[For15] Michael A. Forbes. Deterministic Divisibility Testing via Shifted Partial
Derivatives. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 451–465, October 2015.

[For16] Michael Forbes. Some concrete questions on the border complexity of
polynomials. Presentation given at the Workshop on Algebraic Complexity
Theory WACT 2016 in Tel Aviv, 2016.

[FS13a] Michael A. Forbes and Amir Shpilka. Explicit Noether Normalization for
Simultaneous Conjugation via Polynomial Identity Testing. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th
International Workshop, APPROX, and 17th International Workshop, RANDOM,
pages 527–542, 2013.

[FS13b] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Test-
ing of Non-commutative and Read-Once Oblivious Algebraic Branching
Programs. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS, pages 243–252, 2013.

[FS15] Michael A. Forbes and Amir Shpilka. Complexity Theory Column 88: Chal-
lenges in Polynomial Factorization1. ACM SIGACT News, 46(4):32–49, De-
cember 2015.

[FS18] Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set
for the closure of small algebraic circuits. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC, pages 1180–1192,
2018.

[FSTW21] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof
complexity lower bounds from algebraic circuit complexity. Theory Comput.,
17:Paper No. 10, 88, 2021.

https://cse.iitk.ac.in/users/nitin/theses/dutta-2022.pdf
https://cse.iitk.ac.in/users/nitin/theses/dutta-2022.pdf
http://dx.doi.org/10.1137/16M1097870
http://dx.doi.org/10.1137/16M1097870
https://hdl.handle.net/1721.1/89843
https://hdl.handle.net/1721.1/89843
http://dx.doi.org/10.1109/FOCS.2015.35
http://dx.doi.org/10.1109/FOCS.2015.35
https://www.youtube.com/watch?v=1HMogQIHT6Q
https://www.youtube.com/watch?v=1HMogQIHT6Q
https://www.youtube.com/watch?v=1HMogQIHT6Q
http://dx.doi.org/10.1007/978-3-642-40328-6_37
http://dx.doi.org/10.1007/978-3-642-40328-6_37
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/3188745.3188792
http://dx.doi.org/10.1145/3188745.3188792
http://dx.doi.org/10.4086/toc.2021.v017a010
http://dx.doi.org/10.4086/toc.2021.v017a010

Bibliography 100

[GGdOW16] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson.
A Deterministic Polynomial Time Algorithm for Non-commutative Rational
Identity Testing. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS, pages 109–117, 2016.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.
Approaching the Chasm at Depth Four. Journal of the ACM, 61(6):33:1–33:16,
2014.

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-
Width, and Any-Order, Read-Once Oblivious Arithmetic Branching Pro-
grams. Theory Comput., 13(1):1–21, 2017.

[GKSS17] Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf.
Towards an algebraic natural proofs barrier via polynomial identity testing.
CoRR, abs/1701.01717, 2017. Pre-print available at arXiv:1701.01717.

[GKSS22] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon.
Derandomization from algebraic hardness. SIAM J. Comput., 51(2):315–335,
2022.

[Gre16] Bruno Grenet. Bounded-degree factors of lacunary multivariate polynomials.
J. Symb. Comput., 75:171–192, 2016.

[Gro15a] Joshua A Grochow. Unifying known lower bounds via geometric complexity
theory. Computational Complexity, 24(2):393–475, 2015.

[Gro15b] Joshua A. Grochow. Unifying Known Lower Bounds via Geometric Com-
plexity Theory. computational complexity, 24(2):393–475, June 2015.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of
Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory,
45(6):1757–1767, 1999.

[GS11] S. B. Gashkov and I. S. Sergeev. Complexity of computations in finite fields.
Fundamentalnaya i Prikladnaya Matematika, 17(4):95–131, December 2011.

[GSS19] Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic Dependencies and
PSPACE Algorithms in Approximative Complexity over Any Field. Theory
Comput., 15:1–30, 2019.

[GT20] Rohit Gurjar and Thomas Thierauf. Linear Matroid Intersection is in Quasi-
NC. Comput. Complex., 29(2):9, 2020.

http://dx.doi.org/10.1109/FOCS.2016.95
http://dx.doi.org/10.1109/FOCS.2016.95
http://doi.acm.org/10.1145/2629541
http://dx.doi.org/10.4086/TOC.2017.V013A002
http://dx.doi.org/10.4086/TOC.2017.V013A002
http://dx.doi.org/10.4086/TOC.2017.V013A002
http://arxiv.org/abs/1701.01717
http://arxiv.org/abs/1701.01717
http://dx.doi.org/10.1137/20M1347395
http://dx.doi.org/10.1016/J.JSC.2015.11.013
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1007/s10958-013-1350-5
http://dx.doi.org/10.4086/toc.2019.v015a016
http://dx.doi.org/10.4086/toc.2019.v015a016
http://dx.doi.org/10.1007/S00037-020-00200-Z
http://dx.doi.org/10.1007/S00037-020-00200-Z

Bibliography 101

[Gur15] Rohit Gurjar. Derandomizing PIT for ROABP and Isolation Lemma for Special
Graphs. PhD thesis, Indian Institute of Technology Kanpur, 2015.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy
to Compute (Extended Abstract). In Proceedings of the 12th Annual ACM
Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California,
USA, pages 262–272. ACM, 1980.

[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative
Edmonds’ problem and matrix semi-invariants. Comput. Complex., 26(3):717–
763, 2018.

[Kal85] Erich Kaltofen. Polynomial-time reductions from multivariate to bi- and
univariate integral polynomial factorization. SIAM J. Comput., 14(2):469–489,
1985.

[Kal86] Erich L. Kaltofen. Uniform Closure Properties of P-Computable Functions.
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing
(STOC 1986), pages 330–337. ACM, 1986.

[Kal87] Erich Kaltofen. Single-Factor Hensel Lifting and Its Application to the
Straight-Line Complexity of Certain Polynomials. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing (STOC 1987), page 443–452.
Association for Computing Machinery, 1987.

[Kal89] Erich Kaltofen. Factorization of Polynomials Given by Straight-Line Pro-
grams. Adv. Comput. Res., 5:375–412, 1989.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of
bounded degree polynomials. Electronic Colloquium on Computational Com-
plexity (ECCC), 19:81, 2012.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial
identity tests means proving circuit lower bounds. Comput. Complexity,
13(1-2):1–46, 2004.

[Koi96] Pascal Koiran. Hilbert’s Nullstellensatz Is in the Polynomial Hierarchy.
Journal of Complexity, 12(4):273–286, December 1996.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider.
Theor. Comput. Sci., 448:56–65, 2012.

https://www.cse.iitk.ac.in/users/nitin/theses/gurjar-2015.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/gurjar-2015.pdf
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1007/s00037-016-0143-x
http://dx.doi.org/10.1007/s00037-016-0143-x
http://dx.doi.org/10.1137/0214035
http://dx.doi.org/10.1137/0214035
http://dx.doi.org/10.1145/12130.12163
http://dx.doi.org/10.1145/28395.28443
http://dx.doi.org/10.1145/28395.28443
https://users.cs.duke.edu/~elk27/bibliography/89/Ka89_slpfac.pdf
https://users.cs.duke.edu/~elk27/bibliography/89/Ka89_slpfac.pdf
http://eccc.hpi-web.de/report/2012/081
http://eccc.hpi-web.de/report/2012/081
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1006/jcom.1996.0019
http://dx.doi.org/10.1016/J.TCS.2012.03.041

Bibliography 102

[KP11] Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Comput.
Complexity, 20(1):1–20, 2011.

[KRS24] Mrinal Kumar, Varun Ramanathan, and Ramprasad Saptharishi. Determin-
istic Algorithms for Low Degree Factors of Constant Depth Circuits. In
David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024,
pages 3901–3918. SIAM, 2024.

[KRST22] Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and Anamay Tengse. If
VNP Is Hard, Then so Are Equations for It. In 39th International Symposium
on Theoretical Aspects of Computer Science, STACS, pages 44:1–44:13, 2022.

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity
testing of multivariate polynomials. In Proceedings on 33rd Annual ACM
Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 216–223. ACM, 2001.

[KS06] Adam R. Klivans and Amir Shpilka. Learning Restricted Models of Arith-
metic Circuits. Theory Comput., 2(10):185–206, 2006.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial Identity Testing for Depth 3
Circuits. Comput. Complex., 16(2):115–138, 2007.

[KS09] Zohar Shay Karnin and Amir Shpilka. Reconstruction of Generalized Depth-
3 Arithmetic Circuits with Bounded Top Fan-in. In Proceedings of the 24th
Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France,
15-18 July 2009, pages 274–285. IEEE Computer Society, 2009.

[KS18] Mrinal Kumar and Shubhangi Saraf. Arithmetic Circuits with Locally Low
Algebraic Rank. CoRR, abs/1806.06097, 2018. Pre-print available at arXiv:
1806.06097.

[KS19] Mrinal Kumar and Ramprasad Saptharishi. Hardness-Randomness Trade-
offs for Algebraic Computation. Bull. EATCS, 129, 2019.

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of
polynomial identity testing and polynomial factorization. Computational
Complexity, 24(2):295–331, 2015.

[KST19a] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal
bootstrapping of hitting sets for algebraic circuits. In Proceedings of the

http://dx.doi.org/10.1007/s00037-011-0002-8
http://dx.doi.org/10.1137/1.9781611977912.137
http://dx.doi.org/10.1137/1.9781611977912.137
http://dx.doi.org/10.4230/LIPICS.STACS.2022.44
http://dx.doi.org/10.4230/LIPICS.STACS.2022.44
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.4086/TOC.2006.V002A010
http://dx.doi.org/10.4086/TOC.2006.V002A010
http://dx.doi.org/10.1007/S00037-007-0226-9
http://dx.doi.org/10.1007/S00037-007-0226-9
http://dx.doi.org/10.1109/CCC.2009.18
http://dx.doi.org/10.1109/CCC.2009.18
http://arxiv.org/abs/1806.06097
http://arxiv.org/abs/1806.06097
http://arxiv.org/abs/1806.06097
http://arxiv.org/abs/1806.06097
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1137/1.9781611975482.40
http://dx.doi.org/10.1137/1.9781611975482.40

Bibliography 103

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 639–
646. SIAM, 2019.

[KST19b] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal
Bootstrapping of Hitting Sets for Algebraic Circuits. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
639–646. SIAM, 2019.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given by
black boxes for their evaluations: greatest common divisors, factorization,
separation of numerators and denominators. J. Symbolic Comput., 9(3):301–
320, 1990.

[Kum20] Mrinal Kumar. On the Power of Border of Depth-3 Arithmetic Circuits. ACM
Transactions on Computation Theory, 12(1):5:1–5:8, February 2020.

[Len99] H. W. Lenstra, Jr. Finding small degree factors of lacunary polynomials. In
Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997), pages 267–276.
de Gruyter, 1999.

[LO15a] Joseph M. Landsberg and Giorgio Ottaviani. New lower bounds for the
border rank of matrix multiplication. Theory of Computing. An Open Access
Journal, 11:285–298, 2015.

[LO15b] Joseph M. Landsberg and Giorgio Ottaviani. New Lower Bounds for the
Border Rank of Matrix Multiplication. Theory Comput., 11:285–298, 2015.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In
Lothar Budach, editor, Fundamentals of Computation Theory, FCT 1979, Pro-
ceedings of the Conference on Algebraic, Arthmetic, and Categorial Methods in
Computation Theory, Berlin/Wendisch-Rietz, Germany, September 17-21, 1979,
pages 565–574. Akademie-Verlag, Berlin, 1979.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolyno-
mial Lower Bounds Against Low-Depth Algebraic Circuits. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 804–814. IEEE, 2021.

[LV98] Daniel Lewin and Salil P. Vadhan. Checking Polynomial Identities over any
Field: Towards a Derandomization? In Jeffrey Scott Vitter, editor, Proceedings

http://dx.doi.org/10.1137/1.9781611975482.40
http://dx.doi.org/10.1137/1.9781611975482.40
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1145/3371506
http://dx.doi.org/10.1515/9783110285581.267
http://dx.doi.org/10.4086/toc.2015.v011a011
http://dx.doi.org/10.4086/toc.2015.v011a011
http://dx.doi.org/10.4086/toc.2015.v011a011
http://dx.doi.org/10.4086/toc.2015.v011a011
http://dx.doi.org/10.1109/FOCS52979.2021.00083
http://dx.doi.org/10.1109/FOCS52979.2021.00083
http://dx.doi.org/10.1145/276698.276856
http://dx.doi.org/10.1145/276698.276856

Bibliography 104

of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 438–447. ACM, 1998.

[Mah14] Meena Mahajan. Algebraic Complexity Classes, pages 51–75. Springer Interna-
tional Publishing, 2014.

[Mal03] Guillaume Malod. Polynômes et coefficients. (Polynomials and coefficients). PhD
thesis, Claude Bernard University Lyon , France, 2003.

[Mit13] Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD thesis,
University of Bonn, Germany, 2013.

[MP08] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic
complexity classes. J. Complex., 24(1):16–38, 2008.

[MR08] Meena Mahajan and B. V. Raghavendra Rao. Arithmetic Circuits, Syntactic
Multilinearity, and the Limitations of Skew Formulae. In Mathematical
Foundations of Computer Science 2008, 33rd International Symposium, MFCS
2008, Torun, Poland, August 25-29, 2008, Proceedings, volume 5162 of Lecture
Notes in Computer Science, pages 455–466. Springer, 2008.

[MS01] Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory. I. An
approach to the P vs. NP and related problems. Siam Journal On Computing,
31(2):496–526, 2001.

[MS21] Dori Medini and Amir Shpilka. Hitting Sets and Reconstruction for Dense
Orbits in VP_{e} and ΣΠΣ Circuits. In 36th Computational Complexity Confer-
ence, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 19:1–19:27. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[Muk16] Partha Mukhopadhyay. Depth-4 Identity Testing and Noether’s Normaliza-
tion Lemma. In Computer Science - Theory and Applications - 11th International
Computer Science Symposium in Russia, CSR 2016, St. Petersburg, Russia, June
9-13, 2016, Proceedings, volume 9691 of Lecture Notes in Computer Science,
pages 309–323. Springer, 2016.

[Mul07] Ketan Mulmuley. Geometric Complexity Theory VI: the flip via saturated
and positive integer programming in representation theory and algebraic
geometry. CoRR, abs/0704.0229, 2007. Pre-print available at arXiv:0704.
0229.

http://dx.doi.org/10.1007/978-3-319-05446-9_4
https://tel.archives-ouvertes.fr/tel-00087399
https://hdl.handle.net/20.500.11811/5810
http://dx.doi.org/10.1016/J.JCO.2006.09.006
http://dx.doi.org/10.1016/J.JCO.2006.09.006
http://dx.doi.org/10.1007/978-3-540-85238-4_37
http://dx.doi.org/10.1007/978-3-540-85238-4_37
http://dx.doi.org/10.1137/S009753970038715X
http://dx.doi.org/10.1137/S009753970038715X
http://dx.doi.org/10.4230/LIPICS.CCC.2021.19
http://dx.doi.org/10.4230/LIPICS.CCC.2021.19
http://dx.doi.org/10.1007/978-3-319-34171-2_22
http://dx.doi.org/10.1007/978-3-319-34171-2_22
http://arxiv.org/abs/0704.0229
http://arxiv.org/abs/0704.0229
http://arxiv.org/abs/0704.0229
http://arxiv.org/abs/0704.0229
http://arxiv.org/abs/0704.0229

Bibliography 105

[Mul12a] Ketan Mulmuley. The GCT program toward the P vs. NP problem. Commun.
ACM, 55(6):98–107, 2012.

[Mul12b] Ketan D. Mulmuley. The GCT Program toward the P vs. NP Problem.
Commun. ACM, 55(6):98–107, 2012.

[Mul17] Ketan Mulmuley. Geometric Complexity Theory V: Efficient Algorithms
for Noether Normalization. Journal of the American Mathematical Society,
30(1):225–309, January 2017.

[Mum76] David Mumford. Algebraic geometry. I. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, 1976. Complex projective varieties.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms,
and Complexity. Chic. J. Theor. Comput. Sci., 1997, 1997.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vĳay V. Vazirani. Matching is as
easy as matrix inversion. Comb., 7(1):105–113, 1987.

[Nis91] Noam Nisan. Lower Bounds for Non-Commutative Computation. In Pro-
ceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,
STOC ’91, pages 410–418, New York, NY, USA, January 1991. Association for
Computing Machinery.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[Oli16] Rafael Oliveira. Factors of low individual degree polynomials. Comput.
Complexity, 25(2):507–561, 2016.

[Oli20] Rafael Oliveira. Conditional lower bounds on the spectrahedral represen-
tation of explicit hyperbolicity cones. In Proceedings of the 2020 International
Symposium on Symbolic and Algebraic Computation (ISSAC 2020), pages 396–401.
ACM, 2020.

[Ore22] Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1922.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley Pub-
lishing Company, Reading, MA, 1994.

[PS21] Shir Peleg and Amir Shpilka. Polynomial time deterministic identity test-
ing algorithm for Σ[3]ΠΣΠ[2] circuits via Edelstein-Kelly type theorem for
quadratic polynomials. In STOC ’21: 53rd Annual ACM SIGACT Symposium

http://dx.doi.org/10.1145/2184319.2184341
http://dx.doi.org/10.1145/2184319.2184341
http://dx.doi.org/10.1090/jams/864
http://dx.doi.org/10.1090/jams/864
https://link.springer.com/book/9783540586579
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1007/s00037-016-0130-2
http://dx.doi.org/10.1145/3373207.3404010
http://dx.doi.org/10.1145/3373207.3404010
https://dl.acm.org/doi/abs/10.5555/1074100.1074233
http://dx.doi.org/10.1145/3406325.3451013
http://dx.doi.org/10.1145/3406325.3451013
http://dx.doi.org/10.1145/3406325.3451013

Bibliography 106

on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 259–271.
ACM, 2021.

[Pé04] Sylvain Périfel. Polynômes donnés par des circuits algébriques et généralisation du
modèle de Valiant. École Normal Supérieure de Lyon, France, 2004. Master’s
Thesis.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in
non-commutative models. Comput. Complex., 14(1):1–19, 2005.

[Sap13] Ramprasad Saptharishi. Unified Approaches to Polynomial Identity Testing and
Lower Bounds. PhD thesis, Ph. D. thesis, Chennai Mathematical Institute,
India, 2013.

[Sax08] Nitin Saxena. Diagonal Circuit Identity Testing and Lower Bounds. In
Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, PartI: Tack A: Algorithms,
Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer
Science, pages 60–71. Springer, 2008.

[Sax09a] Nitin Saxena. Progress on Polynomial Identity Testing. Bull. EATCS, 99:49–79,
2009.

[Sax09b] Nitin Saxena. Progress on Polynomial Identity Testing. Bull. EATCS, 99:49–79,
2009.

[Sax14a] Nitin Saxena. Progress on Polynomial Identity Testing - II. Perspectives in
Computational Complexity: The Somenath Biswas Anniversary, 26:131–146, 2014.

[Sax14b] Nitin Saxena. Progress on polynomial identity testing-II. In Perspectives in
Computational Complexity. Springer, 2014.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polyno-
mial Identities. J. ACM, 27(4):701–717, 1980.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Sho09] Victor Shoup. A computational introduction to number theory and algebra. Cam-
bridge University Press, second edition, 2009.

[Shp09] Amir Shpilka. Interpolation of Depth-3 Arithmetic Circuits with Two Multi-
plication Gates. SIAM J. Comput., 38(6):2130–2161, 2009.

http://dx.doi.org/10.1007/S00037-005-0188-8
http://dx.doi.org/10.1007/S00037-005-0188-8
https://www.tcs.tifr.res.in/~ramprasad/assets/pubs/phd_thesis.pdf
https://www.tcs.tifr.res.in/~ramprasad/assets/pubs/phd_thesis.pdf
http://dx.doi.org/10.1007/978-3-540-70575-8_6
https://cse.iitk.ac.in/users/nitin/papers/pit-survey13.pdf
https://link.springer.com/chapter/10.1007/978-3-319-05446-9_7
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/146585.146609
https://shoup.net/ntb/
http://dx.doi.org/10.1137/070694879
http://dx.doi.org/10.1137/070694879

Bibliography 107

[Sin16] Gaurav Sinha. Reconstruction of Real Depth-3 Circuits with Top Fan-In 2.
In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1,
2016, Tokyo, Japan, volume 50 of LIPIcs, pages 31:1–31:53. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[Sin19] Amit Kumar Sinhababu. Power series in complexity: Algebraic Dependence,
Factor Conjecture and Hitting Set for Closure of VP. PhD thesis, Indian Institute
of Technology, Kanpur, India, 2019.

[SK12] Jayalal Sharma and Dinesh K. Advanced Complexity Theory. Lecture Notes,
2012.

[SS12] Nitin Saxena and C. Seshadhri. Blackbox Identity Testing for Bounded
Top-Fanin Depth-3 Circuits:The Field Doesn’t Matter. SIAM J. Comput.,
41(5):1285–1298, 2012.

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A Case of Depth-
3 Identity Testing, Sparse Factorization and Duality. Comput. Complex.,
22(1):39–69, 2013.

[ST17] Ola Svensson and Jakub Tarnawski. The Matching Problem in General
Graphs Is in Quasi-NC. In Chris Umans, editor, 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 696–707. IEEE Computer Society, 2017.

[ST21] Amit Sinhababu and Thomas Thierauf. Factorization of Polynomials Given
by Arithmetic Branching Programs. Comput. Complex., 30(2):15, 2021.

[Str74] Volker Strassen. Polynomials with rational coefficients which are hard to
compute. Siam Journal On Computing, 3:128–149, 1974.

[Sud97] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction
bound. J. Complexity, 13(1):180–193, 1997.

[Sud98] Madhu Sudan. Algebra and Computation. Lecture Notes, 1998.

[SV10] Amir Shpilka and Ilya Volkovich. On the relation between polynomial
identity testing and finding variable disjoint factors. In Automata, languages
and programming. Part I, volume 6198 of Lecture Notes in Comput. Sci., pages
408–419. Springer, 2010.

[SV18] Shubhangi Saraf and Ilya Volkovich. Black-Box Identity Testing of Depth-4
Multilinear Circuits. Comb., 38(5):1205–1238, 2018.

http://dx.doi.org/10.4230/LIPICS.CCC.2016.31
https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.pdf
https://www.cse.iitm.ac.in/~jayalal/teaching/CS6840/2012/lecture04.pdf
http://dx.doi.org/10.1137/10848232
http://dx.doi.org/10.1137/10848232
http://dx.doi.org/10.1007/S00037-012-0054-4
http://dx.doi.org/10.1007/S00037-012-0054-4
http://dx.doi.org/10.1109/FOCS.2017.70
http://dx.doi.org/10.1109/FOCS.2017.70
http://dx.doi.org/10.1007/S00037-021-00215-0
http://dx.doi.org/10.1007/S00037-021-00215-0
http://dx.doi.org/10.1137/0203010
http://dx.doi.org/10.1137/0203010
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1006/jcom.1997.0439
https://people.csail.mit.edu/madhu/FT98/
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.1007/S00493-016-3460-4
http://dx.doi.org/10.1007/S00493-016-3460-4

Bibliography 108

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A Survey of Recent
Results and Open Questions. Found. Trends Theor. Comput. Sci., 5(3–4):207–
388, 2010.

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3.
Inf. Comput., 240:2–11, 2015.

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11th
Annual ACM Symposium on Theory of Computing (STOC 1979), pages 249–261.
ACM, 1979.

[Val82] L. G. Valiant. Reducibility by algebraic projections. In Logic and algorithmic,
volume 30 of Monogr. Enseign. Math., pages 365–380. Univ. Genève, Geneva,
1982.

[vzG84] Joachim von zur Gathen. Hensel and Newton methods in valuation rings.
Math. Comp., 42(166):637–661, 1984.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge University Press, Cambridge, third edition, 2013.

[vzGK85] Joachim von zur Gathen and Erich L. Kaltofen. Factoring Sparse Multivariate
Polynomials. J. Comput. Syst. Sci., 31(2):265–287, 1985.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Ed-
ward W. Ng, editor, Symbolic and Algebraic Computation, EUROSAM ’79,
An International Symposiumon Symbolic and Algebraic Computation, Marseille,
France, June 1979, Proceedings, volume 72 of Lecture Notes in Computer Science,
pages 216–226. Springer, 1979.

http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1016/J.IC.2014.09.004
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.2307/2007608
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1016/0022-0000(85)90044-3
http://dx.doi.org/10.1016/0022-0000(85)90044-3
http://dx.doi.org/10.1007/3-540-09519-5_73

	Acknowledgements
	Contents
	List of Publications
	List of Tables
	1 Introduction
	1.1 Algebraic Computation and Classes
	1.2 Border Complexity
	1.2.1 Importance of De-bordering

	1.3 Circuit Factoring
	1.3.1 Significance of Factor Closure

	1.4 Polynomial Identity Testing
	1.4.1 Prominence of Identity Testing

	1.5 Contribution of Thesis
	1.5.1 Demystifying the Border with Explicitness
	1.5.2 Demonstrating Factor Closure
	1.5.3 Derandomising Polynomial Identity Testing

	1.6 Preliminaries
	1.7 Structure of the thesis

	I Explicitness of Border Classes
	2 De-bordering Depth 4 Circuits
	2.1 Border Complexity Preliminaries
	2.2 Current Status of De-bordering
	2.3 Gentle Introduction to DiDIL
	2.4 Debordering Bounded Depth-4 Circuits using DiDIL

	3 De-bordering Presentable Border Classes
	3.1 Presentable Border and its Efficacy
	3.2 Presentable is Explicit
	3.2.1 Exponential interpolation technique
	3.2.2 Transfer algebraic complexity to boolean

	II Circuit Factoring
	4 Factor Closure of VNP over Finite Fields
	4.1 VNP is factor closed
	4.1.1 Factoring prime powers using Valiant's converse
	4.1.2 Factoring co-prime factors

	5 Explicitness of Low-Degree Factors
	5.1 Low degree factors are easy to approximate

	III Identity Testing
	6 Whitebox Identity Testing of Depth-4 Circuits
	6.1 State of Affairs
	6.2 Gentle Introduction to DiDI
	6.3 De-randomizing PIT of Restricted Depth-4 Circuit using DiDI

	7 Identity Testing of Border Depth-4 Circuits
	7.1 Introduction to Border PIT
	7.2 Identity Testing Border of Sum of Powering Circuits
	7.3 De-randomizing PIT using DiDIL

	8 Conclusion
	8.1 Explicitness
	8.2 Circuit Factoring
	8.3 Identity Testing

	Bibliography

